

FINAL DELIVERABLE

Title	Lansing Old Stone School	
Completed By	Chad Johnson, Ben Amelon, D Yusef Igram	evon Liebe,
Date Completed	December 2022	
UI Department	Civil and Environmental Engin	eering
Course Name	CEE: 4850:0001 Project Design Management	ı &
Instructor	Paul Hanley and Richard Foss	e 1111 Statistics
Community Partners	City of Lansing	

This project was supported by the Iowa Initiative for Sustainable Communities (IISC), a community engagement program at the University of Iowa. IISC partners with rural and urban communities across the state to develop projects that university students and IISC pursues a dual mission of enhancing quality of life in Iowa while transforming teaching and learning at the University of Iowa.

Research conducted by faculty, staff, and students of The University of Iowa exists in the public domain. When referencing, implementing, or otherwise making use of the contents in this report, the following citation style is recommended:

[Student names], led by [Professor's name]. [Year]. [Title of report]. Research report produced through the Iowa Initiative for Sustainable Communities at the University of Iowa.

This publication may be available in alternative formats upon request.

Iowa Initiative for Sustainable Communities The University of Iowa 347 Jessup Hall Iowa City, IA, 52241 Phone: 319.335.0032 Email: iisc@uiowa.edu Website: http://iisc.uiowa.edu/

The University of Iowa prohibits discrimination in employment, educational programs, and activities on the basis of race, creed, color, religion, national origin, age, sex, pregnancy, disability, genetic information, status as a U.S. veteran, service in the U.S. military, sexual orientation, gender identity, associational preferences, or any other classification that deprives the person of consideration as an individual. The University also affirms its commitment to providing equal opportunities and equal access to University facilities. For additional information contact the Office of Equal Opportunity and Diversity, (319) 335-0705.

Lansing Old Stone School Renovation and Site Development

CEE:4850 - Project Design & Management

Ben Amelon, Chad Johnson, Devon Liebe, Yusef Igram

12-9-22

Table of Contents

Section I Executive Summary	pg. 1
Section II Organization Qualifications and Experience	pg. 3
Section III Design Services	pg. 4
Section IV Constraints, Challenges, and Impacts	pg. 5
Section V Alternative Solutions That Were Considered	pg. 7
Section VI Final Design Details	pg. 9
Section VII Engineer's Cost Estimate	pg. 13
Section VIII Appendices	pg. 15
Appendix A: Bibliography	
Appendix B: Cost Estimation	
Appendix C: Structural Load Calculations	
Appendix D: Joist Member Sizing	
Appendix E: Beam Member Sizing	
Appendix F: Column Member Sizing	
Appendix G: Truss Calculations	
Appendix H: Footing Calculations	
Appendix I: Rational Method Calculations	
Appendix J: Gantt Chart	

Section I: Executive Summary

This proposal is written to present the design services for the restoration and renovation of the Old Stone School (OSS) in Lansing, Iowa. The building has been designed as a mixed-use building. A team of four civil engineering students from the University of Iowa prepared this design:

Chad Johnson, Ben Amelon, Devon Liebe, and Yusef Igram. They used their combined experiences from different internships and classes at the University to prepare this proposal, drawings, and presentations.

The OSS was built in 1864 and has had many different uses throughout its history, most recently as a school. It has been unoccupied since 1972. There is a lot of historical value behind this building, not only in the city of Lansing, Iowa, but throughout Allamakee County. The building is on the National Historic Registry, which means the exterior of the building must remain as it is. The figure below shows the current state of the building.

Figure 1: Existing structure pictured during site evaluation.

The scope of the work to be completed consists of structural evaluation of the existing structure, engineering design of structural improvements, architectural layout of the proposed uses, engineering design of the site, and cost estimation.

The architectural layout of the building consists of a 2-story building. The proposed first-floor layout consists of a City Hall section used for offices for the City of Lansing; a police station; a council chamber for city council meetings; and a community center that can be used as a multi-purpose space. The second-floor layout is a residential area that consists of 2 two bedrooms, 1 one bedroom, and 1 studio apartment. Each floor has on average 4300 square feet of usable space, which allows for many different uses. The building consists of 2 different sets of stairs to allow multiple access points to the second floor.

To accommodate occupancy, parking has been provided along the east and west sides of the building. Along the east face of the property, a limestone retaining wall is designed to accommodate street parking. Additional sidewalk paths were designed to provide ADA accessibility to the building.

Very little information exists about the construction of the building. Therefore, the least risky and most durable option for the building is to replace the existing interior structure with a steel skeleton. Additionally, the foundation of the building supporting the existing bearing walls will need to be replaced. This can be done by temporarily supporting the building while constructing new foundation walls to support the walls. Furthermore, the existing limestone walls will be connected to the new steel structure via an angle and epoxy bolt system.

The overall cost of this structural and site renovation is estimated to be \$2,862,000.00. This cost includes four phases of building construction and one phase of site work. In addition to these phases, a \$300,000 contingency was also included in this cost estimate.

Section II: Organization Qualifications and Experience

Organizational Location and Contact information

Department of Civil and Environmental Engineering 4105 Seamans Center for the Engineering Arts and Sciences Iowa City, Iowa, 52242

Organization and Design Team Description

Our team consists of four senior civil engineering students at the University of Iowa enrolled in CEE:4850 Project Design & Management: Ben Amelon, Chad Johnson, Yusef Igram, and Devon Liebe. Chad Johnson is the acting project manager and specializes in structural engineering. Ben is the team's technical services manager and is pursuing a minor in business administration. Yusef leads graphics report production and specializes in general practice. Devon leads text report production and specializes in structural engineering.

Ben has worked in the land development field since 2018 via internships. During his work in the private sector, he prepared construction sheets for residential and commercial developments. He is proficient in all aspects of Civil3D, specializing in stormwater management and site grading. Ben led the design of the site plan and the architectural layout/programming of the building.

Chad has worked predominately in the field ensuring proper construction documentation as well as construction inspection. He has also worked on an estimating team preparing construction cost estimates for owners and architects. Chad led the structural evaluation of the existing structure and design of the structural skeleton.

Yusef has worked in both public and private sector spending a summer with the City of Cedar Rapids working with multiple professional engineers and dealing with design issues, derecho recovery, and working with homeowners. Yusef also worked with a large general contractor and was on the project management team of the construction of a data center. Yusef led coordination of the deliverables to the client.

