

White Oak Conservation Restoration

Mahaska County, Iowa

Table of Contents

Sectio	n I. Executive Summary1
Sectio	n II. Organization Qualifications and Experience4
1.	Name of Organization
2.	Organization Location and Contact Information
3.	Organization and Design Team Description
Sectio	n III. Design Services4
Proj	iect Scope4
Des	ign Tasks
Wor	k Plan
Sectio	n IV. Constraints, Challenges, and Impacts
1.	Constraints
2.	Challenges7
3.	Societal Impact within the Community and/or State of Iowa
Sectio	n V. Alternative Solutions That Were Considered
Sectio	n VI. Final Design Details11
1.	Lake Evaluation
2.	Pavilions
3.	Pedestrian Bridges
4.	Roadways
5.	Parking Lots
6.	Boat Ramp
7.	Trails
8.	Playgrounds
Sectio	n VII. Engineer's Cost Estimate17
1.	Cost Estimates
2.	Funding22
3.	Phasing Plan

Appendix B: Lake Evaluation

Appendix C: Pavilions

Appendix D: Pedestrian Bridges

Appendix E: Roadways

Appendix F: Parking Lots

Appendix G: Boat Ramp

Appendix H: Trails

Appendix I: Playground

Appendix J: Bibliography

Section I. Executive Summary

White Oak Conservation Center is a focal point for Mahaska County, Iowa that currently provides scenic trail routes and access to a 20-acre lake, amongst other amenities for residents and visitors to enjoy. To keep this area as a destination spot, our student engineering group has proposed rehabilitation services in various sectors for the betterment of the site. Our student group has expertise and applicable experience in different areas of civil engineering design, such as structural, transportation, land development and water resource design. This experience aided the team's ability to provide quality and innovative designs for site improvements. One of the major amenities of White Oak Conservation Center is the 20-acre lake which includes boat ramp access and is used for recreation and fishing. Along with the lake, the site has mowed walking paths with multiple pedestrian bridges across small streams, as well as pavilions and playgrounds that can be accessed via gravel roads. The conservation area is a great attraction to citizens of Mahaska County as well as visitors who enjoy the many activities and scenery this site has to offer.

The scope of our restoration project can be broken down by design element. The design elements our team worked on were as follows: an evaluation of the lake, new pavilions, new pedestrian bridges, enhanced roadways, new parking lots, an upgraded boat ramp, rehabilitated walking trails, and a new playground area. An overview of the design process and end products for each amenity on site can be found below.

1. Lake Evaluation

The White Oak Conservation Center is home to a 20-acre lake that is currently having problems with water quality. It is surrounded by four satellite ponds and a south subbasin. We created a HEC-HMS model to evaluate the inflows for the main lake. From this we found that all the satellite ponds flow into the lake. Our key finding was that greater than 90% of inflow into the main lake comes from the south subbasin. This indicates that most of the sediment inflow for the main lake is coming from the south. Because of this we are recommending hydraulic dredging to solve the sedimentation issue and to improve water quality. Sediment removal is recommended in the south end of the lake and in the deepest portion of the lake, near the upper northwest of the lake. Proper and routine maintenance is also recommended for the south subbasin sediment collection structures and the satellite ponds to maintain effectiveness and prevent a future dredging need.

2. Pavilions

Designs to replace the existing steel pavilions were completed to improve aesthetics and cohesion with the natural aspects of the site. The pavilions were designed to be made of Douglas Fir wood, with a metal roof decking. The roofs were designed to be double gable and valley, bearing on sheathing. The framing members supporting this roof are purlins spaced two feet on center, which are connected to girders. The girders and architectural trusses that are exposed by the gable roof design bear on columns which are supported by knee braces. This knee brace connection is essential for minimizing the effect of wind forces. Both pavilions will utilize the existing slab that vary in size, with the northern Cardinal pavilion on a 45'x25' slab and the southern Robin pavilion on a 25'x'25' slab. A cost estimate was performed for both the Cardinal and Robin pavilions. Calculations were performed using ASCE load combinations and NDS design specifications.

3. Pedestrian Bridges

Three of the most used and structurally flawed bridges on the site were redesigned to allow for safe travel for pedestrians and service vehicles. The boat ramp bridge, southeast bridge, and primary inlet bridge were designed by expanding the bridge deck of a U.S. Forest Service typical pedestrian bridge to 8'-9", meeting ADA requirements as well as allowing for easy access and multi-direction travel. Supporting the Douglas Fir wood frame of the bridge are concrete abutments designed using a 10,000-pound design vehicle loading. While varying in length and construction constraints, each bridge was designed with the goal of creating an aesthetically pleasing, reliable, and efficient trail network around the site.

4. Roadways

The existing roadways on site were deteriorating due to a long service life and a lack of maintenance. The roadways needed to be redesigned to improve function and safety. The design of the roadways began with our team surveying the existing roadways centerlines and edges of pavement. Then, the software Pave Xpress was used to determine how thick the different proposed pavement options would need to be to provide adequate support for the roadways. Once these thicknesses were known, crosssections for the three roadway surfacing alternatives were created (HMA, PCC, Gravel). These cross-sections were then applied to both horizontal and vertical alignments to create a 3D roadway corridor. All grades along the roadways were designed to meet the AASHTO Rural Local Road Standards. Following the completion of the roadway design, a cost estimate was performed for the three surfacing options.

5. Parking Lots

The existing parking areas on site had no distinct parking stalls and were deteriorating due to a long service life and a lack of maintenance. They needed to be redesigned to improve function and safety. The design of the parking lots began with our team surveying the existing parking areas edges of pavement. After surveying the site, the number of parking spots needed was estimated to be twenty-two with three of them being ADA accessible for vans. Once the number of parking spots was determined, two separate layouts were created, one matching the existing geometry of the site, and one proposing new geometry for the parking lot areas. These different layouts were sent to the client who made the choice to move forward with the new geometry option. Using the new geometry, the parking lots were graded to SUDAS Section 8 Standards. Following the completion of the parking lot design, a cost estimate was performed for the three surfacing options (HMA, PCC, Gravel).

6. Boat Ramp

The design of the boat ramp aimed to enhance functionality, safety, and accessibility by addressing accumulated sediment concerns. By evaluating equipment options to clear the accumulated gravel, we optimized watercraft launching and

retrieval processes in compliance with U.S. Army Corps of Engineers standards. Utilizing a telescopic front loader, we can efficiently remove sediment and mitigate pavement damage risks. Accessibility improvements, including trailer parking integration, ensure access for most users. The enhanced boat ramp offers an improved experience for recreational boaters while preserving its existing location and structure.

7. Trails

The evaluation of the existing trail system reveals areas in need of improvement, targeting safety concerns and drainage issues. Specific spots with poor drainage or steep slopes are identified as requiring immediate attention to ensure user safety. In response, ABA compliant alternatives are proposed for heavily trafficked regions to alleviate strain and prevent erosion. Furthermore, alternatives for the proposed trail extension were developed, aiming to enhance the overall trail system and provide additional recreational opportunities while maintaining environmental sustainability, durability, and a natural aesthetic.

8. Playgrounds

Due to the deterioration of the playground near the southern Robin pavilion, the client expressed interest in replacement items that would add a variety of activities for all ages on the site that differ from the newly implemented playground near the Cardinal pavilion. The recommended design items to adhere to the client's interests are prefabricated outdoor games of concrete cornhole and concrete ladder toss from Doty & Sons Concrete Products. A cost estimate was performed for the implementation of these new activities as well as demolition of the current playground.

The total estimated construction cost for the entire project amounts to \$1.17 million. The total cost has been delineated across three distinct phasing plans, each with certain tasks. Project funding will primarily be sourced from the client; however, financial support can be pursued through grants provided by the Iowa Department of Natural Resources. These grants include, but are not limited to, the Resource Enhancement and Protection (REAP) program, the Wildlife Habitat Stamp Fund program, and the Water Recreation Access Cost-Share program. Further information about phasing, each task's cost, and funding opportunities is detailed in section VII.

In conclusion, the design recommendations for each sector of the restoration were based on efficiency, cost, design creativity, and practicality. A comprehensive drawing set was created for all plans for the scope of the project. Further explanations and design details are outlined in the body of this report. Calculations and subsequent technical information can be found in the appendices at the end of the report.

Section II. Organization Qualifications and Experience

1. Name of Organization

We are a senior design group of eight students enrolled at the University of Iowa in the course Project Design & Management (CEE:4850).

2. Organization Location and Contact Information

Our team contacted the client bi-weekly via email to update them and highlight any completed work. Our teams project manager, Cody Hall, was accessible via email at cody-hall@uiowa.edu.

3. Organization and Design Team Description

Our team was composed of several engineering students who were proficient in many different areas of civil engineering design. Because of this, we offered engineering services in many different disciplines. These included transportation design, structural design, foundation design, land development, water resource design, and hydraulic modeling. With our organization offering services in these fields, we felt qualified to perform the scope of work requested by the client at the Mahaska County Conservation Board. Our team consisted of Maya Johnson (Pavilion Design and Playground Design), Evan Felts (Parking Lot and Roadway Design), Noah Lyon (Hydraulic Modeling and Lake Evaluation), Justin Japlon (Boat Ramp Design), Cody Hall (PM, Bridge Design), Cory Siegel (Parking Lot and Roadway Design), Aden Gomez (Hydraulic Modeling and Lake Evaluation), and Beau Benzing (Recreational Trail Design).

Section III. Design Services

Project Scope

The primary objective of this design project was to enhance the Mahaska County Conservation area to make it an attractive public destination, provide effective and economical solutions for the Mahaska County Conservation Board, and offer alternative plans of action for their consideration.

Design Tasks

- 1. Lake Evaluation
 - a. Obtained a comprehensive depth survey of the entire lake and pond system.
 - b. Developed a model illustrating water flow dynamics throughout the system.
 - c. Determined the volume of sediment to be removed and identify specific locations.
 - d. Proposed means and methods for sediment removal.
 - e. Identified suitable locations for depositing or utilizing removed sediment.
- 2. Pavilions
 - a. Designed new pavilions at the north and south ends, considering materials and aesthetics.

- b. Computed load calculations using ASCE 7-22 and NDS specifications.
- c. Designed pavilions such that existing foundations are sufficient for new loading.
- d. Created a cost estimate for each new pavilion and demolition of existing pavilions.
- 3. Pedestrian Bridges
 - a. Designed new pedestrian bridges to replace three existing bridges on the southeast side of the site.
 - b. Adapted U.S. Forestry Service typical pedestrian bridge designs to meet project goals and intended bridge usage.
 - c. Computed load calculations for the bridges using a H5 design vehicle (10,000 lbs).
 - d. Designed bridge abutments to support loading and withstand water and earth pressures.
 - e. Created a cost estimate for each bridge and demolition of existing bridges.
- 4. Roadways
 - a. Obtained survey points of the existing road centerlines and edges of pavement.
 - b. Determined pavement and base thicknesses using Pave Xpress for different material alternatives.
 - c. Created 3 separate roadway cross-sections (HMA, PCC, Gravel).
 - Built 3D corridors based on the existing road centerline for each alternative roadway cross-section while adhering to AASHTO Rural Local Roads Guidelines in I.M. 3.210.
 - e. Created a cost estimate for each roadway alternative.
- 5. Parking Lot
 - a. Obtained survey points for the existing parking lot edge of pavements.
 - b. Estimated the number of parking spots needed on site based on our client's insight.
 - c. Proposed two alternative layouts for our client, one matching the existing circular geometry of the parking lots, one changing the geometry to be rectangular.
 - d. Moved forward with the new geometry layout and followed SUDAS Section 8 Standards for all design criteria.
 - e. Created a cost estimate for the proposed parking lots for three surfacing options (HMA, PCC, Gravel).
- 6. Boat Ramp
 - a. Modeled the existing boat ramp with the adjacent parking lot.
 - b. Resolved issues related to gravel accumulation at the top and bottom of the ramp.
 - c. Addressed the challenge of organized trailer parking.
- 7. Trails
 - a. Evaluate the existing trail system, identifying areas in need of improvement.

- b. Assess trail drainage to address safety concerns in specific spots with poor drainage or steep slopes, develop complying alternatives to high use regions.
- c. Evaluate and develop alternatives for the proposed trail extension.
- 8. Playgrounds
 - a. Developed alternative amenities, outdoor games, to replace existing playground on south end.

Work Plan

See Appendix A.

Section IV. Constraints, Challenges, and Impacts

1. Constraints

The project's parameters were defined by various restrictions and limitations, encompassing a diverse array of factors. These constraints can be broadly categorized into overarching constraints, as detailed below, and specific constraints tailored to each design element, outlined subsequently.

General: Many of the constraints encountered on this site were due to the client not wanting to relocate many of the existing design elements. This was to minimize cost as well as to keep the layout comparable to what was previously on site. Additional constraints included ensuring construction access to locations where work was to be performed, and the funding available to our client for this project.

Pavilions: When redesigning the existing pavilions, our team was constrained by the location and the dimensions of the existing slabs. The client wanted to reuse the slabs for the new pavilions to save on pavement costs.

Bridges: The locations of the bridges on this site needed to be accessible for the construction crews and their equipment. Due to the dense terrain, this was a major restriction.

Roadways and Parking Lots: When looking at the current roadways and parking lots, our team was constrained to match the existing locations of these roads and parking lots.

Boat Ramp: A major constraint when modeling the boat ramp was keeping the ramp in its existing location. Furthermore, there was not much room to design pull-through trailer parking in the adjacent parking lot.

Trails: The large trail system that runs around the project site was constrained by the existing locations as well as the durability of the existing material that was used to previously construct these trails.

2. Challenges

Numerous observations made by our team during both the initial and subsequent visits to the site highlighted potential challenges. These hurdles emerged notably during the project's preliminary design phase. Each design element faced its own set of challenges, alongside overarching design issues affecting all design elements.

General: All design elements experienced the challenge of hindered access for pedestrians during the construction phase of the project.

Lake Evaluation: The main lake at the center of the site lacked reliable data on sediment type. The satellite ponds which flow directly into the main lake lacked reliable elevation data. This led to multiple assumptions being made by our team about the storage-elevation relationships of these ponds and assumptions on how much sediment needed to be removed from the main lake.

Pavilions: When designing the pavilions, a major challenge came from the reuse of the concrete slab. Our team had to ensure that the loads experienced by the new pavilion would not exceed that of the existing pavilion. If these loads were greater than the existing loads, we would not have been able to use the existing slab as it would not provide adequate support for our structure.

Bridges: The replacement of the bridges on site posed several challenges. The first being the lack of geotechnical data our team had for the project location. This made it difficult to determine the true soil properties which led to a lot of assumptions used during the abutment design. The next challenge our team faced with the bridge design was the fact that two of the existing bridges had very low decks, leading to more difficulty with abutment design.

Roadways: Existing roadway slopes were unreasonably high in specific areas due to the long service life and minimal maintenance done on the roadways. This posed challenges with ensuring the roadways were graded to AASHTO and SUDAS typical roadway standards. An additional issue with the roadway design was ensuring that the daylighting area did not overlap any existing amenities or trees.

Parking Lots: The existing parking lots were designed to be near amenities such as the pavilions, restrooms, and the boat launch while lacking specified parking stalls. The main challenge our team encountered with the design of the new parking lots was maintaining the ease of access to these existing amenities while changing the geometric layout of the parking lots and defining clear parking stalls for vehicles.

Boat Ramp: Managing accumulated gravel at the boat ramp posed a significant challenge, requiring careful removal to avoid structural damage. Proactive strategies were needed to prevent future buildup and ensure compliance with regulations.

Trails: The terrain that the trails lie on is very steep at certain locations. This led to many challenges of meeting slope and run distance standards while maintaining the

existing geometry of the trails. This terrain also made it difficult to ensure proper slopes on the portion of the trail our client requested be extended. Additionally, determining specific areas to resurface, what materials to resurface these areas with, and how runoff would affect these materials was particularly tricky.

Playgrounds: A major challenge we ran into when redesigning the playground areas was determining the location for the new amenities so that it could accommodate outdoor games such as cornhole and ladder toss. This was particularly difficult due to the locations of the existing amenities on site.

Phasing: A challenge experienced by our team while creating a phasing plan for the project was determining which items were deemed as high priority. Our team needed to know this to provide a proper recommendation to the client on what order the project should be completed in to ensure efficient and logical results.

3. Societal Impact within the Community and/or State of Iowa

Enhanced community quality of life and resilience due to improved community gathering spaces and outdoor recreational opportunities. This benefits the community's health and wellbeing by offering exciting opportunities for exercise and a location to hold events, promoting community involvement.

Increased wildlife diversity, habitat, and abundance due to water quality improvements for the lake and satellite ponds. In turn increasing potential for nature-based tourism and wildlife sports.

Section V. Alternative Solutions That Were Considered

To determine the most efficient designs for the restoration of White Oak Conservation Center, several techniques were used to analyze each section of the project. To produce the best possible product for our client, the following alternative solutions were evaluated and presented to the client throughout the duration of the project.

1. Lake Evaluation

During the lake evaluation the use of the RUSLE equation was considered in determining the amount of sediment gain by the lake on a typical annual basis. Due to insufficient data for the surrounding area, the complexity of the site, and being able to achieve the requested scope without this process; an alternative was used. This alternative accounted for the fish habitat and boating usefulness. There were also alternatives for type of dredging, each having their pros and cons. This decision will be left for the client to decide based on their storage capability, funding, and equipment availability.

2. Pavilions

For the pavilions, a variety of designs, sizes, and materials were considered. The location of the pavilions was predetermined based on the existing concrete slabs that are recommended to be reused, so ultimately it was determined for the new designs to match

the sizes of the current pavilions to maximize the use of the slab rather than implementing a unique design. Multiple roof types were considered as well, keeping in mind cohesion with the aesthetics of the area and resilient material types. Ultimately, the hip and valley roof design are the recommended choice for durability concerns as well as allowing for exposed trusses as an interesting architectural feature.

3. Pedestrian Bridges

With the natural wooded area aesthetic in mind, each of the U.S. Forest Service typical bridge designs was considered. The bridges vary in size, materials, load bearing structure, and more. Each of the designs provided by the U.S. Forest Service are unique and work well in certain parts of the country. When selecting which would fit best on the site, many variables were considered. Of the variables considered, the intended use of the bridge, the construction limitations, the access to materials, and the overall cost weighed most heavily in the decision. Ultimately, due to adaptability of the design, the Sawn Timber Stringer Trail Bridge was selected.

4. Roadways

During our initial site visit, our client expressed an interest in replacing the existing gravel roads with paved roads while citing a lack of funding as a major constraint. Our team designed roadways to match the existing road geometry, while creating three separate surfacing alternatives. The first alternative was a 4" HMA surface, the second alternative was a 6" PCC surface, and the third alternative was a 1" Gravel resurfacing of the existing roads to correct any rutting or settling that occurred. Gravel resurfacing of the roadways was the cheapest alternative; however, it did not provide any improvements to the issue of large quantities of sediment being washed down to the base of the boat ramp. Paving the road surface with HMA or PCC would help resolve this sediment issue, but it came with a much higher material cost. Ultimately it is the client's choice on what to pursue for construction, but our team recommends paving the roads using HMA surfacing. This is a cheaper alternative than using PCC surfacing and addresses the issue of sedimentation. Proper maintenance on the roadways is needed to maintain the appropriate function of the roadways.