Devon has worked at a structural engineering firm for 4 months for an internship. He is proficient in Revit, specializing in structural engineering. Devon has also taken design of wood, steel and concrete structures that have examples and small projects in those areas respectively. Devon led the project deliverables of the architectural and structural design.

In addition to work experience, team members have completed relevant coursework necessary for this project. These classes include but are not limited to, Principles of Structural Engineering, Design of Concrete Structures, Design of Wood Structures, and Design of Steel Structures, Design of Water Resources, and Civil Engineering Tools.

Page 3 | 17

Section III: Design Services

Project Scope

The team was tasked with the design services for the restoration and renovation of the Lansing Old Stone School (OSS). It was our job as a team to perform a structural analysis of the building to determine its current structural health and we offered possible solutions with problems being found. After we confirmed the current state of the building, the group drew up interior design for modern use. Such plans included a new city hall/police station/community center. Another possible option was a potential apartment complex. After these plans were created the client selected an option, and the team performed the necessary final design for the preferred option. This included drawing up a new interior layout for the building and performing the necessary structural changes needed to comply with the updated building codes. After the structural analysis was completed, we concluded that there were concerns that relate to the age of structure and uncertainty behind certain walls and the foundation. The group and client decided on demolition of the interior and creation of an interior steel skeleton as the best solution. From the RFP to now, our scope of work has changed with the team also doing architectural work. The team has also done walk throughs with explanations for the client by the means of presentation versus our initial plan of proving a basic idea of what building could be used for rather than the extensive amount of work we did.

Work Plan

Figure 3: Work schedule for project lifetime. (Readable version in Appendix J)

Section IV: Constraints, Challenges, and Impacts

Constraints

The size of the building and scope of the work will likely result in an expensive renovation, and the project may need to be phased in a way that makes the necessary improvements to the building a possibility for the community over several years as opposed to one single project. This is a constraint specific to the timeline of work. Secondly, as the OSS is certified on the National Registry any design alternatives or upgrades cannot impact its appearance. The building has a very simple architectural layout, and not many changes can be made as most interior walls appear to be load-bearing. If walls need to be moved or removed, expensive structural members (steel) will need to be utilized to meet loading requirements. Because the final design includes a police station, this necessitates that the building is designed to a higher ASCE risk category 4. Risk category 4 is the highest level of the risk categories, meaning it must meet very high and often expensive standards for disaster preparedness. The structure must be designed to remain in operation under any circumstances 24/7.

Challenges

Due to the age of the building, there are likely issues that will be discovered during the construction process. Bids for the construction of this project will include a high contingency cost to account for this uncertainty. During the site inspection, asbestos was discovered in the crawl space on some mechanical piping. Once the demolition process begins, the construction team should be prepared for asbestos abatement. Additionally, with the structural analysis the building requires significant updates, this could create a financial challenge to the community. As stated, price is also a challenge to this project. There should be opportunities for grants and other government funding (see cost analysis). The goal is to make sure any design and recommendation is cost effective. Secondly, the building has not been maintained properly. Upon inspection the team discovered large quantities of animal feces, warped wood panels, and other messes. This will likely require the building to be cleaned and gutted before construction occurs. The parking initially provided does not meet Iowa SUDAS requirements for the planned future use. The addition and change of parking spaces requires a retaining wall to help enforce the foundation of the building and soil around the building. The current layout of the site does not meet ADA requirements. It will be a challenge to make sure the building is up to these standards; adding ramps and multiple access points will resolve this issue.

Societal Impact within the Community and/or State of Iowa

Lansing, Iowa, currently has a population of 962, which has decreased from 1,000 since 2010. This population has decreased linearly since 2010. Lansing is also a majority white population with 96.75% white. The rest of Lansing demographics can be shown on the figure below.

Figure 4: Lansing citizen demographics

Around 68% of families own the houses they live in and the remaining 32% rent. Homes in Lansing are typically heated with gas and a small minority uses electricity. Under 5% of Lansing's citizens have less than a high school degree, 40% have a high school degree, and 35% have more than a high school degree. The average annual earnings for an individual in Lansing is \$30k, which is around \$6k short of the median earnings for the nation. The restoration of this building would have a huge impact on this small community. The OSS is an important visual within Lansing. It is the longest standing school building west of the Mississippi. Restoring the school would give the community new opportunities to meet and gather, as well as becoming a place of pride. With the OSS second floor repurposed as a residential, it will bring in new community members. The units are planned to accommodate young families. Children of the residents will enjoy short walks to their schooling. Furthermore, the city hall will allow for a larger public workforce as the city grows into its future.

Section V: Alternative Solutions That Were Considered

Commercial market space

We considered a commercial market space similar to NewBo City Market in Cedar Rapids, Iowa. A commercial market space is a great alternative when it comes to helping a city grow because it allows for many uses, including concerts and other public events, farmers markets, and even small pop-up shops. This brings people to the city and adds more economic uses. This alternative, however, isn't sufficient for the needs of Lansing. The city needs a new space for the city hall and upgrades to police station and force.

Daycare center

Another need presented by the client was for a daycare center. This idea was not selected was because placement on the second floor would introduce many difficulties, including noise and movement challenges. A requirement for a daycare center is for it to be inclusive of all bodies, and must meet ADA requirements. T he team would need to also design an elevator, and even though there is space for this, it comes as a large expense. Lastly, with a daycare center there needs to be an outside area with a playground. With the current site layout, this wouldn't be possible.

City Hall & Police Station

The alternative of a combined police station and city hall is one that was requested by the client and a priority for the team. The current city hall and police station are inadequately sized and do not allow for any expansion for employees or rooms. Allowing a bigger area for these two allows the city to provide more functions. One downside to this alternative is that OSS is too large to hold only a police station on one floor and city hall on the other. Also, inclusion of a police station requires meeting stricter and more expensive building code regulations.

Apartment Complex

Another alternative discussed is an apartment complex on one or both floors. The city has a need for affordable housing for young families. A con for this alternative is that with

Page 7 | 17

affordable housing when you look at the total price of the project and repurposing in the short term it isn't cost effective in terms of return on investment.

Structural remedies: Foundation Improvements

Fiber Reinforced Plastic (FRP)

The first solution discussed with the client was the use of fiber-reinforced plastic. Fiberreinforced plastic is made with fiber glass composites that reinforce the structural member. Some of the pros to FRP includes that it provides more flexural resistance, it is relatively inexpensive, and easier to construct than alternatives. Some of the cons to FRP include, that it is not as long lasting as a full foundation replacement, and that it is short term fix versus a long term replacement.

Cast-in-place Foundation

Cast-in-place foundation was the foundation remedy that the client decided was best for them. Cast-in-place foundation is a concrete foundation in which the building is lifted, and the foundation is constructed and can be properly fixed. Some of the positives to the cast-in-place foundation are that it is more durable and very long-lasting. As stated, the foundation can be properly fixed. The difficulties of this solution are that it is much more expensive than other alternatives and that the building would require temporary shoring.

Structural remedies: Building Improvements

Refurbish existing structural walls

In terms of building improvements, refurbishing existing structural walls was an option introduced to the client. This option maintains the existing feel of the building, but it will require intensive labor to complete this process as it is a brick-by-brick refurbishment process. This option would be very expensive for the city.

Steel Skeleton Structure

The most durable option is a steel skeleton structure. This option was selected by the city for this reason. This option allows the building to keep its natural feel while ensuring the safety and longevity necessary for this building. The steel skeleton structure is done by removing most of the existing interior and rebuilding the structure with steel framing. This option is the least risky because the engineering of the building is entirely new and does not require extensive analysis of the existing building.

Cold-Roll steel wall bracing

Another alternative presented was a cold-roll steel wall bracing option. This is done by adding steel framing on the interior of the building along existing bearing walls. This option would be cheaper than the steel skeleton alternative but would not provide as long of lasting option for the city.

Section VI: Final Design Details

Building Information and Elevations

In the OSS, the first floor consists of 4,300 sq ft and the second floor is also 4,300 sq ft, for a total usable space of 8,600 sq ft. In terms of height, from the floor of the first floor to the ceiling it is 12 ft, and from floor of second floor to roof it is 14 ft; from bottom of roof to top of roof it is 11 ft. The total elevation of the building from first floor to top of roof is equivalent to 37 ft. The first floor will be used as a new city hall, including a council chamber, community gathering area, and a police station. The second floor will be repurposed with 4 apartments, 2 of them will be 2 bedrooms, 1 of them being a one bedroom, and the last being a studio. The 3 roomed apartments will have a usable square footage of 900 sq ft, and the studio will be roughly 600 sq ft. See sheet S301 for further detailed building elevations.

The exterior of the building is to remain the same to keep the historical integrity of the building. However, the interior of the building both architecturally and structurally is to be gutted and remade into a structural steel skeleton. The reason for this is because the foundation and bearing walls are failing and rather than fix those certain areas it is best to replace the load bearing portions. Another benefit of updating the structural elements is that the structure would be known throughout the building. The new skeleton allows for properties such as strength to be known. There were uncertainties of the load bearing capacities of the walls. Thus, many conservative assumptions were made while evaluating the current structural state. Replacing the structure with the current code allows for easier renovations in future projects.

Building Structural Elements

The building is to receive a new structural system throughout the building. This choice was made due to the uncertainty of the current structural system. Due to the addition of the police station, a design of ASCE risk category 4 is necessary for use of design loads. ASCE risk categories determine the magnitude of wind and snow loads a building must be designed to. Risk category 4 is the highest level. ASCE 7-16 and LRFD load combinations were used to determine such loads. These loads can be found in Appendix C. To support the gravity loads throughout this building, HSS columns and W shaped beams and joists were used to support the floors on level 1 and level 2. As for the roof, a cold rolled steel truss frame is to be used to keep the current slope of the roof. These trusses are then resting on more W shaped beams that are then supported by the HSS columns. These columns and beams are selected with the use of AISC Steel Construction Manual Fifteenth Edition. The floors used for this building consist of 1 ¹/₂" metal deck with 2 ¹/₂" of concrete slab on top. The W beams and HSS columns are then used to support this floor. A detailed view of this can be seen on sheets S311 and S312.

When sizing the joists, we used smaller W shapes spaced at 5' O.C Using LRFD the design checks that were made were bending moment, shear, and deflection. When running through the different sizes we found that the deflection was the main control of how these beams were sized.

The deflection criteria that were used was L/240 for dead load and L/360 for the total load using the steel manual for the first floor the largest joist member size was a W18x35 and for the second floor a W16x31 was used. The team sized these joist members based on different tributary areas. See Appendix D for these areas. Also, to view the other joist sizes that were determined see sheets S101 and S102.

The lateral system designed in this building will follow a typical lateral load bracing system. This analysis has yet to be performed, but space has been provided in areas that are appropriate for this kind of bracing.

The beams were designed following the design of the joists. Using the reactions for the joist that were calculated we were able to determine the different point loads that the beams would be supporting. The beams and joists will be connected via a double angle bolt connection. The top of the joist will be coped for an easier connection to the beam. The largest beam was a W21x68 designed to support the largest tributary areas in the middle of the building. Each beam for the OSS was designed using Robot Structural Analysis. See appendix E for further details and calculations.

The columns were then designed based on all the reactions from the roof trusses, the three levels of beams and any joists that were framed into the columns as well. Using the reactions from all these elements we were able to determine the total load going into the columns. Once the total load was calculated using the AISC Steel Manual we were then able to size the columns for the total load based on the overall height of the column. See appendix F for full design of the columns. Also see sheet S101 for the sizes of the columns.

The floor deck and slab were designed using Vulcraft standards tables. A $1 \frac{1}{2}$ " deck is a standard size for a building with this type of steel framing. The decking and concrete provide the needed structural resistance for the high live loads on the first floor. Additionally, the 1.5" deck supports a 2.5" cover slab which provides the appropriate 2-hr fire rating needed for this building.

The foundations were then designed after the calculations of the columns. Since there is no soils report, we used a rather conservative bearing pressure of 1.5 ksf in order to properly size the foundations. Then by using the total load on each column and dividing by the bearing pressure we were then able to develop a reasonable area for each of the footings. Then by taking the square root of that area we were then able to come up with a reasonable square footing for each of the columns. We have also run a calculation to design for uplift, based on the calculation it was determined that the weight coming down on the columns is enough to properly combat the uplift. Our largest square footing was determined to be an 11-foot square footing. For the rest of the footing sizes see appendix F. Further calculations will be made on the reinforcement of all foundations.

New foundation walls will need to be built to support the existing limestone walls. This will be done by temporarily supporting the building and replacing sections of the existing foundation wall. Furthermore, the limestone walls will be connected to the new steel structure via an angle and epoxy bolt system. See S501 and S502 for further details of this system.