5. Parking Lots

Our client expressed interest in improving the existing parking lot areas around the project site. These areas lacked specific parking stall locations. Our team designed two different alternatives for the geometry of the parking lots. The first alternative was meant to match the existing shape of the parking lots on site while adding in well-defined parking stalls. The second alternative expanded the parking lot areas and changed the shape of these areas while implementing well-defined parking stalls and sidewalks. Both alternatives were sent to our client, and he ultimately chose to move forward with the new geometry alternative. This alternative allocated more spots on site and included oneway access into 2 of the parking lots. The alternatives for the new geometry of the parking lot was designed with three separate surfacing alternatives. These alternatives ultimately used the same pavement thicknesses as the roadways to account for the ease of construction. These alternatives include a 4" HMA surface, a 6" PCC surface, and a 1" Gravel resurfacing to level out any rutting or settlement that had occurred. Gravel surfacing would be the cheapest option but would not address the sedimentation issue occurring at the base of the boat ramp. Paving the lots using HMA or PCC would resolve the sedimentation issue but would come at a higher cost. Ultimately it is the client's choice on what surfacing to use for construction, but our team recommends paving the parking lots using HMA surfacing and paving the sidewalks using PCC surfacing. This alternative is cheaper than using PCC surfacing and will help counter the sedimentation issue occurring at the south lot near the boat ramp. This will also ensure the ease of construction as tying in HMA parking lots into HMA roads will be much easier than using a different surfacing material. Proper maintenance of the parking lots is needed to maintain the appropriate function of the parking lots.

6. Boat Ramp

During our assessment of suitable equipment for the boat ramp maintenance, we explored various options. Initially, we examined the feasibility of using a skid steer. However, it became evident that a skid steer lacks the capability to reach into the water adequately, thus limiting its ability to remove all accumulated sediment in the transition area (base) of the boat ramp. Subsequently, we considered employing an excavator. However, the substantial weight of an excavator posed concerns regarding potential damage to the boat ramp pavement merely from its traversal. Moreover, there existed a risk of unintentional damage to the submerged portion of the boat ramp if the excavator operator was unaware of the slab's location beneath the sediment. Consequently, our recommendation is to utilize a telescopic front loader, or a telehandler with a bucket, for sediment removal. This equipment offers the necessary reach to effectively clean out sediment while minimizing the risk of pavement damage to the boat ramp.

7. Trails

When evaluating the trails, we considered drainage ways, elevations, the Architectural Barries Act (ABA) standards for hiking trails, United States Forest Service Recommendations, all while attempting to maintain a natural feel with the selected materials. It was important to us to maintain the current trail alignments but do our best to improve and redesign specific segments, which made way for our most viable alternative of mixed surface materials (wood chips, gravel, and mowed grass) that meets code in high use areas.

8. Playgrounds

To better engage the community with new amenities at White Oak, alternatives to a traditional playground were considered for the area near the southern pavilion. Rather than updating the existing playground to be of similar standards to the new playground by the northern pavilion, various outdoor games were considered instead. Using the Doty & Sons Concrete Games Products, it is recommended to implement a cornhole and ladder toss amenities as a playground replacement due to their popularity and ease of use for the community. Using the Doty & Sons Concrete Games Products, it is recommended to implement cornhole and ladder toss amenities as a playground replacement due to their popularity and ease of use for the community.

Section VI. Final Design Details

1. Lake Evaluation

Design Storm Evaluation: A HEC-HMS model was created incorporating the following data. The design storm evaluated was a 100-year, 24-hour storm. We utilized the SCS Type 2 precipitation model using NOAA Atlas 14 for depth evaluation, assuming uniform precipitation for all subbasins. Subbasin areas, CN values, and lag time were determined using the NRCS water lag method and data from StreamStats. The elevation-area relationship for the main lake was established using topographic survey data. While the satellite ponds elevation-area was calculated using a percent reduction method. Outlet elevations and slopes for discharge pipes were determined using GPS and changes in elevation. Emergency spillways were assumed to be a broad crested weir with a coefficient of 3. More assumptions and details can be found in Appendix B.

Figure 1: Lake Dredging Plan

Sediment Removal Plan: At a water surface elevation of 738 feet the lake has 810 square feet of area exceeding a 16' depth. To increase this area, 300 cubic yards of sediment needs to be removed from the current location. This is recommended to increase fish wintering ability. Additional dredging of 1,722 cubic yards is recommended in the south end of the lake. The majority of lake inflow occurs from the south subbasin, causing the accumulation of sediment there. Its removal would improve boating usefulness and increase summer habitat for wildlife. Therefore, 2,022 cubic yards of sediment must be removed. See Figure 1 for the graphical representation of sediment removal. In summary, increasing the area of 16' depth at the current deepest location would improve fish habitat in the winter season. Improving recreational activities such as fishing by deepening the south end, which is currently shallow and unusable for boating. Regular monitoring and assessment of the lake's condition post-sediment removal will be essential to ensure the desired outcomes are achieved.

2. Pavilions

Loading: Loads on the pavilion were calculated using ASCE 7-22. The risk category was determined to be category I based on its current and anticipated usage. The roof dead load was calculated based on a corrugated metal roof deck and 24/0 OSB sheathing. The snow load was determined based on the location in Cedar, Iowa. Wind loads were determined by analyzing the lateral force resisting system that are the moment frames created by use of knee braces between posts and trusses. These loads were used in ASD load combinations to determine the critical case for both lateral and vertical loading, keeping uplift in mind as an open-air structure.

Roof Framing: The roof framing consists of joists, runners, and trusses to support the double hip and valley roof design. All joists are to be 4x6 Douglas Fir, and girders are designed as 4x10 of the same material. Douglas Fir was chosen for its availability in the area, as well as its water resistance that will be important for an outdoor pavilion. Knee braces will be used as the lateral force resisting system, creating a moment frame between posts and trusses.

Columns: The columns will be 6x6 Douglas Fir timbers that will carry the loads from the joists and trusses down to the existing concrete slab. Since the posts will have to be retrofit to the existing slab and foundation, RPBZ Retrofit Connections from Simpson Wood Connectors will be used to limit uplift of the structure.

3. Pedestrian Bridges

Bridge Cross-Section: Each of the three bridges was adapted from the U.S. Forest Service Plans for a Sawn Timber Stringer Trail Bridge. The sawn timber stringers of the bridge are made of Douglas Fir wood and were selected due to the availability of the material and the ease of construction. Using the typical plan set as well as the Forest Service's *Sustainable Trail Bridge Design* manual, the bridge cross-section was adapted to meet the client's desires. The bridge deck was expanded to 8'-9" to meet ADA requirements and provide plenty of space for the client to drive their mowers and side-byside's over.

Loading: Before designing the abutments, the bridge's loading was evaluated. First, the dead load from the bridge components was calculated and is shown in Reference 1 of Appendix D. After calculating the dead load, the live and snow load values were found using the AASHTO LRFD Guide Specifications for the Design of Pedestrian Bridges and the International Building Code. Both the live and snow loads are shown in Reference 2 of Appendix D. Once the dead, live, and snow loads were found, they were then combined according to the AASHTO LRFD Bridge Design Specifications. Once combined, the load was applied to each bridge in Autodesk Robot to determine the reaction forces, shear forces, and moment of the structure. The final loading on the bridge was an H5 design vehicle. In accordance with AASHTO specifications, the 10,000-pound design vehicle was applied to each bridge and the internal forces were analyzed.

Abutments: The abutments were designed to meet six major criteria: overturning moment, bearing capacity, stem flexure capacity, shear capacity, heel flexure capacity, and toe flexure capacity. To begin the analysis, the soil type from the site was estimated using the USDA Web Soil Survey. After determining the type of soil on the site, the soil's properties were estimated. Using the determined loading, as well as the properties of the soil, water, and concrete, the size of the abutments and their steel reinforcement were designed. The calculations for all the abutments on the site can be found in References 8 - 17 in Appendix D.

4. Roadways

Roadway Classification and Design Criteria: Our roadway design adheres strictly to the AASHTO Guidelines for Rural Local Roads in I.M. 3.210. Considering the specific parameters outlined, such as a design volume (ADT) under 400 vehicles with agricultural access, and the rolling terrain characteristics, thorough consideration was given to various design elements. The chosen design speed of 20 mph, stopping sight distance of 95 ft, and minimum K values for crest/sag vertical curves (5 ft) ensured optimal safety and functionality. Horizontal curve radii were set at a minimum of 75 ft to accommodate safe vehicle maneuvering. The traveled way was finalized at 20 ft, featuring 10 ft lane widths and 2 ft shoulders, with slopes adhering to a 3:1 ratio for horizontal to vertical elements. Additionally, the design considered minimum and maximum grade requirements of 0.5% and 12% with a typical grade of 2% to ensure smooth vehicle movement and drainage efficiency. Measures were also taken to address typical design considerations such as sight distances, cross-sectional elements, roadside clearances, and potential environmental impacts, ensuring compliance with local regulations and standards. For specific values, please refer to Appendix E.

Pavement Design: Pavement design calculations were conducted accurately based off the utilization of both SUDAS Pavement Thickness 5F-1 and Pave Xpress software, integrating detailed inputs specific to the three different pavement types the team moved forward with. For the HMA option, the recommended HMA surface course over a gravel base was derived from various inputs, including design life, reliability, traffic loadings, and material properties such as ESAL, CBR, and resilient modulus. Similarly, for the PCC alternative, the PCC surface course over the same gravel base was determined, factoring in parameters such as modulus of rupture, modulus of elasticity, and joint spacing. The Gravel alternative was designed with a gravel surface course over an existing gravel subbase, considering material type, thickness, and drainage coefficient for optimal performance. Detailed analysis was conducted to ensure pavement thicknesses were adequate to withstand anticipated traffic loads while considering local soil conditions, climate, and expected service life. For detailed calculations and inputs, please refer to Appendix E.

Final Corridor Design: In line with the established design parameters, final corridor designs were developed for each alternative to meet the project's requirements effectively. The HMA alternative features lanes with a total width of 20 feet, containing an HMA surface course supported by a gravel base. 2-foot shoulders were placed on both sides of our one-way roadway to provide additional safety margins. The PCC alternative mirrors this design, with PCC surface course lanes and gravel shoulders, ensuring robustness and durability. Meanwhile, the Gravel alternative maintains lanes with a gravel surface course on an existing gravel subbase, with shoulders on each side. Detailed cross-sectional drawings were developed for each alternative, illustrating layer thicknesses, material specifications, and drainage features. Each design iteration has been thoroughly crafted to optimize durability, safety, and cost-effectiveness, ensuring long-term performance and reliability on the rural local roads for this site. Typical design considerations such as shoulder widths, pavement markings, and signage were also integrated into the final designs to ensure compliance with standard road design practices and user expectations. For specific dimensions and details, please refer to Appendix E.

5. Parking Lots

Minimum Design Requirements: Our parking lot design carefully adheres to typical minimum design standards sourced from industry guidelines from the Statewide Urban Design and Specifications (SUDAS), particularly Section 12A-2 E and Section 8B-1 A, C, D, E, and F. These standards encompass critical parameters such as surface firmness, slopes, widths, passing spaces, and ADA parking stall criteria. For instance, all entrances and exits are a minimum width of 24-feet while sidewalk widths meet the encouraged 5-foot minimum, as recommended by SUDAS. Detailed specifications and calculations are outlined in Appendix F, referencing specific SUDAS sections and tables consulted during design.

Parking Lot Grading and Drainage: Grading and drainage considerations are methodically based on a comprehensive analysis of industry standards, local regulations, and site-specific factors, specifically guided by the Statewide Urban Design and Specifications (SUDAS), Section 8B-1 E. Our approach ensures effective drainage and accessibility, with a typical slope of 1.5% facilitating proper drainage and adherence to ADA slope requirements. Minimum slopes of 0.5% are used where flat areas are prevalent, supplemented by additional drainage measures such as the discouragement of any slopes exceeding 5%. Detailed documentation with references to SUDAS sections consulted and calculations performed is provided in Appendix F for verification. Pavement Type and Thickness: Pavement selection and thickness was tied into the same process that was used in the design of the roadways. Specifically reviewing design standards and materials specifications stated in the Statewide Urban Design and Specifications (SUDAS), specifically Section 8B-1 F. Factors like design life, traffic loads, and pavement thickness requirements are carefully considered to ensure durability. Utilizing detailed tables provided by SUDAS and the Pave Xpress software, pavement thickness is determined to accommodate both cars and trucks, with references cited in Appendix E for transparency.

Required Parking Stalls: Determining the necessary parking spots and stalls, including those compliant with ADA regulations from the guidelines of the Statewide Urban Design and Specifications (SUDAS), Section 8C-1, to establish precise criteria for dimensions and accessibility requirements. Calculations for stall projection and aisle width are strictly integrated into our design, ensuring full compliance with accessibility standards. Transparent documentation, along with explicit references to specific SUDAS sections consulted, is provided in Appendix F for thorough verification.

6. Boat Ramp

Methods: The accumulated sediment at the base and top of the boat ramp needs removal to prevent further buildup. Our recommendation is to employ a telescopic front loader, or a telehandler with a bucket, for sediment removal at the bottom of the boat ramp. This equipment provides the necessary reach to efficiently clean out sediment while minimizing the risk of pavement damage. At the top of the boat ramp, both the telehandler and the skid steer can be utilized to relocate the aggregate obstructing the drainage path. Rainwater flowing down the uphill road and parking lot is currently directed onto the boat ramp due to the obstruction caused by the aggregate pile. If the pile is removed and the parking lot is regraded slightly, water and sediment will be diverted away from the entrance to the boat ramp. Following heavy rainfall events, there is a possibility of aggregate accumulation obstructing the drainage path again. In such instances, manual intervention with a shovel or the use of a skid steer to relocate the aggregate is recommended.

Slope: The transition area of the boat ramp, where the ramp meets the water level, was not steep enough according to the U.S. Army Corps of Engineers (USACE). By removing the accumulated gravel in the transition area, the slope will be greater to facilitate smoother transitions for watercraft entering and exiting the water. These Grade adjustments are implemented to improve maneuverability and reduce wear on trailers.

Accessibility: Accessibility improvements are being made to ensure the existing boat ramp provides access for a diverse range of users. Trailer parking will be implemented in the adjacent parking lot for those who launch their boats.

7. Trails

Profiles: Updated alignments for the waterfront and main trails were made following ABA 1017.7.1. Due to this area being of high use with access to the boat ramp, docks, pavilions, and fishing outcroppings, we maintained all slopes below 8.33% with breaks between inclines. All trails are designed at 8' to satisfy ABA 1017.4 passing spaces requirements. The proposed extension was not designed to be surfaced or meet ABA standards as the existing alignment would require a copious amount of fill. We recommend denoting this extension as a fire-break due to not accommodating vehicles, but also have offered an alternative utilizing switchbacks for a grade less prone to erosion and accessible by mowers and smaller equipment in Appendix H.

Materials: Due to a durability concern as well as a goal of maintaining a natural feel, it is recommended to use a few different surfacing alternatives. In the ABA compliant trail redesigns, 4" thick grade A crushed stone is proposed to provide suitable strength, durability, and drainage. In other lower use, high flow areas, wood chip surfacing was considered to improve strength and surface quality, but after undergoing a cost analysis was not found to be a suitable alternative. In the other low use areas with relatively good drainage and minimal erosion, maintaining the current grass pathways is a suitable course of action. Alignments and profiles for each existing trail are included in the CAD files to offer many analysis options when determining budget and intent for each area of the system. The recommended combination of surfaces for each trail are included in the trail detail sheet under Appendix H.

Drainage: The profile was designed with drainage in mind, being graded at 2% down from the center sloping in both directions to prevent puddling in accordance with the USFS *Basic Trail Design Manual* for unpaved trails. Grate drainage systems with connecting pipes under trail surface are recommended in high flow areas to improve drainage and mitigate erosion.

8. Playgrounds

Replacement Items: To diversify the site, it is recommended that new amenities near the southern pavilion be added in place of a playground redesign, while the newly updated playground near the northern pavilion will remain. The new amenities include various permanent outdoor games, prefabricated by Doty & Sons Concrete Products, Outdoor Concrete Games. The recommended games are concrete cornhole/bag toss (#BYOB5533 in Playgrounds, Reference 1) and ladder toss (#LT4232 in Playgrounds, Reference 2) because they are easy to use for a range of ages and abilities and require minimal additional equipment.

Section VII. Engineer's Cost Estimate

1. Cost Estimates

The total estimated cost for the project is \$1.17 million. A 20% contingency fee was applied to the total project cost to account for any uncertainty within the design and construction phases. In the following pages, you will find a breakdown for each part the project.

Table 1: Total Cost Estimate

Project:	White Oak	s Conservation A	Area Restoration
Project Element	Sheet Set	Cost	
Lake Dredging	A	\$	43,300.00
Robins Pavilion	В	\$	25,000.00
Cardinal Pavilion	В	\$	32,950.00
Boat Ramp Bridge	С	\$	42,200.00
Southeast Bridge	С	\$	38,300.00
Primary Inlet Bridge	С	\$	30,800.00
Roadways	D	\$	393,980.00
Parking Lots	E	\$	326,839.00
Boat Ramp	F	\$	900.00
Trail Resurfacing	G	\$	34,170.00
Playgrounds	Н	\$	4,950.00
Contingency Fee			
Contingency (20%)		\$	195,000.00
Total Cost			
Total Project Cost		\$	1,168,389,00

Table 2: Dredging Cost Estimate

Project:	Lake Dredging						
Item	Item Description	Item Code	Unit	Unit Cost*	Quantity	Total Cost	Rounded Cost
Option 1							
Hydraulic Dredging	CUTTER SUCTION DREDGING, PUMPED 1000' TO SHORE DUMP	352413.13.1000	CY	\$ 21.42	2022	\$ 43,304.16	\$ 43,300.00
Option 2			-				
Mechanical Dredging	CLAMSHELL MECHANICAL DREDGING, BARGE MOUNTED EXCAVATION	352423.13.0500	CY	\$ 29.78	2022	\$ 60,215.19	\$ 60,000.00
Total Cost							
Option 1 Hydraulic (Recommended)						\$ 43,304.16	\$ 43,300.00

Gordian; 32nd Edition (2018), Heavy Construction Costs with RSMeans Data; *Unit cost have been adjusted for inflation.