Building Design and Layout

Because of the OSS's age, there are a lot of structural changes that need to be made, both to the interior and exterior. The exterior walls require slight improvements and need to be cleaned. The main purpose of the slight improvements and cleaning them versus other options is to maintain the historical integrity of the building. The OSS is recognized on the National Registry of Historic Places, which requires maintaining a structure's outside appearance. Some of the structural improvements that will be made include repointing the limestone and patching of the existing cracks. The layout of the first floor includes the city hall which has four separate offices for the City of Lansing: a council chamber; a police station that includes an evidence room, interrogation room, separate bathroom, four police cubicles, police chief office, weapons storage, and a receptions desk; and a community center for multi-purpose use. For more details on the building design and layout see architectural sheets A101 and A102.

Drainage analysis

The addition of parking and sidewalks creates impervious areas on site, which will affect how water runs off the site during storm events. The rational method as specified in the Iowa Stormwater Management Manual (ISWMM) was used to estimate the peak discharge during a storm event. It should be noted that all on-site areas drain to the existing inlet structure shown on sheet C105. Existing conditions produce a peak discharge of 10.56 cfs during a 10-year storm event. Proposed conditions produce a peak discharge of 11.01 cfs during a 10-year storm event. See appendix H for supporting calculations. The development produces a 4.3% increase in discharge. This increase in flow is not significant enough to warrant the addition of an inlet structure.

Addition of parking

The site plan was designed to accommodate the parking requirements of the uses of the renovated building. Currently, the building has eight street parking spots. The site plan features 20 regular-sized stalls with three ADA accessible stalls, one being van accessible. The amount of parking required was determined by Chapter 8C of the Statewide Urban Design and Specification Manual (SUDAS). From the total spaces provided, two ADA stalls are required. Three spots were designed to accommodate all members of the community as the building will have public functions. Parking dimensions are designed to follow Chapter 8B of SUDAS. Parking blocks are specified in sheet C103 to ensure that sidewalk paths always remain accessible. The east side of the site is specified to be 45-degree angle parking. See sheet C103 for a full layout.

Pavement selection

The sidewalk entrances and stairs are specified to be 5" thick with a 6" gravel sub-base underneath. SUDAS requires a minimum of 4" of pavement, the extra depth is to ensure heavier equipment can be operated on the pavement. Hot mix asphalt (HMA) is specified for the proposed parking areas. This choice is to match the existing streets. Asphalt is also a more costeffective option than concrete. See sheet C106 for details of pavement cross sections.

ADA accessibility

The proposed sidewalks are designed to the standards of accessible sidewalk requirements in Chapter 12A-2 of SUDAS. Sidewalk cross slopes are less than the maximum of 2% and are designed to be 1.5%. Sidewalks have a minimum width of 4', the designed sidewalks are to be 5' to give additional maneuverability to users. Longitudinal slopes shall not exceed 8.3%. The sidewalk along 5th Street is class A and designed to match the existing grade of the street. The site is designed to provide two ADA accessible access routes. One path runs towards the handicap parking stalls on the east side of the building. An additional path is specified to connect to the sidewalk of Center Street, matching the cross slope. See sheet C104 for a grading plan of the site.

Section VII: Engineer's Cost Estimate

The engineer's cost estimate was calculated by gathering building and site quantities while referencing the 2022 National Construction Estimator manual. As one can see in Appendix B, each item includes material, labor, and any associated machinery costs. The building material quantities were calculated from a material takeoff generated by Autodesk Revit. The cost of this project was divided into four phases of building construction and one phase of site improvements. The first phase of the project includes all necessary work that needs to be done to prepare the building for initial construction. Asbestos was discovered during a site evaluation; additionally, the building requires an extensive amount of cleaning and interior demolition before improvements can commence. The second phase of the project includes all the critical improvements needed to be made to the building. This includes all necessary work to improve the foundation wall underneath the North wall, as well as the improvement of the building's insulation and moisture protection. Phase two also includes all work needed to be done to prevent animals and insects from infiltrating the building. After phase two is completed the City of Lansing could elect to stop investing money into the building. The building will be in a condition that will maintain the health of the building for years to come. Phase three includes all necessary improvements of the building's structure to allow for the proposed use of a city hall and police station. This includes the transport, material, construction, and material cost of all structural members needed for phase three. Furthermore, phase four includes all the costs associated with the architectural and mechanical use of the building. These costs were calculated using lump sum estimates as well as square footage costs. The material quantities for the site improvements were calculated by areas, lengths, and quantities generated by Civil3D. The site improvements cost is inclusive of demolition, earthwork, landscaping, and paving.

In addition to these phases a \$300,000 contingency was also included in this estimate. A contingency of this percentage is common on structural renovation projects like this project. Additionally, for every phase in this project a 20% markup was added for contractor overhead and profit. The final construction cost of the project is estimated to be **\$2,862,000.00**.

Project Phasing and	Total Co	st Estimate
Phase 1	\$	63,000
Phase 2	\$	373,000.00
Phase 3	\$	743,000.00
Phase 4	\$	1,253,000.00
Site	\$	130,000.00
Contingency	\$	300,000.00
Total	\$	2,862,000.00

Table 1: Engineer's cost estimate for all phases of construction

For funding and tax incentives, OSS has a lot of options because of its historic distinction. The team has researched some grants and government funding that the City of Lansing can choose to use for the OSS renovation. These include but are not limited to: The Historic Preservation Fund, Save America's Treasures Grant, Kinsman Foundation Historic Preservation Grant, Semi Quincentennial Grant Program, and Housing Preservation Grants.

Appendix A: Bibliography

- *Design manual*. Iowa Statewide Urban Design and Specifications. (n.d.). Retrieved November 17, 2022, from https://iowasudas.org/manuals/design-manual/
- American Concrete Institute. (2020). Building code requirements for structural concrete (Aci 318-19): An Aci Standard ; commentary on building code requirements for structural concrete (Aci 318R-19).
- International Code Council, Inc. (2020). 2021 International Code Council Performance Code for buildings and facilities.
- American Institute of Steel Construction. (2017). Steel construction manual.
- Minimum Design Loads and Associated Criteria for Buildings and Other Structures: ASCE/SEI 7-16. American Society of Civil Engineers, 2017.
- Nucor Vulcraft. Vulcraft Steel Roof & Floor Deck Manual, 2018.
- Pray, R. (2022). National Construction Estimator. Craftsman Book Company.