Project:	Robin Pavilion								
Item	Item Description	Source	Unit	Unit Cost	Quantity	Tota	al Cost	Rou	nded Cost
Materials									
Purlins	4 X 6 X 14' #2 S4S DOUGLAS FIR TIMBER	Menards	EA	\$ 57.84	40	\$	2,313.60	\$	2,300.00
Girders	4 X 10 X 8' #2 S4S DOUGLAS FIR TIMBER	Menards	EA	\$ 155.74	8	\$	1,245.92	\$	1,250.00
Columns	6 X 6 X 12' #2 S4S DOUGLAS FIR TIMBER	Menards	EA	\$ 98.51	4	\$	394.04	\$	400.00
Roof Decking	36" X 14' PRO-RIB EMERALD GREEN STEEL PANEL	Menards	EA	\$ 44.30	20	\$	886.00	\$	900.00
Column Connection	RPBZ ZMAX GALVANIZED RETROFIT POST BASE	Home Depot	EA	\$ 7.02	16	\$	112.32	\$	100.00
Knee Brace Connection	KBS17 KNEE-BRACE STABILIZER	Home Depot	EA	\$ 6.75	16	\$	108.00	\$	100.00
Gable Plate	OUTDOOR ACCENTS AVANT COLLECTION APGP ZMAX BLACK POWDER-COATED GABLE PLATE	Home Depot	EA	\$ 80.72	4	\$	322.88	\$	325.00
Truss Connection	OUTDOOR ACCENTS AVANT COLLECTION APGP ZMAX BLACK POWDER-COATED T STRAP	Home Depot	EA	\$ 19.98	12	\$	239.76	\$	250.00
Joist Connection	HU GALVANIZED JOIST HANGER	Home Depot	EA	\$ 19.98	100	\$	1,998.00	\$	2,000.00
Nails	8D BRIGHT STEEL SMOOTH SHANK COMMON NAILS	Home Depot	10 LBS	\$ 34.98	1	\$	34.98	\$	35.00
Screws	STRONG-DRIVE SDS HEAVY DUTY CONNECTORS	Home Depot	25 PK	\$ 12.65	1	\$	12.65	\$	15.00
Construction									
Labor		ZipRecruiter	SF	\$ 10.00	625	\$	6,250.00	\$	6,250.00
Metal Roof Installation		ZipRecruiter	SF	\$ 5.00	715	\$	3,575.00	\$	3,575.00
Demolition of Existing Pavilions		ProMatcher	EA	\$7,500.00	1	\$	7,500.00	\$	7,500.00
Total Cost									
Robin Pavilions						\$ 2	24,993.15	\$	25,000.00

Table 4: Cardinal Pavilion Cost Estimate

Project:	Cardinal Pavilion							
Item	Item Description	Source	Unit	Unit Cost	Quantity	Total Cost	Rou	unded Cost
Materials					_		_	
Purlins	4 X 6 X 14' #2 S4S DOUGLAS FIR TIMBER	Menards	EA	\$ 57.84	55	\$ 3,181.20	\$	3,200.00
Girders	4 X 10 X 8' #2 S4S DOUGLAS FIR TIMBER	Menards	EA	\$ 155.74	8	\$ 1,245.92	\$	1,250.00
Columns	6 X 6 X 12' #2 S4S DOUGLAS FIR TIMBER	Menards	EA	\$ 98.51	4	\$ 394.04	\$	400.00
Roof Decking	36" X 14' PRO-RIB EMERALD GREEN STEEL PANEL	Menards	EA	\$ 44.30	40	\$ 1,772.00	\$	1,775.00
Column Connection	RPBZ ZMAX GALVANIZED RETROFIT POST BASE	Home Depot	EA	\$ 7.02	16	\$ 112.32	\$	100.00
Knee Brace Connection	KBS17 KNEE-BRACE STABILIZER	Home Depot	EA	\$ 6.75	16	\$ 108.00	\$	100.00
Gable Plate	OUTDOOR ACCENTS AVANT COLLECTION APGP ZMAX BLACK POWDER-COATED GABLE PLATE	Home Depot	EA	\$ 80.72	4	\$ 322.88	\$	325.00
Truss Connection	OUTDOOR ACCENTS AVANT COLLECTION APGP ZMAX BLACK POWDER-COATED T STRAP	Home Depot	EA	\$ 19.98	12	\$ 239.76	\$	250.00
Joist Connection	HU GALVANIZED JOIST HANGER	Home Depot	EA	\$ 19.98	100	\$ 1,998.00	\$	2,000.00
Nails	8D BRIGHT STEEL SMOOTH SHANK COMMON NAILS	Home Depot	10 LBS	\$ 34.98	1	\$ 34.98	\$	35.00
Screws	STRONG-DRIVE SDS HEAVY DUTY CONNECTORS	Home Depot	25 PK	\$ 12.65	1	\$ 12.65	\$	15.00
Construction								
Labor		ZipRecruiter	SF	\$ 10.00	1125	\$ 11,250.00	\$	11,250.00
Metal Roof Installation		ZipRecruiter	SF	\$ 5.00	950	\$ 4,750.00	\$	4,750.00
Demolition of Existing Pavilions		ProMatcher	EA	\$ 7,500.00	1	\$ 7,500.00	\$	7,500.00
Total Cost Cardinal Pavilions						\$ 32,921,75	\$	32.950.00

Project:	Boat Ramp Bridge							
Item	Item Description	Source	Unit	Unit Cost	Quantity	Total Cost	Ro	unded Cost
Materials						1		
Abutments	BULK CONCRETE W/ REINFORCING	ConcreteNetwor k.com	CY	\$ 175.00	9	\$ 1,575.0	0 \$	1,600.00
Sills for Girders	12" X 12" DOUGLAS FIR	Lumber Store by Carlwood	LF	\$ 43.00	30	\$ 1,290.0	0 \$	1,300.00
Girders	6" X 18" DOUGLAS FIR	Twin Creeks	LF	\$ 55.00	240	\$ 13,200.0	0 \$	13,200.00
Deck Planks	3" X 12" DOUGLAS FIR	Close Lumber	LF	\$ 9.00	480	\$ 4,320.0	0 \$	4,400.00
Running Planks	2" X 12" DOUGLAS FIR	Menards	LF	\$ 3.00	480	\$ 1,440.0	0 \$	1,500.00
Blocking	4" X 6" S4S DOUGLAS FIR	Menards	LF	\$ 3.50	25	\$ 87.5	0 \$	100.00
Handrail Posts	4" X 6" S4S DOUGLAS FIR	Menards	LF	\$ 3.50	105	\$ 367.5	0 \$	400.00
Railing	2" X 6" S4S DOUGLAS FIR	Menards	LF	\$ 1.50	288	\$ 432.0	0 \$	500.00
Rail Cap	2" X 8" S4S DOUGLAS FIR	Menards	LF	\$ 1.75	96	\$ 168.0	0 \$	200.00
Backing Planks	3" X 6" DOUGLAS FIR	Ashby Lumber	LF	\$ 4.50	20	\$ 90.0	0 \$	100.00
Connections	NAILS & BOLTS	Menards	LS	\$ 300.00	1	\$ 300.0	0 \$	300.00
Construction					-	-		
Demolition		ProMatcher	LS	\$2,500.00	1	\$ 2,500.0	0 \$	2,500.00
Earthwork			LS	\$ 5,000.00	1	\$ 5,000.0	0 \$	5,000.00
Labor		ZipRecruiter	HR	\$ 23.00	480	\$ 11,040.0	0 \$	11,100.00
Total Cost								
Boat Ramp Bridge						\$ 41,810.0	0 \$	42,200.00

Table 6: Southeast Bridge Cost Estimate

Project:	Southeast Bridge							
Item	Item Description	Source	Unit	Unit Cost	Quantity	Total Cost	Ro	unded Cost
Materials								
Abutments	BULK CONCRETE W/ REINFORCING	ConcreteNetwor k.com	CY	\$ 175.00	6	\$ 1,050.	00 \$	1,100.00
Sills for Girders	12" X 12" DOUGLAS FIR	Lumber Store by Carlwood	LF	\$ 43.00	30	\$ 1,290.	00 \$	1,300.00
Girders	6" X 18" DOUGLAS FIR	Twin Creeks	LF	\$ 55.00	200	\$ 11,000.	00 \$	11,000.00
Deck Planks	3" X 12" DOUGLAS FIR	Close Lumber	LF	\$ 9.00	400	\$ 3,600.	00 \$	3,600.00
Running Planks	2" X 12" DOUGLAS FIR	Menards	LF	\$ 3.00	400	\$ 1,200.	00 \$	1,200.00
Blocking	4" X 6" S4S DOUGLAS FIR	Menards	LF	\$ 3.50	25	\$ 87.3	50 \$	100.00
Handrail Posts	4" X 6" S4S DOUGLAS FIR	Menards	LF	\$ 3.50	105	\$ 367.	50 \$	400.00
Railing	2" X 6" S4S DOUGLAS FIR	Menards	LF	\$ 1.50	240	\$ 360.	00 \$	400.00
Rail Cap	2" X 8" S4S DOUGLAS FIR	Menards	LF	\$ 1.75	80	\$ 140.	00 \$	200.00
Backing Planks	3" X 6" DOUGLAS FIR	Ashby Lumber	LF	\$ 4.50	20	\$ 90.	00 \$	100.00
Connections	NAILS & BOLTS	Menards	LS	\$ 300.00	1	\$ 300.	00 \$	300.00
Construction								
Demolition		ProMatcher	LS	\$2,500.00	1	\$ 2,500.	00 \$	2,500.00
Earthwork			LS	\$ 5,000.00	1	\$ 5,000.	00 \$	5,000.00
Labor		ZipRecruiter	HR	\$ 23.00	480	\$ 11,040.	00 \$	11,100.00
Total Cost								
Southeast Bridge						\$ 38,025.	00 \$	38,300.00

Project:	Primary Inlet Bridge								
Item Materials	Item Description	Source	Unit	Unit Cost	Quantity	Tota	al Cost	Rou	nded Cost
Abutments	BULK CONCRETE W/ REINFORCING	ConcreteNetwor k.com	CY	\$ 175.00	4	\$	700.00	\$	700.00
Sills for Girders	12" X 12" DOUGLAS FIR	Lumber Store by Carlwood	LF	\$ 43.00	20	\$	860.00	\$	900.00
Girders	6" X 18" DOUGLAS FIR	Twin Creeks	LF	\$ 55.00	135	\$	7,425.00	\$	7,500.00
Deck Planks	3" X 12" DOUGLAS FIR	Close Lumber	LF	\$ 9.00	270	\$	2,430.00	\$	2,500.00
Running Planks	2" X 12" DOUGLAS FIR	Menards	LF	\$ 3.00	270	\$	810.00	\$	900.00
Blocking	4" X 6" S4S DOUGLAS FIR	Menards	LF	\$ 3.50	25	\$	87.50	\$	100.00
Handrail Posts	4" X 6" S4S DOUGLAS FIR	Menards	LF	\$ 3.50	85	\$	297.50	\$	300.00
Railing	2" X 6" S4S DOUGLAS FIR	Menards	LF	\$ 1.50	162	\$	243.00	\$	300.00
Rail Cap	2" X 8" S4S DOUGLAS FIR	Menards	LF	\$ 1.75	54	\$	94.50	\$	100.00
Backing Planks	3" X 6" DOUGLAS FIR	Ashby Lumber	LF	\$ 4.50	20	\$	90.00	\$	100.00
Connections	NAILS & BOLTS	Menards	LS	\$ 300.00	1	\$	300.00	\$	300.00
Construction									
Demolition		ProMatcher	LS	\$1,000.00	1	\$	1,000.00	\$	1,000.00
Earthwork			LS	\$ 5,000.00	1	\$	5,000.00	\$	5,000.00
Labor		ZipRecruiter	HR	\$ 23.00	480	\$ 1	1,040.00	\$	11,100.00
Total Cost									
Inlet Bridge						\$ 3	30,377.50	\$	30,800.00

Table 7: Primary Inlet Bridge Cost Estimate

Table 8: Roadway Cost Estimate (HMA)

Project:	Roadways						
Item	Item Description	Item Code	Unit	Unit Cost	Quantity	Total Cost	Rounded Cost
Excavation - Class 10							
Cut/Fill	EXCAVATION, CLASS 10, ROADWAY AND BORROW	2102-2710070	СҮ	\$ 4.36	1278.75	\$ 5,575.35	\$ 5,575.00
Backfill Placing	GRANULAR BACKFILL	2402-0425031	TON	\$ 35.17	1516.28	\$ 53,327.55	\$ 53,500.00
1" Subbase Compaction	COMPACTION WITH MOISTURE AND DENSITY CONTROL	2107-0875000	CY	\$ 1.28	245.68	\$ 314.48	\$ 315.00
6.5" Granular Base	GRANULAR SURFACING ON ROAD, CLASS A CRUSHED STONE	2312-8260051	TON	\$ 39.91	1889.72	\$ 75,418.84	\$ 75,500.00
Pavement							
4" HMA Pavement	HOT MIX ASPHALT MIXTURE, COMMERICAL MIX (INCLUDES ASPHALT BINDER), AS PER PLAN	2303-0000100	TON	\$ 144.71	1658.37	\$239,982.72	\$ 240,000.00
10.5" Gravel Shoulders	GRANULAR SHOULDERS, TYPE A	2121-7425010	TON	\$ 26.55	610.53	\$ 16,209.46	\$ 16,200.00
4" Top Soil	TOPSOIL, STRIP, SALVAGE AND SPREAD	2105-8425015	СҮ	\$ 6.17	185.62	\$ 1,145.30	\$ 1,150.00
Hydraulic Seeding	HYDRAULIC SEEDING	2601-2636070	ACRE	\$4,199.05	0.35	\$ 1,449.38	\$ 1,450.00
Pavement Markings	PAINTED PAVEMENT MARKING, WATERBORNE OR SOLVENT-BASED	2527-9263109	STA	\$ 21.94	13.31	\$ 291.98	\$ 290.00
Total Cost							
HMA Roadways						\$393,715.05	\$ 393,980.00

Source: Bid Tabs

Table 9: Parking Lot Cost Estimate (HMA)

Project:	Parking Lots						
Item	Item Description	Item Code	Unit	Unit Cost	Quantity	Total Cost	Rounded Cost
General							
Tree Relocation	TREE, TRANSPLANTING	2610-0000150	EACH	\$ 2,500.00	1.00	\$ 2,500.00	\$ 2,500.00
					•	•	
Excavation - Class 10							
Cut/Fill	EXCAVATION, CLASS 10, ROADWAY AND BORROW	2102-2710070	CY	\$ 4.36	1914.62	\$ 8,347.75	\$ 8,300.00
Backfill Placing	GRANULAR BACKFILL	2402-0425031	TON	\$ 35.17	2718.76	\$ 95,618.88	\$ 95,500.00
1" Subbase Compaction	COMPACTION WITH MOISTURE AND DENSITY CONTROL	2107-0875000	CY	\$ 1.28	135.63	\$ 173.60	\$ 175.00
6.5" Granular Base	GRANULAR SURFACING ON ROAD, CLASS A CRUSHED STONE	2312-8260051	TON	\$ 39.91	1251.85	\$ 49,961.28	\$ 50,000.00
				•			
Pavement							
4" HMA Pavement	HOT MIX ASPHALT MIXTURE, COMMERICAL MIX (INCLUDES ASPHALT BINDER), AS PER PLAN	2303-0000100	TON	\$ 144.71	1065.95	\$ 154,253.35	\$ 154,500.00
4" Top Soil	TOPSOIL, STRIP, SALVAGE AND SPREAD	2105-8425015	CY	\$ 6.17	95.66	\$ 590.20	\$ 590.00
Hydraulic Seeding	HYDRAULIC SEEDING	2601-2636070	ACRE	\$ 4,199.05	0.18	\$ 746.90	\$ 745.00
Pavement Markings	PAINTED PAVEMENT MARKING, WATERBORNE OR SOLVENT-BASED	2527-9263109	STA	\$ 21.94	3.60	\$ 78.98	\$ 79.00
ADA SYMBOLS	PAINTED SYMBOLS AND LEGENDS, WATERBORNE OR SOLVENT-BASED	2527-9263137	EACH	\$ 116.10	3.00	\$ 348.30	\$ 350.00
Sidewalk				•			
6" PCC Sidewalk	SIDEWALK, P.C. CONCRETE, 6 IN.	2511-7526006	SY	\$ 97.41	145.07	\$ 14,131.25	\$ 14,100.00
Total Cost							
HMA Parking Lot						\$324,250.51	\$ 326,839.00

Source: Bid Tabs

Table 10: Boat Ramp Cost Estimate

Project:	Boat Ramp								
Construction	Item Description	Source	Unit	Unit Cost	Quantity	Total Co	st	Rounde	d Cost
Operator Labor		ZipRecruiter	HR	\$ 30.00	8	\$ 24	10.00	\$	250.00
Telehandler Rental		BigRentz	LS	\$ 650.00	1	\$ 6	50.00	\$	650.00
Total Cost									
Boat Ramp						\$ 8	90.00	\$	900.00

Project:	Trail Redesign and Surfacing						
Item	Item Description	Item Code	Unit	Unit Co	st Quantity	Total Cost	Rounded Cost
Excavation - Class 10							
Cut/Fill	EXCAVATION, CLASS 10, ROADWAY AND BORROW	2102-2710070	СҮ	\$ 4.	36 1690.04	\$ 7,368.57	\$ 7,370.00
ABA Surfacing							
4" Granular Base	GRANULAR SURFACING ON ROAD, CLASS A CRUSHED STONE	2312-8260050	СҮ	\$ 39.	91 375.94	\$ 15,003.77	\$ 15,000.00
Compaction of Base	COMPACTION WITH MOISTURE AND DENSITY CONTROL	2107-0875000	СҮ	\$ 1.	28 375.94	\$ 481.20	\$ 500.00
Secondary Surfacing							
4" Granular Base	GRANULAR SURFACING ON ROAD, CLASS A CRUSHED STONE	2312-8260050	СҮ	\$ 39.	273.86	\$ 10,929.75	\$ 10,950.00
Compaction of Base	COMPACTION WITH MOISTURE AND DENSITY CONTROL	B07Y342P2R	СҮ	\$ 1.	28 273.86	\$ 350.54	\$ 350.00
Total Cost							
Grade A Crushed Stone						\$ 34 133 83	\$ 34 170.00
Surfacing/ Trail Redesign						ده.دد۱,+د پ	\$ 34,170.00

Table 11: Trail Resurfacing Cost Estimate (Gravel)

Table 12: Playground Cost Estimate

Project:	Playgrounds						
Item	Item Description	Source	Unit	Unit Cost	Quantity	Total Cost	Rounded Cost
Materials							
Cornhole	CONCRETE CORNHOLE/BAG TOSS #BYOB5531	Doty & Sons Concrete	EA	\$ 1,391.00	1	\$ 1,391.00	\$ 1,500.00
Ladder Toss	CONCRETE LADDER TOSS #LT4232	Doty & Sons Concrete	EA	\$ 1,146.00	1	\$ 1,146.00	\$ 1,200.00
Construction							
Demolition of Existing		ProMatcher	EA	\$ 2,000.00	1	\$ 2,000.00	\$ 2,000.00
Labor		ZipRecruiter	SF	\$ 10.00	25	\$ 250.00	\$ 250.00
Total Cost							
Playgrounds						\$ 4,787.00	\$ 4,950.00

2. Funding

The project's funding will primarily come from the client, supplemented by potential support from governmental programs through the Iowa Department of Natural Resources. Among these, the Iowa Resource Enhancement and Protection (REAP) program stands out as a promising avenue for financial assistance. This program offers funding opportunities tailored to projects aimed at conserving and enhancing Iowa's natural and cultural resources, aligning closely with our project objectives.

Additionally, we intend to explore other funding sources such as the Iowa Wildlife Habitat Stamp Fund program and the Water Recreation Access Cost-Share program. These programs provide further opportunities for financial support, allowing us to address more of the expensive and critical aspects of our project. Notably, each program underscores a distinct focus on wildlife habitat or water recreation. This is something to keep in mind when answering the questions on the applications for these grants.

By aligning our project vision with the goals of these funding programs, we aim to secure the necessary resources to bring the White Oak Conservation Center to fruition. Through partnership and dedication, we are determined to realize our vision for environmental conservation and enhancement.

3. Phasing Plan

Given the extensive scope of design elements requiring refurbishing, the substantial total cost associated with their construction, and the constraints of our client's annual budget, our team has devised a strategic phasing plan to ensure the successful completion of the project.

Our devised phasing plan strategically divides the project into three distinct phases, each tailored to ensure cost-effectiveness and feasibility within a single construction year. Phase one addresses the site's utmost priorities, tackling critical elements with immediate significance. Phase two encompasses necessary components deemed important but of lesser urgency compared to those in phase one. Finally, phase three encompasses lower-priority items, allowing for their adoption by the client as needed or as funding becomes available.

The design elements our team deemed necessary to include in phase one are the completion of the lake dredging, the reconstruction of both pavilions on site, the reconstruction of the boat ramp bridge, and the reconstruction of the southeastern bridge. The two recommended bridges are necessary to include in phase one due to their structural flaws. Reconstructing the bridges early in the project will improve site access for maintenance crews by increasing the overall connectivity of the site. The lake dredging was assigned to phase one since sedimentation has been occurring for quite some time at this site, and it is necessary for the health of the lake that this be completed early on. The pavilions were selected to be in phase one with the intention of increasing visitation to the site early in the project. The total estimated construction cost for phase one is \$218,100.00.

The elements we are recommending in phase two are the boat ramp clean up, the paving of the southern roadway and parking lot, and the rehabilitation of the main high use trail system. Our team is emphasizing the rehabilitation of the main trial system first to ensure that the trails become stabilized. Our team recommends the boat ramp clean up following the construction of the bridges and the rehabilitation of the main trail system. By waiting until this phase to clean up the boat ramp, our goal is to ensure any sediment added to the foot of boat ramp from machinery during phase 1 is also cleaned up.

Following the boat ramp clean up, the adjacent parking lot and roadway should be regraded and paved. Paving in this phase is strategically scheduled so that no heavy equipment needed for pavilion, trail, or bridge reconstruction would need to drive on the new pavement and cause unnecessary wear and tear. Once these areas are paved, the main source for the boat ramps sedimentation will be stabilized. The total estimated construction cost for phase two is \$316,483.00.

Lastly, phase three tasks include the paving of the remaining roadways and parking lots, reconstruction of the primary inlet bridge, rehabilitating the secondary use trail system, and construction of the new playground areas. Our team identified these tasks as lower priority since they are not in failing condition or contributing to sedimentation issues with the main lake. The rest of the roadways and parking lots are not a source of sediment in the lake, and with the high cost to regrade and pave these areas, it is not a high priority task. The primary inlet bridge on the southern portion of the site is in adequate condition and a reconstruction is only necessary to increase safety and improve access for maintenance crews. The secondary trail system is in adequate condition and is not as heavily used as the main system, making it a less pressing task. The playground construction is the lowest priority item due to its low cost and ease of construction. The total estimated construction cost for phase three is \$633,483.00.

Appendix A: Work Plan

ACTIVITY	TASK LEAD	FIRST DRAFT START	FIRST DRAFT DURATION	FINAL DRAFT START	FINAL DRAFT DURATION	ACTIVITY NUMBER
1. Data Collection	Cody Hall	1	1	1	1	1
2. Lake Evaluation	Noah Lyon / Aden Gomez	1	7	1	13	2
3. Pavilion Design	Maya Johnson	1	7	1	13	3
4. Roadway Design	Cory Siegel / Evan Felts	2	3	2	13	4
5. Parking Lot Design	Cory Siegel / Evan Felts	2	5	2	13	5
6. Pedestrian Bridge Design	Cody Hall	3	5	3	13	6
7. Trail System Analysis	Beau Benzing	4	5	4	13	7
8. Boat Ramp Redesign	Justin Japlon	4	5	4	13	8
9. Playground Design	Maya Johnson	5	2	5	13	9
10. Project Report	Cody Hall	7	3	7	13	10
11. Project Presentation	Cody Hall	8	2	8	13	11
12. Project Poster	Cody Hall	8	2	8	13	12

University of Iowa | Senior Design

Appendix B: Lake Evaluation

Exhibit 1: Lake inundation map due to a 100-Year 24-Hour design storm.

Exhibit 2: Flow map describing how the satellite ponds interact with the main lake.

Exhibit 3: Recommended areas for dredging in the main lake.

Design Storm Assumptions

- The design storm evaluated was a 100-year, 24-hour storm.
- The SCS Type 2 precipitation model using NOAA Atlas 14 for depth was used for evaluation.
- Precipitation is assumed uniform for all subbasins.

Subbasins Assumptions

- Subbasin areas were determined using Streamstats.
- The loss method used was SCS Curve Number, CN calculated using data from Streamstats.
- The transform method used was SCS Unit Hydrograph, lag time calculated using data from Streamstats.

Satellite Ponds Assumptions

• The satellite pond area-elevation was found by using percent reduction equations using the embankment data from the topographic survey.

- Satellite Pond 1 East (NE satellite pond) was assumed to have an 8' depth with a top of bank storage elevation of 747 feet.
- Satellite Pond 2 East (E satellite pond) was assumed to have an 8' depth with a top of bank storage elevation of 766 feet.
- Satellite Pond 3 East (SE satellite pond) was assumed to have a 10' depth with a top of bank storage elevation of 764 feet.
- Satellite Pond 1 West (W satellite pond) was assumed to have a 10' depth with a top of bank storage elevation of 768 feet.
- Outlet elevations for satellite ponds were shot using GPS and recorded at the site visit on 2/14/2024

Main Lake

• The elevation-area relationship for the main lake was found using underwater contours from DNR data provided by Lewis Bruce. (See Figure 1)

Figure 1: Main lake contour data from DNR provided survey.

Outlets and Spillways

- Outlet elevations for satellite ponds and main lake were shot with a GPS unit and recorded at the site visit on 2/14/2024.
- Manning's n values are all correlated with the pipe material documented on site, only one that was questionable was the north outlet pipe (this was assumed as ductile iron).
- Slopes for the discharge pipes were found using changes in elevation and length.
- Emergency spillways were assumed broad-crested with a coefficient of 3.
- Spillway elevations and lengths were determined using modified lidar based contour data.

HEC-HMS

- The following data was input into HEC-HMS (See Figure 2)
- The HEC-HMS model was created. (See Figure 3)

Project: White Oak Lake Model

Simulation Run: 100-Year

Simulation Start: 1 January 2024, 01:00

Simulation End: 5 January 2024, 23:00

HMS Version: 4.11

Executed: 26 March 2024, 15:20

Global Parameter Summary - Subbasin

Area (MI2) Element Name Area (MI2) East 1 Subbasin 0.01

East 2 Subbasin 0.01 East 3 Subbasin 0.05 South Subbasin 0.69 West Subbasin 0.02 Downstream Downstream Element Name East 1 Subbasin Satellite Pond 1 East East 2 Subbasin Satellite Pond 2 East East 3 Subbasin Satellite Pond 3 East South Subbasin Main Lake West Subbasin Satellite Pond 4 West Loss Rate: Scs **Element Name Percent Impervious Area Curve Number** East 1 Subbasin 0 74.4 East 2 Subbasin 0 64.6 East 3 Subbasin 0 74.5 South Subbasin 0 73.9 West Subbasin 0 66.7 Transform: Scs Element Name Lag Unitgraph Type East 1 Subbasin 4.26 Standard East 2 Subbasin 7.77 Standard East 3 Subbasin 11.69 Standard South Subbasin 48.81 Standard West Subbasin 9.46 Standard

Global Results Summary

Hydrologic Element Drainage Area (MI2) Peak Discharge (CFS) Time of Peak Volume (IN) East 1 Subbasin 0.01 6.101Jan2024, 13:00 4.22 East 2 Subbasin 0.01 8.34 01Jan2024, 13:00 3.18 East 3 Subbasin 0.05 46.6801Jan2024, 13:00 4.23 South Subbasin 0.69 459.02 01Jan2024, 14:00 4.16 Satellite Pond 3 East 0.05 30.28 01Jan2024, 14:00 4.65 West Subbasin 0.02 17.43 01Jan2024, 13:00 3.4 Satellite Pond 4 West 0.02 7.96 01Jan2024, 15:00 3.41 Satellite Pond 2 East 0.01 3.62 01Jan2024, 15:00 3.25 Satellite Pond 1 East 0.01 1.11 01Jan2024, 16:00 4.2 Main Lake 0.78 41.49 01Jan2024, 24:00 3.8

Figure 2: HEC-HMS input and results summary.

Figure 3: HEC-HMS model layout.

Sediment Removal Assumptions

- At a water surface elevation of 738, the lake has 810 square feet of area exceeding a 16' depth.
- The new 16' depth area is 3581sq. Ft, which equates to 300 cubic yards of sediment that would need to be removed.
- At the South end, expanding recreational boating activity available area will produce an increase in sediment removal by 1,722 cubic yards.
- Increased the area of the 16' depth at the current location to increase habitat life for fish over the winter.
- Increased depth at the south end of the pond to increase recreational activity such as fishing, the south end was also very shallow and unusable on a boat.

Unit Pricing and Inflation Factors

- Unit pricing source: Gordian; 32nd Edition, Heavy Construction Costs with RSMeans data
- Inflation Factor Source: https://edzarenski.com/category/inflation-indexing/

Appendix C: Pavilions

Reference 1: Prefabricated Bench Pavilion Specifications

Sentinel Mountain Shelter Model 98-93

Specifications

Description: Table Shelter Size: 10' x 10' Roof Pitch: 3/12

Roof Style: Gable

Options Shown: Hi Rib Steel Roof, 4' square table with 4 bench seats (no back) using 2" x 4" recycled plastic planks

Features

- Clear spans
- 6x6 by 3/16 steel posts
- 4' square table, 2" x 4" recycled plastic planks
- 4 bench seats (3 optional), no back, 2" x 4" recycled plastic planks
- Polyester powder coated
- Wind load: 90 mph class C
- Snow Load: 30 lbs
- Custom designs available
- USA Made

Options

- Hot dipped galvanized
 Stain or clear sealer for work
- Stain or clear sealer for wood members
 Increased wind & snow load available
- Variety of roof pitches available
- Wood post: square
- Steel post: square
- Roof options: hi rib, standing seam, cedar, asphalt, tile, etc.
- Gutters & downspouts
- Reader boards, tables, benches and bike racks
- · Chemical resistant Natur-Kote primer for harsh
- environments

PO Box 270, Baker City, OR 97814 (541) 523-0224 (800) 252-8475 www.naturalstructures.com - info@naturalstructures.com

July 2021

Reference 2: Pavilion Loading

ssumptions:			
Dist. Catal			
Risk Category =	= 1		
Site Soil Class	Dofoult		
Site Sui Class			
Exposure cated	ory = Partially	exposed	
Exposure careg	,,	, posed	
Surface Rough	ness = C		
j.			
sing ASCE 7 Haz	ard Tool:		
Elevation:	$z_e := 776 \ ft$		
Wind speed:	V:=103 mp		
ive Load:	all also al	$w_L := 20 \ psf$	
ordinary, flat, p	f		
and curved roo			
lahaska County		n :- 33 nof	
ASCE Hazard T	ool	Pg - 55 psj	
Risk Category 1	L I		
,			
xposure factor:		$C_e := 1.0$	
Partially expose	ed		
Surface roughn	less C		
ASCE 7-22 Tab	le 3.7-1		
hermal factor:	•	$C_t := 1.2$	
Unheated struc	ture		
ASCE 7-22 Tab	le 7.3-2		
		0-10	
Ct = 1.2		$C_s \approx 1.0$	
4:12 pitch			
ASCE 7-22 Figu	ire 7.4-1c		

Span length:
$$L_1 := 25 \ ft$$
 $L_2 := 45 \ ft$ Flat roof snow load: $p_j := 0.7 \cdot C_e \cdot C_t \cdot p_g = 27.72 \ pef$ Balanced Snow Load: $p_S := C_s \cdot p_f = 27.72 \ pef$ Unbalanced Snow Load: $p_S := C_s \cdot p_f = 27.72 \ pef$ $\gamma := 0.13 \cdot \left(\frac{P_g}{pef}\right) + 14 = 18.29$ $L_{a1} := \sqrt{\left(\frac{L_1}{6 \cdot ft}\right)^2 + \left(\frac{L_1}{2 \cdot ft}\right)^2} = 13.176$ $L_{a2} := \sqrt{\left(\frac{L_2}{6 \cdot ft}\right)^2 + \left(\frac{L_2}{2 \cdot ft}\right)^2} = 23.717$ $h_{D1} := 0.43 \cdot \sqrt[3]{L_a} \cdot \sqrt{\frac{P_g}{pef} + 10} = 2.601$ $h_{D2} := 0.43 \cdot \sqrt[3]{L_a} \cdot \sqrt{\frac{P_g}{pef} + 10} = 3.164$ $P_{US1} := \frac{h_{D1} \cdot \gamma}{\sqrt{12}} \cdot pef = 13.732 \ pef$ $P_{US2} := \frac{h_{D2} \cdot \gamma}{\sqrt{12}} \cdot pef = 16.704 \ pef$ Wind loading:Open building with pitched free roof: Figure 27.3-5Wind loading:Open building with pitched free roof: Figure 27.3-5Wind directionality factor: $K_d := 0.85$ Topographic factor: $K_d := 0.85$ Topographic factor: $G := 0.35$ Rigid buildingInternal pressure coefficient: $GC_{pi} := 0$ $h_{12} = \frac{h_{pack} + h_{cave}}{2} = 11.083 \ ft$ $\alpha := 9.8$ $K_h := 2.41 \cdot \left(\frac{15}{\frac{1}{ft}}\right)^2$ $a := 9.8$ $K_h := 2.41 \cdot \left(\frac{15}{\frac{15}{ft}}\right)^2$

Velocity pressure:

$$q_h := 0.00256 \cdot K_h \cdot K_{st} \cdot K_s \cdot \left(\frac{V}{mph}\right)^3 = 67.694$$

 Angle:
 $\theta := atan\left(\frac{4}{12}\right) = 18.435$ •

 Dimensions:
 $Robin:$
 $L_{Robin} := 25$ ft
 $\frac{h}{L_{Robin}} = 0.443$

 Cardinal:
 $L_{CardinalTrans} := 45$ ft
 $\frac{h}{L_{CardinalTrans}} = 0.246$
 $L_{CardinalLong} := 25$ ft
 $\frac{h}{L_{CardinalTrans}} = 0.443$

 Cardinal:
 $L_{CardinalTrans} := 45$ ft
 $\frac{h}{L_{CardinalLong}} = 0.443$

 Net Pressure Coefficients:
 0.443

 Clear Wind Flow:
 $Case A:$
 $C_{NWAClear} := 1.1$
 $C_{NLAClear} := -0.4 + (\theta - 15 \circ) \cdot \left(\frac{0.1 + 0.4}{22.5 \circ - 15 \circ}\right) = -0.171$
 $Case B:$
 $C_{NWBClear} := 0.1 + (\theta - 15 \circ) \cdot \left(\frac{-0.1 - 0.1}{22.5 \circ - 15 \circ}\right) = -0.008$
 $C_{NLBClear} := -1.1 + (\theta - 15 \circ) \cdot \left(\frac{-0.1 - 0.1}{22.5 \circ - 15 \circ}\right) = -0.963$
 $Obstructed$ Wind Flow:

 Case A:
 $C_{NWBOLear} := 0.1 + (\theta - 15 \circ) \cdot \left(\frac{-0.1 - 0.1}{22.5 \circ - 15 \circ}\right) = -0.963$
 $Obstructed$ Wind Flow:

 Case A:
 $C_{NWAObs} := -1.2$
 $C_{NLBObs} := -1.2 + (\theta - 15 \circ) \cdot \left(\frac{-0.8 + 0.6}{22.5 \circ - 15 \circ}\right) = -2.008$
 $Case B:$
 $C_{NUBObs} := -0.6 + (\theta - 15 \circ) \cdot \left(\frac{-0.8 + 0.6}{22.5 \circ - 15 \circ}\right) = -0.692$
 $C_{NLBObs} := -1.6 + (\theta - 15 \circ) \cdot \left(\frac{-1.7 + 1.6}{22.5 \circ - 15 \circ}\right) = -1.646$

Design wind pressures:		
$p_{WAClear} \coloneqq q_h \cdot K_d \cdot G \cdot C_p$	ww.AObs • psf = -58.69 ps	đ
$p_{LAClear} \coloneqq q_h \boldsymbol{\cdot} K_d \boldsymbol{\cdot} G \boldsymbol{\cdot} C_N$	<i>LAObs</i> • psf = −98.19 psf	r
$p_{WBClear} \coloneqq q_h \cdot K_d \cdot G \cdot C_l$	wwBClear • psf = 0.41 psf	r
$p_{LBClear} \coloneqq q_h \cdot K_d \cdot G \cdot C_N$	_{LBClear} · psf = -47.08 ps	əf
$p_{WAObs} := q_h \cdot K_d \cdot G \cdot C_{NV}$	<i>_{VAObs}</i> • <i>psf</i> = −58.69 <i>psf</i>	r
$p_{LAObs} \coloneqq q_h \cdot K_d \cdot G \cdot C_{NL}$	<i>AObs</i> • psf = −98.19 psf	
$p_{WBObs} \coloneqq q_h \cdot K_d \cdot G \cdot C_{NV}$	<i>WBObs</i> • <i>pef</i> = −33.83 <i>pef</i>	r
$p_{LBObs} \coloneqq q_h \cdot K_d \cdot G \cdot C_{NL}$	BObs • psf = −80.49 psf	
Vertical loads:		
$w_{wwy} \coloneqq p_{WAClear} \cdot \sin(\theta)$	=-18.56 psf	
$w_{wly} \coloneqq p_{LAClear} \cdot \sin(\theta) =$	-31.05 psf	
Horizontal loads:		
$w_{wwx} \coloneqq p_{WAClear} \cdot \cos{(heta)}$	=-55.679 psf	
$w_{wlx} \coloneqq p_{LAClear} \cdot \cos(\theta)$ =	=-93.151 psf	
Steel roof:	$w_{dsteel} \coloneqq 3$ psf	
Plywood sheathing:	$w_{dOSB} \coloneqq 0.4$ psf	Per 1/8" thickness
Plywood waterproofing:	$w_{dwp} \coloneqq 3$ psf	Per 1" thickness
Total dead load:	$w_D \coloneqq w_{dsteel} + (3 \cdot v_{dsteel})$	w_{dOSB}) + w_{dwp} = 7.2 psf
Factored vertical load:	$w_u \coloneqq \max \begin{pmatrix} w_D \downarrow, w_D \downarrow \\ + w_L + p_S \end{pmatrix}$	$ \begin{array}{c} (w_D \downarrow , w_D \downarrow , w_D \downarrow) = 34.92 \\ + 0.6 \cdot w_{wly} + 0.75 \cdot w_L \downarrow \\ + 0.75 \cdot p_S \downarrow \end{array} $
		$+0.75 \cdot (0.6 \cdot w_{wly})$