Appendix B: Cost Estimation

Division	Section	Item	Unit	Amount	Material	Labor	Equipment	Total	Cost
1 - General Requirements					NOT APPI	ICABLE TO JOB			
2 - Existing Conditions									
	Gut Building								
		Commercial Building	SF	9000	\$	- \$ 4.33	- \$	\$ 4.33	\$ 38,970.00
	Clean Building								
		Commercial Building	LS	1	\$	- \$ -	\$ -	\$ 5,000.00	\$ 5,000.00
	Asbestos Abatement								
		Asbestos Survey	HR	4	\$	- \$ -	\$ -	\$ 91.80	\$ 367.20
		Sample Analysis	EA	10	\$	- \$ -	\$ -	\$ 56.10	\$ 561.00
		Report Writing	LS	1	\$	- \$ -	\$ -	\$ 200.00	\$ 200.00
	Asbestos Removal								
		Pipe Insulation	LF	100	\$	- \$ -	\$ -	\$ 72.30	\$ 7,230.00
2 - Total Exisiting Conditions Cost									\$ 52,328.20
Phase 1 Total						_			\$ 52,328,20
								Total Phases	\$ 2,025,325.03

Phase 1 Estimated Costs

Division	Section	Item	Unit	Amount	Mater	aterial Labor		r	Equipment		Total		tal
1 - General Requirements			Ν	NOT APPLIC	ABLE TO	O JOB			La constante da cons				
2 - Existing Conditions													
	Temporary Structural Support												
		Masonry Structure	SF	434	Ş	553	Ş	7.17	\$ 13.6	0 \$	20.77	Ş	9,014.18
	Foundation and Footing Removal		C 14	-	~		~	77.00	6	0.0	150 50	6	707.50
		Masonry Foundation	CY	5	\$		\$	77.00	\$ 82.5	0 \$	159.50	\$	797.50
2 - Total Exisiting Conditions Cost												\$	9,811.68
3 - Concrete													
	Excavation for Concrete Work												
		Trench 24 x 36 Depth	LF	58	\$	22	\$	1.44	\$ 0.6	6\$	2.10	\$	121.80
		Backfill	CY	9.7	\$	5 5 5	\$	2.74	\$ 1.2	4 \$	3.98	\$	38.47
	Formwork for Concrete								14				
		Footing, 1 use	LF	20	Ş	1.50	\$	0.98	Ş -	Ş	2.48	Ş	49.60
		Wall Forms, 1 use 4-6'	SFCA	120	\$	5.37	\$	6.83	\$ -	\$	12.20	\$	1,464.00
	Reinforcement	Internet and the	12		1	1.1202030		12122		-		1	100001000
		#5 Rebar	LF	280	Ş	0.98	Ş	0.59	Ş -	Ş	1.57	Ş	439.60
		Stirrups 6" x 24"	EA	15	Ş	3.45	\$	0.92	\$ -	Ş	4.37	Ş	65.55
	Concrete		-	2.6		22.00	~	22.50	<u>^</u>	~	456.50		105 74
		CIP Concrete Footing	CY	2.6	\$ 1	133.00	\$	23.50	\$ -	\$	156.50	\$	405.74
		CIP Concrete Wall	CY	3.9	5 1	133.00	\$	23.50	5 -	\$	156.50	\$	608.61
3 - Total Concrete Cost												\$	3,193.38
4 - Masonry									-				
	Stone Work												
		Limestone Replacement	CF	375	\$	42.10	\$	19.80	\$ 61.9	0\$	123.80	\$	46,425.00
	Repointing Masonry												
		Repointing Stone	SF	500	\$	50.08	\$	26.59	\$ -	\$	76.67	\$	38,335.00
	Masonry Reinforcing												
		Masonry Anchors, 1/4" x 18"	EA	100	\$	6.71	\$	10.40	\$ 17.1	1\$	34.22	\$	3,422.00
												-	
4 - Iotal Masonry Cost												Ş	88,182.00

Phase 2 Estimated Costs (Part 1)

5 - Metals											
6 - Wood and Composites											
	Structural Wood Inspection		10			<u> </u>		÷ 40,000,00		10,000,00	
			LS	15	1.00	\$ -	\$ =	\$ 10,000.00	\$	10,000.00	
6 - Total Wood and Composites Cost									¢	10,000,00	
o - Iotar wood and composites cost									Ş	10,000.00	
7 - Thermal and Moisture Protection											
	Vents, Louvers, and Screens										
		Bird Screens With Frame	SF	963 \$	1.93	\$ 1.72	\$ -	\$ 3.65	\$	3,513.13	
		Attic Vents With Louvers	EA	5\$	27.90	\$ 17.90	\$ 12	\$ 45.80	\$	229.00	
	Exterior Wall Insulation and Finish System										
		Adhesive Mixture, 2 coats	SF	8988 \$	1.05	\$ 1.10	\$ =	\$ 2.15	\$	19,324.20	
		Glass Fiber Mesh	SF	8988 \$	0.39	\$ 0.52	\$ -	\$ 0.91	\$	8,179.08	
		Insulation Board, 1" Thick	SF	8988 \$	0.65	\$ 1.10	\$ 4	\$ 1.75	\$	15,729.00	
		Textured Finish Coat	SF	8988 \$	0.83	\$ 1.98	\$ 	\$ 2.81	\$	25,256.28	
7 - Total Thermal and Moisture Protection Cost									\$	68,488.56	
8 - Openings								-			
	Hollow Metal Door and Frame										
		Total Cost	EA	37 \$	1,552.04	\$ 362.70	\$	\$ 1,914.74	\$	70,845.38	
		Hardware	EA	37 \$	100.00	\$ 50.00	\$.≂	\$ 150.00	\$	5,550.00	
	Windows										
		Custom Windows	EA	45 \$	973.00	\$ 56.10	\$ 14 M	\$ 1,029.10	\$	46,309.50	
		Misc. Hardware	EA	45 \$	50.00	\$ 25.00	\$ 5	\$ 75.00	\$	3,375.00	
		Glazing	SF	810 \$	2.23	\$ 2.79	\$ 	\$ 5.02	\$	4,066.20	
8 - Total Openings Cost									\$1	130,146.08	
									_		
Phase 2 Total									\$3	309,821.70	

Phase 2 Estimated Costs (Part 2)