Reference 3: Design of Sheathing

	Bending:		$w_u = 3$	4.92	psf	<	$w_b \!=\! 71.875 psf$	ОК
	Shear:		$w_u = 3$	4.92	psf	<	$w_s \!=\! 126.829 \ psf$	ОК
	Short term	n deflectio	n: $p_S = 2$	7.72	psf	<	w _{DLL} =31.521 psf	ОК
	Long term	deflection	$p_{S} = 2$	7.72	psf	<u><</u>	w _{DTL} =42.028 psf	ОК
Sele	ect 24/0 OSE	3 Sheathing	,					
7. T	'hickness - P	anel Desig	n Specificati	on Ta	able 1	1		
	$t := \frac{3}{2}$ in							
0.0	8						Construction Table MO	
8. P	anel edge si	upport - M	anual for Eng	ginee	red W	/ood	Construction Table M9.	.4-1
	Table M9.4	-1 Panel	Edge Support	t ²				
		Maximum Re	commended Span (in	1.)				
	Sheathing Span Rating	With Edge Support	Without Edge Support		With	edg	e support: 24 in	
	24/0	24	10 21					
	24/16	24	24		Math		dae supports 20 in	
	32/16	32	28		with	oute	age support: 20 in	
	40/20	40	32					
	48/24	48	36		Edge	sun	port required ->	
	1. 20 in. for 3/8 and	7/16 performance cales	sory panels, 24 in, for 15/33	2 and	Luge	Jup		
	1/2 performance 2. Additional edge than 24 inches. E manufacturer.	category panels. support is recommend dge support requirement	ed when panel widths are nts should be obtained from	n the	use	longi	le and groove	
	Table M9.4-2 Mini	mum Nailing for W	ood Structural Panel /	Applicati	ons	_		
				Na	I Spacing (in.)			
	Applies	ation	Nail Size & Type	Edge	s Suppo	essie erts		
	Single Floor-Glue nailes 16, 20, 24 or. 1/d perform	d installation ⁴	Ring- or set	rev-shank	13		Nail size = 8d	
	24 oc, 7/8 or 1 performan	or category	Bd ¹	6	12			
	32, 48 oc, (32-in. span (c- 48 oc, (48-in. span (c-c) a	<) application) pplication)	8.0 ¹ 9.0 ²	6	12 6			
	Single Floor-Nailed-and	installation	Ring- or ser	rew-shank			Nail spacing:	
	24 oc., 7/8 or 1 performan	ance category or less	54	6	12			
	32, 45 oc, (32-in. span ap) 48 oc. (48-in. span ap)	plication)	Ed.	6	12		6 in for panel edges	
	Sheathing-Subflooring ²	man I	Common smooth, ris	eff- of 10264	-chank		o in for parter euges	
	7/16 to 1/2 thick performs 7/8 performance category	nce category or less	6d 8d	6	12			
	Thicker panels	-	lod	6	6	_	12 in for intermediat	e
	7/16 performance categor	y or less	Columna unsofth, ring- or serv	ere-chanic or 6	paivanized bea 12	_	supports	
	Over 3/16 performance or Sheathing Reaf double	depory	8d	6	shark ³	_+	supports	
	516 to 1 performance cat	ellotà.	Ed Ed	6	124	_		
	Thicker panels		8d ring- or screw-shank or 10d common senanti-	6	12*			
	1. fid common mails may be submit	and if ring, or some shark mills are	an sulph.			_		
	2. Hit ing shall screw-short or	common-hash may be substituted it -	supports and dry in accordance with their					

Reference 4: Design of Purlins

sign of Purlins			
Factored load:	q _u :=35 psf		
Tributary width:	$w_T \coloneqq 2 ft$	$w_u := q_u \cdot w_T =$	= 70 plf
Max. moment and shear:	$M \coloneqq \frac{w_u \cdot (12)}{8}$	$(5 ft)^2 = 1.367$	kip · ft
	$V := \frac{w_u \cdot 12.5}{2}$	ft=0.438 kij	$R \coloneqq V$
4x6 Douglas Fir- Larch No.2:	L≔12.5 ft		
Bending:	F _b :=900 psi		
Shear:	F _v :=180 psi		
Young's Modulus:	E:=1600 ksi	$E_{min} = 58$	0 ksi
Section properties:	b:= 3.5 in	d = 5.5 in	
	$A \coloneqq b \cdot d \equiv 19$.25 in-	
	$I \coloneqq \frac{1}{12} \cdot b \cdot d^3$	=48.526 in ⁻	
	$S \coloneqq \frac{I}{d} = 17.6$	46 in ³	
	2		
Adjustment factors:	$C_D := 1.15$	$C_i\!\coloneqq\!1.0$	$C_T \! \coloneqq \! 1.0$
	$C_{Mb} \! \coloneqq \! 0.85$	$C_{MV}\!\coloneqq\!0.97$	$C_F\!\coloneqq\!1.3$
	$C_r {\coloneqq} 1.15$	$\overline{C_t} \coloneqq 1.0$	$C_{fu} \! := \! 1.05$

Deflection:

$$\hat{g} := \frac{1}{12} \cdot b \cdot d^{3} = 48.526 \text{ in}^{4}$$

$$w_{LT} := \left(w_{D} + \frac{p_{S}}{2}\right) \cdot w_{T} = 0.042 \frac{kip}{ft} \qquad w_{ST} := \left(\frac{p_{S}}{2}\right) \cdot w_{T} = 0.028 \frac{kip}{ft}$$

$$\delta_{LT} := \frac{5 \cdot w_{LT} \cdot (12.5 ft)^{4}}{384 \cdot E \cdot I} = 0.298 \text{ in} \quad \delta_{ST} := \frac{5 \cdot w_{ST} \cdot (12.5 ft)^{4}}{384 \cdot E \cdot I} = 0.196 \text{ in}$$

$$\delta_{tot} := (1.5 \cdot \delta_{ST}) + \delta_{LT} = 0.592 \text{ in}$$

$$\delta_{ST} = 0.196 \text{ in} < \Delta_{ST} := \frac{L}{360} = 0.417 \text{ in} \quad OK$$

$$\delta_{tot} = 0.592 \text{ in} < \Delta_{LT} := \frac{L}{240} = 0.625 \text{ in} \quad OK$$
Purlins are 4x6 Douglas Fir-Larch No.2
*Designed for worst case purlin, use the same size for each

Reference 5: Design of Girders

esign of Girders				
Length:	∐ :=18 ft			
Factored load:	$w_u := \frac{(8 \cdot R)}{L}$	=0.194		
Max. moment	w. •(L)	2		
and shear:	$M \coloneqq \frac{\omega_u(L)}{8}$	—= 7.875 kip •	ft	
	$V := \frac{w_u \cdot L}{2} =$	1.75 kip		
4x10 Douglas Fir- Larch No.2:				
Bending:	F _b :=1500 pe	ń		
Shear:	F.:= 175 psi			
Section				
properties:	b := 3.5 in	d ≔9.25 in		
	$A := b \cdot d = 32$.375 in ²		
	$\widehat{l} := \frac{1}{12} \cdot b \cdot d^3$	⁴ =230.84 in ⁴		
	$S := \frac{I}{d} = 49.9$	911 in ³		
	2			
Adjustment factors:	$C_{D} := 1.15$	$C_i := 1.0$		
	$C_{Mb} := 0.85$	$C_{MV} \coloneqq 0.97$	$C_F \coloneqq 1.1$	
	$C_{r} = 1.15$	$C_t := 1.0$	$C_{fu} = 1.05$	

Deflection:

$$\begin{aligned}
\theta := \frac{1}{12} \cdot b \cdot d^3 = 230.84 \text{ in}^4 \\
w_{LI} := \left(w_D + \frac{p_S}{2}\right) \cdot w_T = 0.042 \frac{kip}{ft} \quad w_{ST} := \left(\frac{p_S}{2}\right) \cdot w_T = 0.028 \frac{kip}{ft} \\
\theta_{LI} := \frac{5 \cdot w_{LT} \cdot L^4}{384 \cdot E \cdot I} = 0.269 \text{ in} \quad \theta_{ST} := \frac{5 \cdot w_{ST} \cdot L^4}{384 \cdot E \cdot I} = 0.177 \text{ in} \\
\theta_{eed} := (1.5 \cdot \delta_{ST}) + \delta_{LT} = 0.535 \text{ in} \\
\delta_{ST} = 0.177 \text{ in} < \Delta_{ST} := \frac{L}{360} = 0.6 \text{ in} \quad OK \\
\delta_{tot} = 0.535 \text{ in} < \Delta_{eed} := \frac{L}{240} = 0.9 \text{ in} \quad OK \\
\end{bmatrix}$$
Girders are 4x10 Douglas Fir-Larch No.2
*Designed for worst case girder, use the same size for each

Unbraced length:	$K_e = 0.972$ $l_e := 9 ft$
Loading on columns:	$P := V = 1.75 \ \textit{kip}$ $w := 0.6 \cdot w_{wind} \cdot l_e = 0.303 \ \textit{klf}$
Design values:	$F_c := 1150 \ psi$ $F_b := 1500 \ psi$
	E:=1600 ksi E _{min} :=580 ksi
Section size:	bi=5.5 in di=5.5 in
	$A := b \cdot d = 30.25 \text{ in}^2$ $S := \frac{b \cdot d^2}{6} = 27.729 \text{ in}^3$
Working stresses:	$f_c \coloneqq \frac{P}{A} = 57.851 \text{ psi}$
	$\underline{M} := \frac{w \cdot l_e^2}{8} = 3.064 \ kip \cdot ft \qquad f_b := \frac{M}{S} = 1325.963 \ psi$
Adjustment factors:	$C_D := 1.0$ $C_M := 1.0$ $C_f := 1.0$ $C_F := 1.0$
	$C_{i} := 1.0$ $C_{T} := 1.0$ $c := 0.8$ $C_{L} := 1.0$
Column stability factor:	$F_{cstar} \coloneqq F_c \cdot C_D \cdot C_M \cdot C_t \cdot C_F \cdot C_i$
	$\boxed{E'_{min}} \coloneqq E_{min} \cdot C_M \cdot C_t \cdot C_i \cdot C_T$
	$F_{cE} \coloneqq \frac{0.822 \cdot E'_{min}}{(1)^2} = (1.236 \cdot 10^3) \text{ psi}$
	$\left(\frac{\iota_e}{d}\right)$
	$1 + \left(\frac{F_{cE}}{F_{cder}}\right) = \sqrt{\left(\left(1 + \frac{F_{cE}}{F_{cder}}\right)\right)^2 - \frac{F_{cE}}{F_{cder}}}$
	$C_P \coloneqq \frac{(-csur)}{2 \cdot c} - \bigvee \left(\frac{(-csur)}{2 \cdot c} \right) - \frac{-csur}{c} = 0.715$
Adjusted design value:	$F'_c \coloneqq F_{cstar} \cdot C_P = 822.751$ psi
	$F'_b \coloneqq F_b \cdot C_D \cdot C_{Mb} \cdot C_t \cdot C_L \cdot C_F \cdot C_{fu} \cdot C_i \cdot C_r = 1539.563 \text{ ps}$

Reference 6: Design of Columns, Trusses, and Knee-Braces

P1	$-1 - \frac{f_c}{F_{cE}}$					
Check design:						
Compression stress:	$f_c = 57.9 \ p_c$	ei <	F'_c :	=822.8 p	ei	OK
Max. slenderness ratio:	$\lambda \coloneqq \frac{l_e}{d} = 19$.636 <	50			ОК
Bearing parallel to						
grain (crushing):	$f_{cnet} {\coloneqq} f_c {=}$	57.9 psi	< 1	$F_{cstar} = 11$	50 psi	OK
Bending:	$f_b = 1325.9$	63 psi	< 1	$F'_{b} = 1540$	psi	OK
Demand capacity ratios:	$DCR_c \coloneqq \frac{f_c}{F}$	<u>-</u> =0.07	DC	$R_b := \frac{f_b}{F'_b}$	=0.861	
Columns are 6x6 Douglas	Fir-Larch vi	sually gra	ded timbe	rs.		
esign of Trusses						
Alpine truss designs are engineered to meet specific span, configuration and load conditions. The shapes and spans shown here represent only a fraction of the million of designs produced	Total load(PSF) Duration factor Live load(PSF) Roof type	55 1.15 40 anow shingle 55 1.15 30 anow ble	47 1.15 30 snow shingle	40 1.15 20 snow shingle	40 1.25 20 ** shingle **construction or rain, not snow load	
by Alpine engineers.	Top Chord Bollom Chord	2x4 2x6 2x6 2x4 2x4 2x5	2x4 2x6 2x6 2x4 2x4 2x6	2x4 2x6 2x6 2x4 2x4 2x6	2x4 2x6 2x6 2x4 2x4 2x6	
Common - Truss configurations for the most widely designed roof shapes.	Pitch 2/12 2.5/12 3.5/12 3.5/12 5/12 5/12 6/12 7/12	Span 24 24 33 29 29 39 30 34 34 46 39 39 53 41 41 43 59 44 52 67" 46 60" 60" 47 67" 70"	s in feet to out 27 27 37 30 33 45 37 39 53 41 44 61 43 49 64 46 56 607 47 67 77 47 72 72	of bearing 31 31 43 32 38 52 40 44 62 44 50 65 46 56 60 46 65 74° 51 74° 20° 52° 77° 77°	33 33 46 39 40 55 41 46 54 47 46 57 48 57 74 53 66 80° 55 74* 82° 56* 80° 83°	
2x4 is suitable for chorn girders) for top/bottom	ds and web chords and	s, recomn I web mer	nend to us	se 4x10 (s consisten	ame as cy.	
esign of Knee-Braces						
			and a state of the	a a su a a		

Reference 7: Design of Connections and Weight Check

West Fastore Allowable Connector-Only Values Nodel Pert Note Allowable Connector-Only Values Nodel Pert Note Note Open to the perturbation of connector states Nodel 2 4x.6 West on the perturbation of connector with a connector state of the perturbation of connector states West 110° 2005 4 1.000 44.0 New 2 2 4x.6 West 2005 8 2.2255 1.7155 1.715 New 2 1.000 1.000 44.0 1.000 44.0 40.0 40.0 40.0 New 2 1.000 1.000 1.000 44.0 1.000 44.0 40.0<	Reut		y pos			.011					
Model New Part Op Part Sign Transmission Consection Outer Operation Operation Operation Operation Consection Operation Consection Operation Consection Operation Consection Operation Consection Operation Consection Operation Operation Consection Operation Consection Operation	RPBZ	Conne	ector-(Only Values	Easterner		-	Allowal	ale Connecta	r Loads	
$\frac{1}{1} \frac{1}{2} \frac{1}{4} \frac{1}$	Model	Part	Post	Rane C	Pastoners	Past	_		(DF/SP)	-	Code
$\frac{1}{2} \frac{1}{4t_{c}} \frac{1}{4t_$	NO.	uny.	31.01	Type	Qtx.	Type	Qtv.	(160)	(100)	(160)	net.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					Connection To I	Concrete		-			
$\frac{2}{1} \frac{4}{4} \frac{5}{10} \frac{1}{12} \frac{4}{4} \frac{5}{10} \frac{1}{12} \frac{4}{113} \frac{5}{100} \frac{5}{10} \frac{4}{10} \frac{1}{10} \frac{4}{10} \frac{5}{10} \frac{4}{10} \frac{1}{10} \frac{4}{10} \frac{4}{10} \frac{5}{10} \frac{4}{10} \frac{1}{10} \frac{5}{10} \frac{4}{10} \frac{1}{10} \frac{4}{10} \frac{4}{10} \frac{5}{10} \frac{4}{10} \frac{1}{10} \frac{5}{10} $		1		14" Anchor bolt or	2 anchors or 4 screws		4	1,500	800	485	
New term Connection 16 Wood Frammer 4 1.326 4 1.326 4 1.326 4 1.326 4 1.326 4 1.326 4 1.326 1.326 1.336 1.		2	44, 55	W* Titen* 2 screw	4 anothers or 8 acrews	14. 8 1 14. 3US	8	2,235	1,115	1,115	
$\frac{1}{2}$ 4c, b 4c, b	RPBZ				Connection To Wa	od Framing		-		_	IBC R.
$\frac{2}{1} \frac{4}{2} 4 c_{e} \frac{1}{1} \frac{1}{2} \frac{1}{1} \frac{1}$		1		W* x 3* 505	4	L	4	1,335	860	485	
$\frac{1}{2} \qquad \qquad$		2 44,64			W" x 1 W" SDS	8	2,235	1,515	1,715		
RPBZ Anchorage-to-Concrete $1/4" \times 11/2"$ SDS Heavy-Duty Connector scruther and the second seco		1		W* # 1 W* SDS	4		4	845	800	485	
No. Ory. Size Type Ory. Uncreased Crasked F2 F3 RP62 1 $4v_c 0v$ W^* 11W Thin 2 screw 4 750 - 620 620 1 $4v_c 0v$ W^* 11W Thin 2 screw 4 750 - 620 620 1 $4v_c 0v$ W^* 11W Thin 2 screw 4 550 - 035 935 1 $4v_c 0v$ W^* 11W Thin 2 screw 4 550 - 035 935 1 $4v_c 0v$ W^* 11W Thin 2 screw 8 1.500 - 1.045 1.045 2 W^* 11W Thin 2 screw 8 1.500 - 1.045 1.045 2 W^* 11W Thin 2 screw 8 1.050 - 1.045 1.045 3 Double 2Vis a response to concrete Value 8 1.050 - 1.045 1.045 4 Average from Edge loads treads are based on the 2w PTP PTP PTP PTP PTP PTP PTP PTP PTP PT	Model	Part	Post	to-Concrete	e Values Fasteners		Al	lowable Anch	orage Loads		
$\frac{1}{1} \frac{1}{4t_1 \text{ fs}} \frac{1}{4t_2 \text{ fs}} \frac{1}{4t_1 \text{ fs}} \frac{1}{4t_2 \text{ fs}} \frac{1}{4t_1 \text{ fs}} \frac{1}{4t_2 \text{ fs}} $	No.	ūty.	Size	Bat	e connection	L Harrison	ipent -	-	F2		Fa
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		27		ijipe	Corner - Pre	t Flush in Educ	1 0	raised [1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_				A 100 1 100	and the second s					
New Prior Edge 1 4x, 8x 1/4 + 1/4 + 1/4 + 1/2 screw 4 850 - 035 035 2 1/4 + 1/4 + 1/4 + 1/4 + 1/4 + 1/2 screw 8 1.500 - 1.645 1.285 1.295 1 4x - 4ameter anchor 2 2.196 1.645 1.285 1.295 2 1/4 + 1				54" a 194" Tilar	2 screw 4	755	T-	-	820	1.0	820
Image: Second state in the image is a second state in the second minimum of Connector Only Value and Anchorage to Concrete Value. Image: Value is a second state is a second minimum of Connector Only Value and Anchorage to Concrete Value. Image: Value is a second minimum of Connector Only Value and Anchorage to Concrete Value. Image: Value is a second minimum of Connector Only Value and Anchorage to Concrete Value. Image: Value is a second minimum of Connector Only Value and Anchorage to Concrete Value. Image: Value is a second minimum of Connector Only Value and Anchorage to Concrete Value. Image: Value is a second minimum of Connector Only Value and Anchorage to Concrete Value. Image: Value is a second minimum of Connector Only Value and Anchorage to Concrete Value. Image: Value is a second minimum of Connector Only Value and Anchorage to Concrete Value. Image: Value is a second minimum of Connector Only Value and Anchorage to Concrete Value. Image: Value is a second on Dirich Anther. For SPEHPE: post bases are used, allowable loads may be added to two. Image: Value is a second on Dirich Value and Second and anchora is a second on Designs in the occol on the second is a second on the occol on the of a second on the occol on the second is a second on the second and the second on the second on the second and the second on the occol on the second on the sec		1	4x, 6x	W's 194" The Mindameter	ander 2	750 1,520		1,085	828 610	1	510
Image: state of the second minimum of Corrector Only Value and Anchorage to Corrective Value. 1.4645 1.265 1.265 1.265 1. Movestive load for design shall not second minimum of Corrector Only Value and Anchorage to Corrective Value. 1.302 1.700 1.700 2. Advantation on the or larger members, if four PERE poor bases are used, allowable loads mug to used in lieu of 4x1 post. 1.902 1.902 1.700 1.700 3. Poor mandation on the or larger members, if four PERE poor bases are used, allowable loads mug to taken to be 1.5 x the tabulated hor-part value. 1.902 1.902 1.902 1.902 4. Poor mandation on the or larger members, if four PERE poor bases are used, allowable loads mug to exponsible to concrete number upd takes. 1.902 1.902 1.902 1.902 1.902 5. For matabiation in the concrete the three of wood poor to be a minimum of 2% area are used. 1.902 <t< td=""><td>8962</td><td>1</td><td>4a, 6x</td><td>W s.1% The N-dameter</td><td>12 screw 4 archer 2 Away F</td><td>750 1,520 From Edge</td><td></td><td>1,085</td><td>820 610</td><td></td><td>520 510</td></t<>	8962	1	4a, 6x	W s.1% The N-dameter	12 screw 4 archer 2 Away F	750 1,520 From Edge		1,085	820 610		520 510
2 W*11W* The 2 mass 8 1.500 - 1.045 1.045 1. Alcough of design shall not exceed minimum of Connectur Only Value and Anchorage to Concrete Value. 3.730 1.730 2. Alcough on the or design shall not exceed minimum of Connectur Only Value and Anchorage to Concrete Value. 3.730 1.730 3. Alcough on the or larger members, for SPFHF, multiply table keads by 0.06. 5.750 1.730 1.730 4. For mailabons into concrete, the minimum compressive attempts in frage 2.500 pcl. Designer is exponsible for concrete member upt8 design. 6. Alcough on the or larger members, for SPFHF, multiply table, keads by 0.06. 5. For matalations into concrete split and their keads for the %' demeter anchora way from near edge of concrete on all kur sides of the post. 7. Alcough each may be post of bot and methods and the post. 6. Alcough on each may be post on the adde for the Table? a masonry screw do not cavey a particular transfered for Wind and Seams and on-standard anchoring and become should be used only in interce-dry and non-compare environments. 10. Theart?2 meaonry screws and non-standard anchoring and bear side of the Table?3 Hard the PD* screw anchors. Modified for 6x or larger members. Allowed be anchorage loads: Pault := 36335 pail + 1.5 = 785.16 kaff Modified for 6x or larger members. Frail ::= 1730 pail + 1.5 = 373.68 kaff Modified for 6x or larger members.	RP62	1	4x, 6x	W's 134" The N°-dameter W's 134" The	2 screw 4 weber 2 Amay F 12 screw 4	750 1,520 irom Edge 850		1,065	820 510 935		820 510 835
1. Allowable loads for design shall not exceed minimum of Corrector Only Value and Anchorage to Concrete Value. 2, Allow 2, year 1, year 1, year 2. Allowable contrector loads are based on DF/SP lambs. For SPF1Hf, multiply table keads by 0,08. 3. Double bots may be used in the of dod post. 4. For mailable non-the of lager members, if four FPE2 post bases are used, allowable loads may be taken to be 1.5 x the tabulated two-part value. 3. For mailablems in to concrete, the minimum compressive strength in $f_x = 2.500$ poil. Designer is responsible for concrete member uppt design. 6. Away-Fram-Edge loads may/e face of wood post to be a minimum of 2% wave from new edge of concrete on all bur sides of the post. 7. Allowable anchorage to concrete uppt factors that the and main target expensible for Concrete on all bur sides. 8. Endedmine depth of these part-Holds and choras heads for the W "demeter anchora are calculated for Wind and Steamic Design Categories AML. 8. Endedmine depth of these part-Holds and endrons must be a minimum of 2% wave from ease with SET-30% or AL-3% must burst all and choring all burst all and choring anchoras must be minimum of 2% are are the SET-30% or AL-3% must burst all and choring anchoras assume crocked concrete walkes, and all are quality of aL-3. 8. Endedmine depth of these part-Holds anchoras must be an minimum of 2% are are the SET-30% or AL-3% must burst all and choring anchoras assume crocked concrete walkes, and all are quality of the anti-set and choring and chores anchoras. 9. Allowable anchoras part built and the Tare 2 massory screws don cate with SET-30% or AL-3% must be sub and end on an	RP\$2	1	44, 65	W's 194" The N°-dameter W's 194" The N°-dameter	2 screw 4 archer 2 12 screw 4 archer 2 archer 2	750 1,520 rom Edge 850 2,190		1,085	820 510 935 1,265		320 510 135 296
Allowable anchorage loads: $P_{all} = 3635 \text{ psi} \cdot 1.5 = 785.16 \text{ ksf}$ $F_2 = 1730 \text{ psi} \cdot 1.5 = 373.68 \text{ ksf}$ Modified for 6x or larger members, columns are 6x6.	RPS2	1	4x, 6x	54" a 194" Tale 54" a 194" Tale	12 screw 4 wither 2 Among P 12 screw 4 anchor 2 12 screw 8 withor 4 0 Concentry 7th March	755 1,520 rom Edge 850 2,190 1,500 3,035			828 510 935 1,265 1,645 1,720		20 510 335 545 730
$P_{all} = 3035 \text{ pst} \cdot 1.5 = 785.16 \text{ ksg}$ Modified for 6x or larger members, columns are 6x6. $F_2 = 1730 \text{ psi} \cdot 1.5 = 373.68 \text{ ksf}$	RPB2 1. Alfonstbl 2. Alfonstbl 3. Double 2 4. For mata 5. For mata 5. For mata 5. For mata 6. Away-fit 7. Alconstbl conortle 8. Embedth achresive 9. Alconstbl 10. Than ⁹ 2 11. Thread	1 2 s load for de e connector polas may be lation on Be lation on Be lation on Be lation on Be lation on Be lation on Be lations into menory action s or Taten H e uplitt and i masorry ac	4a, 6x 4a, 6x 4a, 6x 4a, 6x 4a, 6x 1/acde are 1 used in lie or 1 larger or 1 larger to concrete, t 4d; reguire to concrete to concrete to concrete pr finee po 7 finee po 8 fine 1 fin	5%* s 15%* Take 5%* s 15%* Take 5%* s 15%* Take 5%* dameter 5%* s 15%* Take 5%* dameter 5%* s 15%* Take 5%* dameter 5%* s 15%* Take 5%* dameter 5%* da	12 screw 4 accher 2 12 screw 4 anchor 2 12 screw 8 anchor 2 12 screw 8 anchor 4 of Connectur Only Value a bee. For SPR1HF, multiply ta conside atmost in Carl Value a bee. For SPR1HF, multiply ta 2, post bases are used, allo calve atmost in Carl Value a be a minimum of 2%" and all uncracked concrete value at the a minimum of 2%" and corry screws and/ors sh corr screws installed into w	755 1.520 tion Edge B50 2.190 1.500 3.435 nd Anchorage to t dise loads may pol. Designer is 1 both mean edge thom near edge thom near edge thom near edge thom near edge thom near edge thom are calculated are for use with a particular "cracks ould the used only could transing must	Concent betake rof corn st per A st per	1,065 1,565 1,565 2,596 10 1,565 10 10 1,5 10 1 10 1,5 1 10 1,5 1 10 1,5 1 10 1,5 1 10 1,5 1 10 1,5 1 10 1,5 1 10 1,5 1 10 1,5 1 10 1,5 1 10 1 1 10 1	820 510 935 1,285 1,645 1,730 The tabuates at member of member at sides of the hear loads a similar being structural an exerption	d two-part t t d two-part t t d two-part t t d two-part t t t d two-part t t t d two-part t t t d two-part t t t t t t t t t t t t t t t t t t	135 135 135 135 135 135 135 135
$F_2 := 1730 \text{ psi} \cdot 1.5 = 373.68 \text{ ksf}$	RPB2 1. Alcowable 2. Alcowable 3. Double 2 4. For mata 5. For mata 5. For mata 5. For mata 6. Away-fit 7. Alcowable 0. Alcowable 10. Titum*2 11. Threed Allowable 5. For mata 11. Threed Allowable 5. For mata 11. Threed 12. Threed 13. Threed 5. For mata 14. For mata 15. For mata 16. Away-fit 16. Three 16. Away-fit 16. Aw	1 2 s load for de e connector yoka may be lation on Be lation on Be lation on Be lation on Be lation on Be ancherage while uptit a co Strong a co Strong	4a, 6x 4a, 6x elign shall el colar ane l used in lite or larger el concrete, si to concrete concrete, si cada ceru el social concrete concrete, si cada ceru el social concrete concrete, si cada ceru el social concrete concrete, si cada ceru el social concrete concrete, si concrete, si concr	Sit's 194" Take 54" s 194" Take 55" s 194" s 194" Take 55" s 194" s 1	2 Acrew 4 accher 2 Assey 4 accher 2 Assey 7 12 Sone 4 anchor 2 12 Acrew 8 anchor 4 anchor 4 anchor 4 anchor 4 anchor 5 Contractur Only Value a bee, For SPF1HF; multiply ta bee, For SPF1HF; multiply ta bee, Tor SPF1HF; multiply ta be a minimum of 2%* aw able to the N* demeter anc d uncracked accouncete value at be a minimum of 2%* aw able the N* demeter anc d uncracked accouncete value at be a minimum of 2%* aw able the N* demeter anc d uncracked accouncete value at be a minimum of 2%* aw able to the N* demeter anc d uncracked accouncete value at be a minimum of 2%* aw able to the N* demeter anc d uncracked accouncete value at be a minimum of 2%* aw able to the N* demeter anc d uncracked accouncete value at be a minimum of 2%* aw able to the N* demeter anc d uncracked accouncete value at be a minimum of 2%* aw able to the N* demeter anc d uncracked accouncete value at be a minimum of 2%* aw able to the N* demeter anc d uncracked accouncete value at be a minimum of 2%* aw able to the N* demeter anc d uncracked accouncete value at be a minimum of 2%* aw able to the N* demeter anc d uncracked accouncete value at be a minimum of 2%* aw able to the N* demeter anc d uncracked accouncete value at be a minimum of 2%* aw able to the N* demeter anc d uncracked accouncete value at be a minimum of 2%* aw able to the N* demeter anc d uncracked accouncete value at be a minimum of 2%* aw able to the N* demeter anc d uncracked accouncete value at be a minimum of 2%* aw able to the to the N* demeter anc d uncracked accouncete value at be a minimum of 2%* aw able to the to the N* demeter anc d uncracked accouncete value at be a minimum of 2%* aw able to the	755 1,520 tion Edge B50 2,190 1,500 3,835 rol Anchorage to t dise loads to 90,080 wable loads may pol. Designer is is ty from near edge thom are calculated pol. Designer is a ty from near edge thom are calculated thom are calculated	Concent i be take response of per A stiffed for set or si in intan t be fully		820 S1D 935 1,265 1,645 1,645 1,730 This tabuattee at member ur sides of the herric Deells stimuto reads a eleminic Deells stimuto and an eleminic Deells stimuto at a stimutorial an	d two-part 1 transformer crack post designer crack post and the crack post of the cr	135 135 135 545 730 mk.m. A. Saed es: A&B.
	1. Afowstbi 2. Abowstbi 3. Double 2 4. For insta 5. For insta 6. Away, ⁶ for 7. Abowstbi conore 8. Embedita adhesive 10. There ¹² 11. Thread Alloww P _a	1 2 e load for de e convector tota may be lation on the auton on the e anchorage while uplit and depth a s or Tann H e uplit and macory as a on Strong abble a at a long a strong abble a	4s, 6s 4s, 6s esign shall e loads are i used in like or langer n concrete, s de require to concrete sods concret sods concrete sods some or bear loads sows and i Drivel* SDI ancho 335 p	SV* 1 194* Take 194* - dameter 194* - damete	12 screw 4 archer 2 12 screw 4 archor 2 12 screw 8 archor 2 12 screw 8 archor 2 12 screw 8 archor 2 of Connector Only Value a ber. For SPRIHE, multiply ta 2 post bases are used, allo save strength is T _a < 2.500	755 1.520 inim E8ge B50 2.190 1.500 3.835 nd Anchorage to 1 date Eack by 0.461 wable loads may op. Designer is 1 op. Designer is 1 op. Total are gas thore are calculate thore are thore the thore are are thore are thore are thore are	Concret Concret to corru- st per A set or 1 in interes of field bers	1,065 1,565 1,565 2,596 to be 1.5 x ible for consol ble for consol ble for consol Cl 316-14, 3 Consol-14, 3 C	820 510 935 1,285 1,645 1,730 The tabulated at member or sides of the hear loads as simic Deelly simucharal an esignation, xi-corraiave o a structural o a structural cor lar mns a	d two-part i training periodic periodic sectors anvironment i wood mar ger re 6x	135 135 135 135 135 135 135 135

Joint or	1000			Dimen	sions		Fasten	ers (in.)	1	F/SP Allo	wable Load	İs	Installed	8.0
Purtin Size	Model filo.	64.	w	н	в	TF	Header	Joist	Uplift	Floor (1005	Snow (115)	Roat (125)	Cost Index (ICI)	Code Ref.
		_					Sawa Lur	nbor Sizes						
101 2-10	WP216-2	12	3%	15	259	294	(2) 0.148 x 3	[2] 0.148 x 3	-	2,300	3,300	3,300	Lowest	
Der trie	HU216-21F	12	3%	15	2%	2%	(20) 0.162 x 316	(目) 0.148 ± 3	1,400	4,050	4,050	4,050	34%	
TPL 2,16	HU216-3TF	12	4%	传	2%	2%	(20) 0.162 x 315	(B) 0.162 x 316	1,643	4,058	4,050	4,050	Lowest	
Boff	HU34TF	.12	2%	3%	2%	2%	(B) 0.162 x 335	£21.0.148×116	370	2,050	2,050	2,050		
346	HU36TF	12	296	5%	2%	2%	(10) 0.162 x 319	(4) 0.148 x 1%	705	1.765	2,785	2,785		
3x8	HUSETF	-52	296	7%	5%	2%	(12) 0.169 x 314	(4) 以:14時 x 15%	6.40	0.965	3.260	1,200	- 1 K.C.	100
3/10	HUStOTE	12	2%	9%	2%	2%	(14) 0.162 x 3%	向 0.148 x 116	1,220	1,945	3.945	3,945	10	FL. LA
3:12	WP312	12	29%	11.	2%	2918	(2) 0.148 x 3	(2) 0.148 x 1%	-	3.300	3,300	3,300		
	HU312TF	-12	2%	11	2%	2%	(10) 0.162 x 3%	(E) 0.148 x 1%	1,140	4,590	4,590	4,5910		
3x14	WP314	12	21%	13	2%	2%	(2) 0.148 x 3	(2) 0.148 x 1%	0101	1,305	3,300	3,300		
	HUST4TF	12	2%	11	2%	2%	(18) 0.162 x 3%	(B) 0.148 x 1%	1.005	4,000	11111	0.000	1.0	
305	WP316	12	258	15	210	2316	(2) 0.348 8 3	(2) 0.148 x 115		3,300	3,300	3,300		
4-2	HUATE	12	110		214	914	(R) (3 102 × 514	(01.0 \$48 × 3	320	3 600	3,650	2,000		
404	HU44TE	12	3%	334	214	214	IBI 0.162 x 314	(210.348 × 3	370	1,000	2,050	2,000	Logest	
-	HINGTO	10	194	5%	010	git	10.0152+3%	10.0.148 x 3	815	b tar	2,786	3,7870	225	
446	1405.42		-		200		17.0112.17		-	0.000	3 300	5.505	-	2
		A		0' Specify angle										
H. H	HIOTE	A T		0'		Typic	al HUTF d Down allation							
	there is the check	A		0'		Typic	al HUTF d Down allation							
	Alore Check			0'		Typic	al HUTF d Down silation							
	H H H H H H H H H H H H H H H H H H H	k of	Dou	0'	Fir-	Typic	al HUTF d Down illation	Image: Section of the sectio	7	, := 3	1 10)			
	HIOTF Check	k of	Dou	0"	Fir-	Typic Slope Instr	al HUTF d Down allation		γ_{waa}	_d := 3	1 lbj ft	2		
HU HU Eight	HIOTF Check weight	k of	Dou	0	Fir-	Typic Slope Instr	al HUTF d Down allation ch No. 2		γ_{waa}	_d := 3	1 lbj	2		
eight Unit	the stated u	k of	Dou	gradie generation of the second secon	Fir-	Typic Insta	al HUTF d Down sillation		γ_{waa}	_d := 3	1 Ubj ft	2		
eight Unit Estim	the steel uning pav	k of nit	Dou wei	glas	Fir-	Typic Stope Instr Lar teel n W	al HUTF d Down silation ch No. 2 for (12x50):		γ_{woo} γ_{stee}	d := 3 ₁ := 50	$1 \frac{lbj}{ft^2}$			
HU HU Estimexisti	the stated up average of the stated up average	k of nit	Dou wei	glas	Fir-	Typic Slope Insta	al HUTF d Down siliation ch No. 2 for (12x50):		γ_{woo} γ_{stee}	_d := 3	1 [bj ft ⁻]	2		