Division	Section	Item	Unit	Amount	Material	Labor	Equipment	Tot	al	То	otal
1 - General Requirements				NOT APPLIC	CABLE TO JOB						
2 - Existing Conditions											
	Roof Demolition										
		Built-Up Roofing	SF	4500	\$-	\$ 1.21	\$ -	\$	1.21	\$	5,445.00
	Building Demolition										
		Interior Masonry Stcuture	SF	4500	\$ -	\$ 4.40	\$ 1.49	\$	5.89	\$	26,505.00
	Temporary Structural Support										
		Masonry Structure	SF	4500	\$ -	\$ 7.17	\$ 13.60	\$	20.77	\$	93,465.00
	Foundation and Footing Removal										
		Masonry Foundation	CY	11.9	\$ -	\$ 77.00) \$ 82.50	\$	159.50	\$	1,896.28
2 - Total Exisiting Conditions Cost										\$	127,311.28
3 - Concrete											
	Excavation for Concrete Founation Work										
		Trench 24 x 36 Depth	LF	263	\$ -	\$ 1.44	\$ 0.66	\$	2.10	\$	552.30
		Backfill	CY	43.8	\$ -	\$ 2.74	\$ 1.24	\$	3.98	\$	174.46
	Formwork for Foundation Footing										
		Footing, 1 use	LF	321	\$ 1.50	\$ 0.98	\$ -	\$	2.48	\$	796.08
		Wall Forms, 1 use 4-6'	SFCA	3852	\$ 5.37	\$ 6.83	\$ -	\$	12.20	\$	46,994.40
	Reinforcement										
		#5 Rebar	LF	4494	\$ 0.98	\$ 0.59	\$ -	\$	1.57	\$	7,055.58
		Stirrups 6" x 24"	EA	321	\$ 3.45	\$ 0.92	\$ -	\$	4.37	\$	1,402.77
	Concrete										
		CIP Concrete Footing	CY	17.8	\$ 133.00	\$ 23.50	- \$	\$	156.50	\$	2,790.92
		CIP Concrete Wall	CY	35.7	\$ 133.00	\$ 23.50) \$ -	\$	156.50	\$	5,581.83
	Elevated Slabs							-			
		CIP Concrete by Pump	CY	83.3	\$ 145.00	\$ 2.46	\$ 5.69	\$	153.15	\$	12,762.50
		Reinforcement, #4 Rebar	LF	1000	\$ 0.59	\$ 0.39	\$ -	\$	0.98	\$	980.00
	Stairs										
		Stairs Formwork	SFCA	136	\$ 3.55	\$ 5.85	\$ -	\$	9.40	\$	1,278.40
		CIP Concrete by Pump	CY	71.3	\$ 145.00	\$ 49.60	\$ 28.60	\$	223.20	\$	15,921.60
	Column Footings							-			
		Hand Dug Excavations	CY	58.3	\$ -	\$ 60.00) \$ -	\$	60.00	\$	3,500.00
		Formwork	SFCA	1575	\$ 4.61	\$ 4.39	\$ 9.00	\$	18.00	\$	28,350.00
		CIP Concrete Wheelbarrow	CY	52.5	\$ 145.00	\$ 29.20	\$ 10.10	\$	184.30	\$	9,675.75
		#5 Rebar	LF	120	\$ 0.98	\$ 0.59	\$ -	\$	1.57	\$	188.40
		Stirrups 6" x 24"	EA	120	\$ 3.45	\$ 0.92	\$ -	\$	4.37	\$	524.40
			_					-			
3 - Total Concrete Cost								_		Ş	138,529.39

Phase 3 Estimated Costs (Part 1)

4 - Masonry									
5 - Metals									
	Floor Deck System								
		18 Gauge Decking	SF	6000	\$ 2.40	\$ 0.71	\$ 0.2	3 \$ 3.34	\$ 20,040.00
		Welded Wire Mesh	SF	6000	\$ 0.29	\$ 0.26	\$ -	\$ 0.55	\$ 3,300.00
	Girder/Beam	L6x6x3/4	LF	640	28.7	9.184			
		W8X18	LF	107	18	0.963			
		W10x22	LF	107	22	1.177			
		W12x26	LF	367	26	4.771			
		W16x26	LF	534	26	6.942			
		W18X35	LF	85	35	1.4875			
		W21X44	LF	346	44	7.612			
		W21X68	LF	96	68	3.264			
		W16X31	LF	253	31	3.9215			
		W16X36	LF	383	36	6.894			
		W18X35	LF	10	35	0.175			
		TOTAL WEIGHT GIRDER	TON	46.4	\$ 3,430.00	\$ 681.00	\$ 370.0	0 \$ 4,481.00	\$ 207,878.07
	Column								
		HSS6x6x5/16	LF	85	23.34	0.99195			
		HSS7X7X5/16	LF	142	27.59	1.95889			
		HSS8X8X1/4	I F	85	25.82	1.09735			
		HSS5X5X1/4	LF	155	15.62	1.21055			
		HSS7X7X1/4	LF	85	22.42	0.95285			
		HSS4X4X5/16	LF	28	14.83	0.20762			
		HSS9X9X1/4	LF	29	29.23	0.423835			
		TOTAL COLUMN WEIGHT	TON	6.8	\$ 3,280.00	\$ 619.00	\$ 336.0	0 \$ 4,235.00	\$ 28,980.30
	Truss System								
		Cold Roll Steel Trusses	LS	1	\$ -	\$ -	\$ -	\$ 80,000.00	\$ 80,000.00
5 - Total Metals Cost									\$ 340,198.37
									and the second
6 - Wood and Composites									
7 - Thermal and Moisture Protection									
	Fireproofing								
		Floor and Roof Fireproofing	LF	2897	\$ 3.00	\$ 1.50	\$ -	\$ 4.50	\$ 13,036.50
7 - Total Thermal and Moisture Protection Cost			_						\$ 13,036,50
									· 10,000.00
Phase 3 Total									\$ 619,075.53

Phase 3 Estimated Costs (Part 2)

Division	Section	Item	Unit	Amount	Ma	terial	Labor	Equipment		Total	Tot	al
1 - General Requirements				NC	OT AF	PPLICABLE	TO JOB					
9 - Finishes												
	Flooring											
	First Floor	Resilient Flooring	SF	4500	\$	1.65	\$ 0.75	\$	-	\$ 2.40	\$	10,800.00
	Second Floor	Wood Flooring	SF	4500	\$	6.15	\$ 5.10	\$		\$ 11.25	\$	50,625.00
	Ceiling											
	First Floor	Acoustical Ceiling	SF	4500	\$	1.04	\$ 0.48	\$	-	\$ 1.52	\$	6,840.00
	Second Floor	Acousticcal Ceiling	SF	4500	\$	1.78	\$ 0.57	\$	-	\$ 2.35	\$	10,575.00
	Wall Coverings											
		Painting	SF	32060	\$	1.62	\$ 1.08	\$	-	\$ 2.70	\$	86,562.00
	Partition Wall (14')											
1	First Floor		SF	5838	\$	0.43	\$ 0.37	\$	-	\$ 0.80	\$	4,670.40
	Second Floor		SF	5698	\$	0.43	\$ 0.37	\$		\$ 0.80	\$	4,558.40
9 - Total Finishes Cost											\$	174,630.80
10 - Specialties								άř.		i di		
	Fire Extiniguisher								_			
		Fire Extinguisher and Cabinet	EA	10	\$	250.00	\$ 100.00)		\$ 350.00	\$	3,500.00
	Bathroom											
		Toilet	EA	7	\$	425.00	\$ 138.00	\$	8	\$ 563.00	\$	3,941.00
		ADA	EA	21	Ś	107.00	\$ 100.00	5	-	\$ 207.00	\$	4,347.00
		Sink	EA	8	\$	425.00	\$ 138.00	5	8	\$ 563.00	\$	4,504.00
		Toilet Paper	EA	8	\$	68.70	\$ 104.00	5	-	\$ 172.70	\$	1,381.60
		Hand Towel	EA	8	\$	284.00	\$ 100.00	\$	8	\$ 384.00	\$	3,072.00
		Soap	EA	8	\$	51.40	\$ 100.00	5		\$ 151.40	\$	1,211.20
		Mirror	EA	7	\$	137.00	\$ 100.00	\$	8	\$ 237.00	\$	1,659.00
		Waste Receptacles	EA	8	\$	223.00	\$ 100.00	\$	-	\$ 323.00	\$	2,584.00
	Identifying Devices	45.4										
		Entire Project	LS	1	\$	8	\$ -	\$	-	\$ 10,000.00	\$	10,000.00
		0										
10 - Total Specialites Cost											Ś	36,199,80
											-	
11 - Equipment				-				h:				
	Kitchen								_			
		Kithen Equipment	LS	1	Ś	<u>12</u>	Ś.	Ś	8	\$ 23,505,00	Ś	23,505,00
				1								-,
11 - Total Equipment Cost											Ś	23,505.00

Phase 4 Estimated Costs (Part 1)

12 - Furnishings												
	Desks											
		Desk	EA	10	\$ 400.00	\$ 100.00	-		\$ 500	00	\$	5,000.00
		Coucil Desk	EA	1	\$ 5,000.00	\$ 1,000.00	\$	-	\$ 6,000.	00	\$	6,000.00
		Community Table	EA	4	\$ 400.00	\$ 100.00	\$	2	\$ 500	00	\$	2,000.00
	Chairs											
		Chair	EA	75	\$ 156.00	\$ 20.40	\$	¥	\$ 176	40	\$	13,230.00
	Cabinetry											
		Counter Top	LF	60	\$ 36.10	\$ 8.90	\$	2	\$ 45.	00	\$	2,700.00
		Cabinents	LF	60	\$ 369.00	\$ 29.90	\$	5	\$ 398	90	\$	23,934.00
12 - Total Furnishings Cost											\$	52,864.00
22 - Plumbing												
	Plumbing											
		Entire Project	SF	9000	\$ 6.00	\$ 3.00	\$	5	\$ 9.	00	\$	81,000.00
22 - Total Plumbing Cost										-	Ś	81,000.00
											-	
23 - HVAC						- 	101					
	HVAC											
		Entire Project	SF	9000	\$ 40.00	\$ 20.00	\$	×	\$ 60.	00	\$ 5	40,000.00
23 - Total HVAC Cost											\$5	40,000.00
26 - Electrical												
	Electrical											
		Entire Project	SF	9000	\$ 8.00	\$ 4.00	\$	5	\$ 12.	00	\$ 1	.08,000.00
26 - Total Electricaal Cost											\$ 1	.08,000.00
27 - Communications			<i></i>				194					
	Communications											
		Entire Project	SF	9000	\$ 2.10	\$ 1.00	\$	2	\$ 3.	10	\$	27,900.00
26 - Total Communications Cost											\$	27,900.00
Phase 4 Total										-	\$10	144 099 60
rilase + Iutal											φ 1,U	

Phase 4 Estimated Costs (Part 2)

Section	Item	Unit	Quantity	Material	Labor	Equipment	Total	Cost
				1.000				
	6" x 24" Straight vertical curb	LF	125.00	\$ 13.10	\$ 6.03	\$ 1.84	\$ 20.97	\$ 2,621.25
Curbs	6" x 24" Curved vertical curb	LF	20.00	\$ 13.20	\$ 8.77	\$ 2.68	\$ 24.65	\$ 493.00
cu.bb	6" x 24" Straight rolled curb	LF	112.00	\$ 16.50	\$ 8.23	\$ 2.52	\$ 27.25	\$ 3,052.00
	6" x 24" Curved rolled curb	LF	5.00	\$ 16.70	\$ 11.60	\$ 3.55	\$ 31.85	\$ 159.25
Bollards	Pipe bollards, 6" diameter	Ea	3.00	\$ 183.00	\$ 37.30	\$ 13.20	\$ 233.50	\$ 700.50
	Parking lot spaces, single line	Ea	15.00	\$ 3.39	\$ 6.18	\$ 1.04	\$ 10.61	\$ 159.15
Pavement Striping and	Handicapped symbol, one color	Ea	3.00	\$ 7.59	\$ 13.40	\$ 2.25	\$ 23.24	\$ 69.72
Marking	Single line striping, 4" wide solid	LF	30.00	\$ 0.14	\$ 0.27	\$ 0.05	\$ 0.46	\$ 13.80
-	Tactile warning	Ea	4.00	\$ -	\$ -	\$ -	\$ 300.00	\$ 1,200.00
Traffic Signs	Handicapped parking, 12" x 18"	Ea	3.00	\$ 108.00	\$ 52.10	\$-	\$ 160.10	\$ 480.30
Parking blocks	Parking blocks, 6' x 4" x 6"	Ea	15.00	\$ 99.00	\$ 31.20	\$ -	\$ 130.20	\$ 1,953.00
Seeding and planting	Hydroseeding, 10,001 SF to 1 Acre job	MSF	6.20	\$ -	\$ -	\$-	\$ 150.00	\$ 930.00
	Handicapped access ramp, railing both sides, 5' wide	LF	29.00	\$ 456.00	\$ 237.60	\$ 2.59	\$ 696.19	\$ 20,189.57
	Stairs, Direct from chute	Ea	4.00	\$ -	\$ -	\$ -	\$ 1,150.00	\$ 4,600.00
Concrete work	Sidewalk, 5" thick	SF	1,569.00	\$ -	\$ -	\$ -	\$ 2.72	\$ 4,267.68
	Sidewalk formwork, 3 uses	SF	1,569.00	\$ 1.80	\$ 4.06	\$ -	\$ 5.86	\$ 9,194.34
-	Subbase and aggregate, 6" thick	SF	58.11	\$ 7.46	\$ 1.51	\$ 1.38	\$ 10.35	\$ 601.45
Asphalt Work	Parking lot paving	SF	2,767.00	\$ 4.56	\$ 1.21	\$ 1.14	\$ 6.91	\$ 19,119.97
	Limestone, large blocks	CF	515.00	\$ 42.10	\$ 19.80	\$ -	\$ 61.90	\$ 31,878.50
Retaining wall	Underdrain, 6" Corrugated Polyethylene	LF	103.00	\$ 2.18	\$ 0.58	\$ -	\$ 2.76	\$ 284.28
	Aluminum railing	LF	53.00	\$ 44.30	\$ 12.50	\$ -	\$ 56.80	\$ 3,010.40
	Site grading	Ea	1.00	\$ -	\$ -	\$ -	\$ 5,000.00	\$ 5,000.00
Site survey	Topographic survey	Ea.	1.00	\$ -	\$ -	\$ -	\$ 3,000.00	\$ 3,000.00
								Total
								\$112,978.16