Appendix D: Pedestrian Bridges

Reference 1: Dead Load Calculations

Dead Load Calculations

Date: 03/04/2024

Dead Load Calculations

Date: 03/04/2024

 Deck (3" x 12" x 109" horizontal Douglas Fir planks) $\gamma_{softwood} \coloneqq 50 \frac{lb}{ft^3}$ $A_{deck} = 3 \text{ in} \cdot 109 \text{ in} = 2.271 \text{ ft}^2$ $N_{deck} := 1$ $w_{deck} \coloneqq \gamma_{softwood} \cdot A_{deck} \cdot \left(\frac{N_{deck}}{N_{oinder}}\right) = 22.708 \frac{lb}{ft}$ (Table 3.5.1-1) Girders (6" x 18" Douglas Fir beams) $N_{girder} = 5$ $\gamma_{softwood} = 50 \frac{lb}{ft^3}$ $A_{girder} = 6 \ in \cdot 18 \ in = 0.75 \ ft^2$ $w_{girder} \coloneqq \gamma_{softwood} \cdot A_{girder} \cdot \left(\frac{N_{girder}}{N_{oirder}}\right) = 37.5 \frac{lb}{ft}$ *TABLE-1: SOLID SAWN STRINGER SIZE REQUIREMENTS - LRFD TIMBER SPECIES - DOUGLAS FIR - LARCH **STRINGER GRADE - NO.1 SPAN DESIGN LOADING IN POUNDS PER SQUARE FOOT (FEET) PEDESTRIAN LIVE LOAD GROUND SNOW LOAD ***65 90 120 150 200 3" X 10" 4" X 12" 6" X 12" 3" X 12 4" X 14 4" X 12 6" X 12 10
15
20
▲25
▲30 4" X 10 4" X 16 4" X 10" 6 X 12 6" X 16' 6" X 20' 4" X 14" 6" X 14 6" X 12 6" X 14" 6" X 16" 6° X 16 X 18 8" X 20 6" X 20" 6" X 20 Running Planks (2" x 12" Douglas Fir planks) $A_{planks} \coloneqq 2 \text{ in} \cdot 12 \text{ in} = 0.167 \text{ ft}^2 \qquad N_{planks} \coloneqq 9 \qquad \gamma_{softwood} \equiv 50 \frac{lb}{ft^3}$ $w_{planks} \coloneqq \gamma_{softwood} \cdot A_{planks} \cdot \left(\frac{N_{planks}}{N_{oirder}}\right) = 15 \frac{lb}{ft}$ Rails (2" x 6" S4S Rail) $\gamma_{hardwood} \coloneqq 60 \frac{lb}{ft^3}$ $A_{rail} = 2 \ in \cdot 6 \ in = 0.083 \ ft^2$ $N_{rail} = 6$ $w_{rail} \coloneqq \gamma_{hardwood} \cdot A_{rail} \cdot \left(\frac{N_{rail}}{N_{oirder}}\right) = 6 \frac{lb}{ft}$ (Table 3.5.1-1) Rail Cap (2" x 8" S4S Rail Cap) $N_{railcap} \coloneqq 2$ $\gamma_{hardwood} \equiv 60 \frac{lb}{ft^3}$ $A_{railcap} := 2 \text{ in } \cdot 8 \text{ in } = 0.111 \text{ ft}^2$ $w_{railcap} \coloneqq \gamma_{hardwood} \cdot A_{railcap} \cdot \left(\frac{N_{railcap}}{N_{oirder}}\right) = 2.667 \frac{lb}{ft}$

Dead Load Calculations

Date: 03/04/2024

Reference 2: Live and Snow Load Calculations

Live and Snow Load Calculations

Date: 03/08/2024

Load Combinations

Reference 4: Vehicle Load Calculations

Vehicle Load Calculations

Date: 03/08/2024

Bridge 1 Forces

Date: 03/29/2024

Bridge 1 Forces

Bridge 1 Forces

Reference 6: Bridge 2 Forces

Bridge 2 Forces

Date: 03/29/2024

Bridge 2 Forces

Bridge 2 Forces

Bridge 3 Forces

Date: 03/29/2024

Bridge 3 Forces

Reference 8: Bridge 1 Abutment Calculations with Water

Reference 9: Bridge 1 Abutment Calculations without Water

Reference 10: Bridge 1 Pier Calculations with Water

Reference 11: Bridge 1 Pier Calculations without Water

Reference 12: Bridge 2 Abutment Calculations with Water

Reference 14: Bridge 2 Pier Calculations with Water

Reference 15: Bridge 2 Pier Calculations without Water

Reference 16: Bridge 3 Abutment Calculations with Water

Reference 17: Bridge 3 Abutment Calculations without Water

Appendix E: Roadways

I.M. 3.210 March 15, 2023

AASHTO Guidelines For Rural Local Roads

These "Guidelines" are a composite of the AASHTO recommendations from Chapter 5 of the Green Book (2018) and the Guidelines for Geometric Design of Low-Volume Roads (2019). The values in the first three columns are based on the Green Book. The values in the last column (Agricultural Access) are based on the Guidelines for Geometric Design of Low-Volume Roads. These guidelines are presented to help in the design of new construction or reconstruction projects on rural local roads. For Federal-aid projects, design values below those shown in this table may be used on a project-by-project basis, provided that a design exception or justification is approved by the Iowa DOT Administering Bureau, as per I.M. 3.260, Design Exception Process.

Design Elements		All Local Roads								
Design Volume (ADT)	Green Book	Over	Over 2000		2000 - 400		r 400	Under 400 Agricultural Access (10)		
Terrain (1)	reference	Level	Rolling	Level	Rolling	Level	Rolling	Level	Rolling	
Design Speed (mph)	Table 5-1	50	40	50	40	40	30	30	20	
Stopping Sight Distance (ft) (2)	Tables 3-1 & 5-3	425	305	425	305	305	200	165	95	
Minimum K for Crest/Sag Vertical Curves	Tables 3-35, 3-37, & 5-3	84/96	44/64	84/96	44/64	44/64	19/37	13	5	
Minimum Horizontal Curve Radius (ft) (3)	Table 3-7	758	444	758	444	444	214	135	75	
Maximum Gradient (%) (4)	Table 5-2	6	10	6	10	7	10			
Traveled Way (ft) (5)	Table 5-5	22	22	22	20	18	18	18	18	
Shoulder Width (ft)	Table 5-5	6	6	3	3	2	2	2	2	
New Bridge Roadway Width (ft) (6)	Table 5-6	34	34	28	26	22	22	TW+2'	TW+2'	
Existing Bridge Roadway Width (ft) (7)	Table 5-7 (2011 Green Book)	28	28	24	24	22	22	UAC	UAC	
Foreslope (8)	Page 5-11	2:1*	2:1*	2:1*	2:1*	2:1*	2:1*	UAC*	UAC*	
Clear Zone Distance (ft)					See	note (9)				

NOTES:

(1) AASHTO "Mountainous" terrain design guides may be used on Federal-aid projects only with Iowa DOT concurrence. Note (1) in the Design Aids Table provides definitions for Level and Rolling. Stopping Sight Distance is based on level roadways for all situations shown. For downgrades and upgrades, consult Table 3-2 in the Green Book.

(2)

(3) Based on a maximum superelevation (e) of 0.08.

 (4) a. Short lengths of grade (less than 500 feet) and grades on low-volume rural collectors (<2000 vpd) may be steepened by 2%.
 b. No values are shown in the Agricultural Access column because there are no criteria for maximum gradient in the Guidelines for Geometric Design of Low-Volume Roads.
 (5) For Design Volumes of 2000 ADT or greater, consider using Traveled Way width of 24ft where substantial truck volumes are present or agricultural equipment frequently uses the road.

(a) a. Where the Approach Roadway Width (Traveled Way plus shoulders) is surfaced, that surface width should be carried across the structure.
 b. Minimum clear roadway width for bridges is Traveled way + 2ft (each side) for Design Volumes of under 400 ADT, Traveled way + 3ft (each side) for Design Volumes of 400-2000 ADT, and Approach Roadway Width for Design Volumes over 2000 ADT.
 c. For Design Volumes of 2000 ADT or greater, for bridges over 100 feet long, the width may be the Traveled Way plus 6 feet (3 feet on each side).

d. Design Loading shall be at least HL-93. e. Refer to <u>I.M. 3.230</u>, Traffic Barriers (Guardrail and Bridge Barrier Rail), for information on when to install or upgrade guardrail and/or bridge barrier rail.

- (7) a. Applies to bridges less than 100 feet in length. Bridges over 100 feet will be analyzed individually.
 b. Design loading shall be at least HS-20. Refer to <u>1.M. 1.100</u>, Highway Bridge Programs for Cities and Counties for requirements on bridge rehabilitation projects.
 c. 20 foot minimum clear roadway width is acceptable for Design Volumes from 0 250 ADT.

d. Existing Bridge Roadway Width should be greater than or equal to the Traveled Way width, unless a design exception has been approved. e. Refer to <u>1.M. 3.230</u>, Traffic Barriers (Guardrail and Bridge Barrier Rail), for information on when to install or upgrade guardrail and/or bridge barrier rail. * If slopes steeper than 3:1 are used within the recommended clear zone distance, they should be reviewed for shielding with a traffic barrier, as per <u>1.M. 3.240</u>, Clear Zone Cuideleare (8) Guidelines.

(9) The recommended clear zone distance is a function of Design Speed, Design Volume, horizontal curvature, and roadside geometry. To determine the recommended clear zone

(9) The recommended clear zone distance is a function of Design Speed, Design Volume, nonzontal curvature, and roadside geometry. To determine the recommended clear zone distance, refer to 1<u>M</u> 3.240, Clear Zone duidelines.
 (10) Values in this column are taken from the Guidelines for Geometric Design of Low-Volume Roads unless specified otherwise below.
 a. Design Speed is taken from the Green Book using a Design Volume of under 50vpd.
 b. While the Guidelines for the Geometric Design of Low-Volume Roads allow for a lesser width, for construction projects, <u>lowa Code 309.39</u> states, "...and no traveled roadway shall be less than twenty-two feet from shoulder."
 ** The Guidelines for the Geometric Design of Low-Volume Roads specify a minimum Total Roadway Width (Traveled Way plus shoulders) of 24 feet for the Design Speeds listed

listed. c. Page 4-6 of the Guidelines for the Geometric Design of Low-Volume Roads states, "Existing bridges can remain in place without widening unless there is evidence of a site-specific crash pattern related to the width of the bridge. However, lowa Code 309.74 states, "All culverts shall have a clear width of roadway of at least twenty feet. Bridges shall have a clear width of roadway of at least sixteen feet."

Inputs into Pave Xpress Asphalt: Design life: 20 yr Reliability: 80% S₀: 0.35 p_i: 4.5 p_t: 2 $\Delta psi: 2.5$ ESAL (http://www.apps.acpa.org/apps/ESAL.aspx): 7538 ADT: 50 % trucks: 2% Layer coefficient: 0.44 Drainage coefficient: 1 Min thickness: 3 in Soil type: Varies CBR: 3 Resilient Modulus (PSI): 5161.17 Base Layer Type: Aggregate Base modulus: 15000 Base thickness: 6.5 in Drainage Factor: 1.2 Layer Coefficient: 0.44 Asphalt Thickness: 4in Aggregate Base Thickness: 6.5" **Concrete:**

Design life: 20 yr Reliability: 80% S₀: 0.35 p_i: 4.5 p_t: 2 $\Delta psi: 2.5$ **Closest City: Des Moines** ESAL (http://www.apps.acpa.org/apps/ESAL.aspx): 7538 ADT: 50 % trucks: 2% Modulus of Rupture: 800 psi (typical) Modulus of Elasticity: 4,000,000 psi (typical) Poisson's ratio: 0.3 (typical) Joint spacing: 170 in (typical)

Load Transfer Coefficient: 3 (typical) Edge Support: 1.01 (typical) Base Layer Type: Aggregate Base modulus: 15000 Base thickness: 6.5 in Drainage Factor: 1.2 Slab Friction Coefficient: 1.4 EFF Modulus of Subgrade Reaction: 2720 <u>PCC Thickness: 6"</u> <u>Aggregate Base Thickness: 6.5"</u>

Design Criteria Used Based on I.M. 3.210

Lane Width: 10 ft Shoulder Width: 2 ft Slopes: 3:1 H:V SSD: 95 ft Min R: 75 ft ROVC Crest K: 5 ROVC Sag K: 5 Min Grade: 0.5% Max Grade: 12%

Project:	White Oaks Nature Conservation Road Design			_						
ltem	Item Name (BID TABS)	Item Code	Unit	Unit C	Cost	Quantity	Tot	al Cost	Ro	unded Cost
Excavation - Class 10										
	EXCAVATION, CLASS 10, ROADWAY AND									
Cut/Fill	BORROW	2102-2710070	СҮ	\$	4.36	1278.75	\$	5,575.35	\$	5,575.00
Backfill Placing	GRANULAR BACKFILL	2402-0425031	TON	\$	35.17	1516.2795	\$	53,327.55	\$	53,500.00
	COMPACTION WITH MOISTURE AND DENSITY									
1" Subbase Compaction	CONTROL	2107-0875000	CY	\$	1.28	245.6844444	\$	314.48	\$	315.00
	GRANULAR SURFACING ON ROAD, CLASS A									
6.5" Granular Base	CRUSHED STONE	2312-8260051	TON	\$	39.91	1889.722852	\$	75,418.84	\$	75,500.00
Pavement							-		-	
	HOT MIX ASPHALT MIXTURE, COMMERICAL MIX									
4" HMA Pavement	(INCLUDES ASPHALT BINDER), AS PER PLAN	2303-0000100	TON	\$ 1	.44.71	1658.37	\$	239,982.72	\$	240,000.00
10.5" Gravel Shoulders	GRANULAR SHOULDERS, TYPE A	2121-7425010	TON	\$	26.55	610.5258444	\$	16,209.46	\$	16,200.00
4" Top Soil	TOPSOIL, STRIP, SALVAGE AND SPREAD	2105-8425015	СҮ	\$	6.17	185.6239037	\$	1,145.30	\$	1,150.00
Hydraulic Seeding	HYDRAULIC SEEDING	2601-2636070	ACRE	\$ 4,1	.99.05	0.345168416	\$	1,449.38	\$	1,450.00
	PAINTED PAVEMENT MARKING, WATERBORNE									
Pavement Markings	OR SOLVENT-BASED	2527-9263109	STA	\$	21.94	13+30.790741	\$	291.98	\$	290.00
Total Cost				_					-	
Option 1 HMA							\$	393,715.05	\$	393,980.00

Table 4.A: Roadway Cost Estimates Alternative 1 (HMA)

Project:	White Oaks Nature Conservation Road Design						
Item	Item Name (BID TABS)	Item Code	Unit	Unit Cost	Quantity	Total Cost	Rounded Cost
Excavation - Class 10							
	EXCAVATION, CLASS 10, ROADWAY AND						
Cut/Fill	BORROW	2102-2710070	CY	\$ 4.36	1277.19	\$ 5,568.55	\$ 5,575.00
Backfill Placing	GRANULAR BACKFILL	2402-0425031	TON	\$ 35.17	1469.3924	\$ 51,678.53	\$ 51,500.00
1" Subbase Compaction	COMPACTION WITH MOISTURE AND DENSITY CONTROL	2107-0875000	СҮ	\$ 1.28	245.6844444	\$ 314.48	\$ 315.00
6.5" Granular Base	GRANULAR SURFACING ON ROAD, CLASS A CRUSHED STONE	2312-8260051	TON	\$ 39.91	1889.722852	\$ 75,418.84	\$ 75,500.00
Pavement							
6" PCC Pavement	STANDARD OR SLIP FORM PORTLAND CEMENT CONCRETE PAVEMENT, CLASS S, CLASS 2 DURABILITY, 6 IN.	2301-1032060	SY	\$ 49.00	7370.533333	\$ 361,156.13	\$ 361,000.00
12.5" Gravel Shoulders	GRANULAR SHOULDERS, TYPE A	2121-7425010	TON	\$ 26.55	2180.449444	\$ 57,890.93	\$ 58,000.00
4" Top Soil	TOPSOIL, STRIP, SALVAGE AND SPREAD	2105-8425015	CY	\$ 6.17	185.6239037	\$ 1,145.30	\$ 1,150.00
Hydraulic Seeding	HYDRAULIC SEEDING	2601-2636070	ACRE	\$ 4,199.05	0.345168416	\$ 1,449.38	\$ 1,450.00
	PAINTED PAVEMENT MARKING, WATERBORNE						
Pavement Markings	OR SOLVENT-BASED	2527-9263109	STA	\$ 21.94	13+30.790741	\$ 291.98	\$ 290.00
Total Cost							
Option 2 PCC						\$ 554,914.11	\$ 554,780.00

Table 4.B: Roadway Cost Estimates Alternative 2 (PCC)

Table 4.C: Roadway Cost Estimates Alternative 3 (Gravel)

Project:	White Oaks Nature Conservation Road Design									
Item	Item Name (BID TABS)	Item Code	Unit	Ur	nit Cost	Quantity	Tot	tal Cost	Ro	unded Cost
Excavation - Class 10										
	EXCAVATION, CLASS 10, ROADWAY AND									
Cut/Fill	BORROW	2102-2710070	CY	\$	4.36	0	\$	-	\$	-
Backfill Placing	GRANULAR BACKFILL	2402-0425031	TON	\$	35.17	0	\$	-	\$	-
	COMPACTION WITH MOISTURE AND DENSITY									
1" Subbase Compaction	CONTROL	2107-0875000	CY	\$	1.28	245.6844444	\$	314.48	\$	315.00
Pavement										
	GRANULAR SURFACING ON ROAD, CLASS A									
1" Gravel Pavement Surfacing	CRUSHED STONE	2312-8260051	TON	\$	39.91	290.7265926	\$	11,602.90	\$	11,600.00
1" Gravel Shoulders Surfacing	GRANULAR SHOULDERS, TYPE A	2121-7425010	TON	\$	26.55	58.14531852	\$	1,543.76	\$	1,550.00
4" Top Soil	TOPSOIL, STRIP, SALVAGE AND SPREAD	2105-8425015	CY	\$	6.17	0	\$	-	\$	-
Hydraulic Seeding	HYDRAULIC SEEDING	2601-2636070	ACRE	\$	4,199.05	0	\$	-	\$	-
Total Cost										
Option 3 Existing Gravel							\$	13,461.13	\$	13,465.00

Project:	White Oaks Nature Conservation Road Design						
Item	Item Name (BID TABS)	Item Code	Unit	Unit Cost	Quantity	Total Cost	Rounded Cost
Excavation - Class 10							
Cut/Fill	EXCAVATION, CLASS 10, ROADWAY AND BORROW	2102-2710070	СҮ	\$ 4.36	327.47	\$ 1,427.77	\$ 1,425.00
Backfill Placing	GRANULAR BACKFILL	2402-0425031	TON	\$ 35.17	298.2284	\$ 10,488.69	\$ 10,500.00
1" Subbase Compaction	COMPACTION WITH MOISTURE AND DENSITY CONTROL	2107-0875000	СҮ	\$ 1.28	72.73703704	\$ 93.10	\$ 93.00
6.5" Granular Base	GRANULAR SURFACING ON ROAD, CLASS A CRUSHED STONE	2312-8260051	TON	\$ 39.91	559.4690432	\$ 22,328.41	\$ 22,300.00
Pavement							
4" HMA Pavement	HOT MIX ASPHALT MIXTURE, COMMERICAL MIX (INCLUDES ASPHALT BINDER), AS PER PLAN	2303-0000100	TON	\$ 144.71	490.975	\$ 71,048.99	\$ 71,000.00
10.5" Gravel Shoulders	GRANULAR SHOULDERS, TYPE A	2121-7425010	TON	\$ 26.55	180.751537	\$ 4,798.95	\$ 4,800.00
4" Top Soil	TOPSOIL, STRIP, SALVAGE AND SPREAD	2105-8425015	СҮ	\$ 6.17	43.60473086	\$ 269.04	\$ 270.00
Hydraulic Seeding	HYDRAULIC SEEDING	2601-2636070	ACRE	\$ 4,199.05	0.081083177	\$ 340.47	\$ 340.00
Pavement Markings	PAINTED PAVEMENT MARKING, WATERBORNE OR SOLVENT-BASED	2527-9263109	STA	\$ 21.94	9+81.95	\$ 21,543.98	\$ 21,500.00
Total Cost							
Option 1 HMA						\$ 132,339.42	\$ 132,228.00

Table 4.D: Roadway Cost Estimates Phase 2 (HMA)

Appendix F: Parking Lots

					Par	king Angle	e (0)	
	Parki	ng Lot Dimension		T	wo-way Ai	sle	One-wa	ay Aisle
				90°	60°	45°	60°	45°
Stal	l Projecti	on	SP	18'-0"	15'-7"	12'-9"	15'-7"	12'-9"
Aisl	e Width		Α	24'-0"	25'-10"	29'-8"	20'-4"	21'-6"
Bas	e Module	;	M 1	60'-0"	57'-0"	55'-2"	51'-6"	47'-0"
Sing	gle Loade	d Module	M ₂	42'-0"	39'-0"	37'-7"	32'-6"	29'-5"
Wal	l to Inter	lock	M ₃	60'-0"	55'-10"	52'-2"	49'-4"	44'-0"
Inte	rlock to l	nterlock	M4	60'-0"	53'-8"	49'-2"	47'-2"	41'-0"
Ove	rhang		0	2'-6"	2'-2"	1'-9"	2'-2"	1'-9"
-	01.67	Width Projection	WP	8'-6"	9'-10"	12'-0"	9'-10"	12'-0"
Vidtl	8-0	Interlock	i	0'-0"	2'-2"	3'-0"	2'-2"	3'-0"
tall V	0' 0"	Width Projection	WP	9'-0"	10'-5"	12'-9"	10'-5"	12'-9"
S	9-0	Interlock	i	0'-0"	2'-3"	3'-2"	2'-3"	3'-2"

Table 8B-1.02: Minimum Parking Dimensions

Notes:
1. Aisle width may be increased up to 3 feet to provide a higher level of comfort.
2. In lots where at least 30% of stalls have curbs, aisle width may be reduced by 1'-0".
3. Light poles and columns may protrude a maximum of 2 feet into a parking module as long as they do not encroach on more than 30% of the stalls. When more than 30% of the stalls are encroached, interlock encroache a maximum of 2 feet into a parking module as long as they do not encroach on more than 30% of the stalls. When more than 30% of the stalls are encroached, interlock

For additional parking angles, refer to <u>The Dimensions of Parking</u>, ULI, NPA

Source: Adapted from Urban Land Institute, National Parking Association

 Table 8B-1.03:
 Pavement Thickness for Light Loads

 (Parking lots with 200 or less cars/day and/or 2 or less trucks/day or equivalent axle loads)

Subgrade	Surface	On 12" of Prep	ared Subgrade	On 12" of Prepared Subgra with 4" Granular Subbas				
CDK	wateria	Minimum	Desirable	Minimum	Desirable			
0	Rigid	5"	6"	4"	5"			
9	Flexible	5"	6"	4"	5"			
6	Rigid	5"	6"	4"	5"			
0	Flexible	5"	6"	4"	5"			
2	Rigid	5"	6"	4"	5"			
3	Flexible	6"	6"	5"	5"			

 Table 8B-1.04:
 Pavement Thickness for Moderate Loads

 (Parking areas, entrances, perimeter travel lanes, and frontage roads subject to 201 to 700 cars/day and/or 3 to 50 trucks/day or equivalent axle loads)

Subgrade	Surface	On 12" Su	of Prepared bgrade	On 12" of Prepared Subgrade with Granular Subbase						
CBR	Material	Minimum	Desirable	Thickness of Granular Subbase	Minimum	Desirable				
0	Rigid	5"	6"	4"	4"	5"				
9	Flexible	5"	6"	6"	4"	5"				
6	Rigid	5"	6"	6"	4.5"	5"				
0	Flexible	6"	6"	8"	5"	5"				
2	Rigid	5.5"	6"	6"	5"	5"				
5	Flexible	6"	7"	8"	6"	6"				

The portions of the parking facility serving truck traffic such as entrances, perimeter travel lanes, trash dumpster sites, and delivery truck routes must be designed to accommodate heavier loads. The number, type, and weight of delivery vehicles can usually be predicted with a fair level of accuracy. With this information, ESAL values and pavement thicknesses can be determined using the methodology described in <u>Chapter 5 - Roadway Design</u>.

If the parking lot is to service an industrial area, such as a truck stop or manufacturing facility, the volume of truck traffic and the associated ESALs should be determined and an independent pavement thickness determination completed to ensure meeting the 20 year design life needs of the project.

Total Number of Spaces Provided	Minimum Number of Accessible Spaces
1 to 25	1
26 to 50	2
51 to 75	3
76 to 100	4
101 to 150	5
151 to 200	6
201 to 300	7
301 to 400	8
401 to 500	9
501 to 1,000	2% of total
1,001 and over	20, plus 1 for each 100, or fraction thereof, over 1,000

Table 8C-1.02: Minimum Accessible Parking Ratios

For Pavement Thickness Calculations, See Appendix E

Access (SUDAS Section 8B-1 A)

Width: Where separate entrances and exits cannot be provided, the driveway to the parking lot should be at least 24 feet wide to provide two 12 foot lanes

Normal Parking Stalls: (SUDAS Section 8B-1 C)

Recommended Stall Width: 9'

Recommended Stall Length (Non-Trailers): 18'

ADA (SUDAS Section 8B-1 D)

ADA Car Minimum Width: 8'

ADA Van Minimum Width: 11'

Car Access Aisle Width: **5', if made 8' then width of adjacent van spot can be 8'** Van Access Aisle Width: **5', if made 8' then width of adjacent van spot can be 8'** ADA Lane Lengths: Use typical 18'

Parking lot grades: (SUDAS Section 8B-1 E)

Typical: Slopes of 1.5% should be used to ensure proper drainage and eliminate standing water and icy conditions.

(Possibly by boat ramp): Minimum pavement slopes of 0.6% may be used, however since the potential for flat areas is greater, additional measures to address drainage, such as slotted drains or pervious pavement, may be necessary.

ADA: Slopes greater than 2% in areas between the parking lot destination and the accessible parking stalls should be avoided as they create a situation where constructing an accessible route is difficult. Slopes greater than 5% are discouraged.

Pavement: (SUDAS Section 8B-1 F)

Design Life: **20 years** Pavement Thickness Cars only: **Table 8B-1.03** Pavement Thickness Trucks and Trailers: **Table 8B-1.04**

Spots: (SUDAS Section 8C-1B)

Spots Required: ??? ADA Car Spots Required: **Table 8C-1.02** ADA Van Spots Required: **1 per 6 car spots, if only one ADA spot on site make it van**

Table 5.A Parking Lot Cost Estimate Alternative 1 (HMA)

Project	White Oak Nature Conservation Parking Lot Design						
Item	Item Name (BID TABS)	Item Code	Unit	Unit Cost	Quantity	Total Cost	Rounded Cost
General							
Tree Relocation	TREE, TRANSPLANTING	2610-0000150	EACH	\$ 2,500.00	1	\$ 2,500.00	\$ 2,500.00
Excavation - Class 10							
Cut/Fill	EXCAVATION, CLASS 10, ROADWAY AND BORROW	2102-2710070	CY	\$4.36	1914.6215	\$8,347.75	\$8,300.00
Backfill Placing	GRANULAR BACKFILL	2402-0425031	TON	\$35.17	2718.76253	\$95,618.88	\$95,500.00
1" Subbase Compaction	COMPACTION WITH MOISTURE AND DENSITY CONTROL	2107-0875000	CY	\$1.28	135.6282463	\$173.60	\$175.00
6.5" Granular Base	GRANULAR SURFACING ON ROAD, CLASS A CRUSHED STONE	2312-8260051	TON	\$39.91	1251.848713	\$49,961.28	\$50,000.00
Pavement							
	HOT MIX ASPHALT MIXTURE, COMMERICAL MIX (INCLUDES ASPHALT						
4" HMA Pavement	BINDER), AS PER PLAN	2303-0000100	TON	\$144.71	1065.948078	\$154,253.35	\$154,500.00
4" Top Soil	TOPSOIL, STRIP, SALVAGE AND SPREAD	2105-8425015	CY	\$6.17	95.6567716	\$590.20	\$590.00
Hydraulic Seeding	HYDRAULIC SEEDING	2601-2636070	ACRE	\$4,199.05	0.177874532	\$746.90	\$745.00
Pavement Markings	PAINTED PAVEMENT MARKING, WATERBORNE OR SOLVENT-BASED	2527-9263109	STA	\$21.94	3.6	\$78.98	\$79.00
ADA SYMBOLS	PAINTED SYMBOLS AND LEGENDS, WATERBORNE OR SOLVENT-BASED	2527-9263137	EACH	\$ 116.10	3	\$ 348.30	\$ 350.00
Sidewalk							
6" PCC Sidewalk	SIDEWALK, P.C. CONCRETE, 6 IN.	2511-7526006	SY	\$ 97.41	145.0698556	\$ 14,131.25	\$ 14,100.00
Total Cost							
HMA Parking Lot						\$ 326,750.51	\$ 326,839.00

Table 5.B Parking Lot Cost Estimate Alternative 2 (PCC)

Project	White Oak Nature Conservation Parking Lot Design						
Item	Item Name (BID TABS)	Item Code	Unit	Unit Cost	Quantity	Total Cost	Rounded Cost
General							
Tree Relocation	TREE, TRANSPLANTING	2610-0000150	EACH	\$ 2,500.00	1	\$ 2,500.00	\$ 2,500.00
Excavation - Class 10							
Cut/Fill	EXCAVATION, CLASS 10, ROADWAY AND BORROW	2102-2710070	CY	\$4.36	1914.6215	\$8,347.75	\$8,300.00
Backfill Placing	GRANULAR BACKFILL	2402-0425031	TON	\$35.17	2718.76253	\$95,618.88	\$95,500.00
1" Subbase Compaction	COMPACTION WITH MOISTURE AND DENSITY CONTROL	2107-0875000	CY	\$1.28	135.6282463	\$173.60	\$175.00
6.5" Granular Base	GRANULAR SURFACING ON ROAD, CLASS A CRUSHED STONE	2312-8260051	TON	\$39.91	1251.848713	\$49,961.28	\$50,000.00
Pavement							
	STANDARD OR SLIP FORM PORTLAND CEMENT CONCRETE PAVEMENT,						
6" PCC Pavement	CLASS S, CLASS 2 DURABILITY, 6 IN.	2301-1032060	SY	\$49.00	4737.547011	\$232,139.80	\$232,000.00
4" Top Soil	TOPSOIL, STRIP, SALVAGE AND SPREAD	2105-8425015	CY	\$6.17	95.6567716	\$590.20	\$590.00
Hydraulic Seeding	HYDRAULIC SEEDING	2601-2636070	ACRE	\$4,199.05	0.177874532	\$746.90	\$745.00
Pavement Markings	PAINTED PAVEMENT MARKING, WATERBORNE OR SOLVENT-BASED	2527-9263109	STA	\$21.94	3.6	\$78.98	\$79.00
ADA SYMBOLS	PAINTED SYMBOLS AND LEGENDS, WATERBORNE OR SOLVENT-BASED	2527-9263137	EACH	\$ 116.10	3	\$348.30	\$350.00
Sidewalk							
6" PCC Sidewalk	SIDEWALK, P.C. CONCRETE, 6 IN.	2511-7526006	SY	\$ 97.41	145.0698556	\$ 14,131.25	\$ 14,100.00
Total Cost							
PCC Parking Lot						\$ 404,636.96	\$ 404,339.00

Table 5.C Parking Lot Cost Estimate Alternative 3 (Gravel)

Project	White Oak Nature Conservation Parking Lot Design						
Item	Item Name (BID TABS)	Item Code	Unit	Unit Cost	Quantity	Total Cost	Rounded Cost
General							
Tree Relocation	TREE, TRANSPLANTING	2610-0000150	EACH	\$ 2,500.00	1	\$ 2,500.00	\$ 2,500.00
Excavation - Class 10							
Cut/Fill	EXCAVATION, CLASS 10, ROADWAY AND BORROW	2102-2710070	CY	\$4.36	1914.6215	\$8,347.75	\$8,300.00
Backfill Placing	GRANULAR BACKFILL	2402-0425031	TON	\$35.17	2718.76253	\$95,618.88	\$95,500.00
1" Subbase Compaction	COMPACTION WITH MOISTURE AND DENSITY CONTROL	2107-0875000	СҮ	\$1.28	135.6282463	\$173.60	\$175.00
Pavement							
1" Gravel Pavement Surfacing	GRANULAR SURFACING ON ROAD, CLASS A CRUSHED STONE	2312-8260051	TON	\$39.91	257.933115	\$10,294.11	\$10,300.00
4" Top Soil	TOPSOIL, STRIP, SALVAGE AND SPREAD	2105-8425015	CY	\$6.17	95.6567716	\$590.20	\$590.00
Hydraulic Seeding	HYDRAULIC SEEDING	2601-2636070	ACRE	\$4,199.05	0.177874532	\$746.90	\$745.00
Parking Stops	RUBBER PARKING STOPS (https://www.uline.com/BL_1062/Parking- Stops)	H-4608	EACH	\$65.00	22	\$1,430.00	\$1,425.00
ADA SYMBOLS	PAINTED SYMBOLS AND LEGENDS, WATERBORNE OR SOLVENT-BASED	2527-9263137	EACH	\$ 116.10	3	\$348.30	\$350.00
Sidewalk							
1" Gravel Sidewalk	GRANULAR SURFACING ON ROAD, CLASS A CRUSHED STONE	2312-8260051	TON	\$ 39.91	5.722199858	\$ 228.37	\$ 230.00
Total Cost							
Gravel Parking Lot						\$ 120,278.12	\$ 120,115.00

Table 5.D Parking Lot Cost Estimate Phase 2 (HMA)

Project	White Oak Nature Conservation Parking Lot Design								
ltem	Item Name (BID TABS)	Item Code	Unit	Unit Cost	Quantity	Tota	al Cost	Ro	unded Cost
General									
Tree Relocation	TREE, TRANSPLANTING	2610-0000150	EACH	\$ 2,500.00	0	\$	-	\$	-
Excavation - Class 10									
Cut/Fill	EXCAVATION, CLASS 10, ROADWAY AND BORROW	2102-2710070	CY	\$4.36	590.9359	\$	2,576.48	\$	2,575.00
Backfill Placing	GRANULAR BACKFILL	2402-0425031	TON	\$35.17	839.128978	\$	29,512.17	\$	29,500.00
1" Subbase Compaction	COMPACTION WITH MOISTURE AND DENSITY CONTROL	2107-0875000	CY	\$1.28	49.24465833	\$	63.03	\$	63.00
6.5" Granular Base	GRANULAR SURFACING ON ROAD, CLASS A CRUSHED STONE	2312-8260051	TON	\$39.91	454.5281964	\$	18,140.22	\$	18,100.00
Pavement									
	HOT MIX ASPHALT MIXTURE, COMMERICAL MIX (INCLUDES ASPHALT								
4" HMA Pavement	BINDER), AS PER PLAN	2303-0000100	TON	\$144.71	398.8817325	\$	57,722.18	\$	57,500.00
4" Top Soil	TOPSOIL, STRIP, SALVAGE AND SPREAD	2105-8425015	CY	\$6.17	0	\$	-	\$	-
Hydraulic Seeding	HYDRAULIC SEEDING	2601-2636070	ACRE	\$4,199.05	0	\$	-	\$	-
Pavement Markings	PAINTED PAVEMENT MARKING, WATERBORNE OR SOLVENT-BASED	2527-9263109	STA	\$21.94	0	\$	-	\$	-
ADA SYMBOLS	PAINTED SYMBOLS AND LEGENDS, WATERBORNE OR SOLVENT-BASED	2527-9263137	EACH	\$ 116.10	0	\$	-	\$	-
Sidewalk									
6" PCC Sidewalk	SIDEWALK, P.C. CONCRETE, 6 IN.	2511-7526006	SY	\$ 97.41	0	\$	-	\$	-
Total Cost									
HMA Parking Lot						\$	108,014.08	\$	107,738.00

Appendix G: Boat Ramp

Figure G1: U.S. Army Corps of Engineers Boat Ramp Design Standards

Figure G2: Boat Ramp Plan

Figure G3: Boat Ramp Plan and Profile

Appendix I: Playgrounds

Reference 1: Prefabricated Concrete Cornhole

CORNHOLE / BAG TOSS

CONCRETE CORNHOLE / BAG TOSS Size: 55" L x 31" W Weight: 633 lbs. each, 1,266 lbs. per set

Optional Features

Custom Logos Bike Deterrent Blocks Water Resistant Bags Bag Throwers Area Blocks Skateboard Deterrent Bars Reference 2: Prefabricated Concrete Ladder Toss

LADDER TOSS

CONCRETE LADDER TOSS Regulation Size: 42" H x 32" W, base width 24" Weight: 280 lbs.

Optional Features Support Base Throwers Base (pictured in photograph)

STEEL LADDER TOSS Regulation Size: 42" H x 32" W, base width 24" Weight: 425 lbs.

Optional Features Support Base Throwers Base

Appendix J: Bibliography

- ACI Committee 318. (2002). Building code requirements for structural concrete (ACI 318-02) and commentary (ACI 318R-02): An ACI Standard. American Concrete Institute.
- American Association of State Highway and Transportation Officials (AASHTO). (2014). *LRFD* guide specifications for the design of Pedestrian Bridges. American Association of State Highway and Transportation Officials.
- ASCE 7-16 Minimum design loads and associated criteria for buildings and other structures: Commentary. (2017). . American Society of Civil Engineers. Reston, VA.
- *Design manual*. Iowa Statewide Urban Design and Specifications. (2023a, December 19). <u>https://iowasudas.org/manuals/design-manual/#chapter-5-roadway-design</u>
- *Design manual*. Iowa Statewide Urban Design and Specifications. (2023b, December 19). https://iowasudas.org/manuals/design-manual/#chapter-8-parking-lots
- IBC 2021: International building code. (2020). . ICC Publications.
- *I.M. 3.210.* iowadot.gov. (n.d.). https://www.iowadot.gov/local_systems/publications/im/3210.pdf
- *LRFD Bridge Design Specifications*. (2020). . American Association of State Highway and Transportation Officials.
- NDS®, National Design Specification® for wood construction with commentary. (2018). . American Wood Council. Leesburg, VA.
- Standard trail plans and specifications. US Forest Service. (n.d.). https://www.fs.usda.gov/managing-land/trails/trail-management-tools/trailplans

StreamStats. (n.d.). https://streamstats.usgs.gov/ss/

- USDA Forest Service National Technology and Development Program. (2020, March). Sustainable Trail Bridge Design. Missoula, MT.
- US Department of Commerce, N. (2005, November 7). PF Map: Contiguous us. https://hdsc.nws.noaa.gov/pfds/pfds_map_cont.html?bkmrk=ia

Wood construction connectors: Catalog C-2003. (2003). . Simpson Strong-Tie, Inc. Dublin, OH.