Sitework Improvements Estimated Costs

ltem	Unit	Quantity	Mate	erial	Lab	or	Equ	ipmen	Tot	tal	Co	st
Remove existing stair	Ea	1	\$	19	\$	12	\$	12	\$	800.00	\$	800.00
Sawcut, 5" deep, remove pavement full depth	LF	251	\$	87	\$	87	\$	1	\$	2.16	\$	542.16
Sidewalk removal, 5" thick	SF	698.75	\$	02	\$	2,19	\$	1.59	\$	3.78	\$	2,641.28
Curb removal	LF	16	\$	87	\$	4.87	\$	3.54	\$	8.41	\$	134.56
Wooden ramp removal	Ea	1	\$	(2	\$	(4	\$	1/2	\$	500.00	\$	500.00
											To	tal
											\$	4,618.00

Sitework Demolition Estimated Costs

Project Phasing and Total Cost Estimate								
Phase 1	Phase 2	Phase 3	Phase 4	Site	Contingency	Total		
\$ 63,000.00	\$ 373,000.00	\$ 743,000.00	\$ 1,253,000.00	\$ 130,000.00	\$ 300,000.00	\$ 2,862,000.00		

Cost Summary

<u>Ta</u>	ble c	of co	onte	nts:	<u> </u>														
	Dea	d Lo	bad	Cal	cula	atior	າຣ	 	3										
	Sno	w Lo	bad	Ca	lcul	atior	าร	 	5										
	Sno	w Lo	bad	Ca	lcul	atior	าร	 	6										
	Win	d Lc	ad	Cal	cula	atior	າຣ	 	7										

Snow L	oads							
<u>Defir</u>	ne Variables							
	Define all known variables to be used in design calculations							
	p _g =58 psf	Lansing, IA, from Figure 7.2-1 in Chp. 4						
	C _e = 1.0	Based on partially exposed assumption and exposure category C from Table 7.3-1 in Chp. 4						
	$C_t = 1.1$	Cold ventilated roof, table 7.3-2						
	<i>C</i> _s = 1.0	Ct is 1 and slope is 6 on 12, not smooth.						
	/ _s = 1.5	Risk factor of 2 table 1.5-2 Chp. 1						

Balanced Snow Load Design Calculations

$$(0.7 \cdot C_e \cdot C_t \cdot I_s \cdot p_g)$$

S_b=ceil \ |-psf=67 psf
\ psf)

Unbalanced Snow Load Design Calculations

Define all kno	wn variables to be	used in desig	gn calculations	
<i>L</i> = 100 <i>psf</i>	This was found i - all other resider corridors serving	n chp. 4 table itial occupand them.	4.3-1 under the residential cies - private rooms and	
L _r =20 psf	This was found i ordinary flat, pitc	n chp. 4 table hed, and curv	• 4.3-1 under the roofs - ved roofs.	

Velocity pressure exposu	re		
Because Exposure C			
0 9.0			
$2_g = 900 H$			
$K_z = 2.01 \cdot (15 ft)$	= 0.872		
Velocity Pressure			
(0.00256 psf) $q_z = ($	$K_z \bullet K_{zt} \bullet K_d \bullet K_e \bullet V^2 = 27.3$	31 <i>psf</i>	
North Wind Pressure	$B = 82 \text{ ft} \qquad L = 86 \text{ f}$	t	
^L B			
$C_{\rho w} = 0.8$ Windwa $C_{\rho l} = -0.5$ Leewa $C_{\rho s} = -0.7$ Sidewa	ard Pressure rd Pressure all Pressure		
Design Wind Pressure for	Walls		
Wall 1 [.]	W	all 7 [.]	
$D_{\text{rest}} = \alpha_{\text{rest}} \cdot G \cdot C_{\text{rest}} - \alpha_{\text{rest}}$	• GC _{sin} = 13 655 nsf	$D_{\mathrm{res}} = d_{\mathrm{r}} \bullet G \bullet C_{\mathrm{res}} = d_{\mathrm{r}} \bullet G \bullet C_{\mathrm{res}} = 0$	$q_{-} \cdot GC_{nin} = -16523$ nsf
$p_{2w1p} = q_2 \cdot G \cdot C_{pw} - q_2$	$_{2} \bullet GC_{\text{pip}} = 23.487 \text{ psf}$	$p_{2w3p} = q_2 \bullet G \bullet C_{pl} -$	$q_2 \circ GC_{pip} = -6.691 \text{ nsf}$
Wall 2:	W	all 8:	
$p_{zw2p} = q_z \cdot G \cdot C_{ps} - q_z$	• GC _{pip} = - 21.166 psf	$p_{zw2p} = q_z \cdot G \cdot C_{ps}$ -	$q_z \cdot GC_{pip} = -21.166 \text{ psf}$
$p_{zw2n} = q_z \cdot G \cdot C_{ps} - q_z$ Wall 3:	• <i>GC_{pin}</i> = - 11.334 psf W	$p_{zw2n} = q_z \cdot G \cdot C_{ps}$ - all 9:	$q_z \cdot GC_{pin} = -11.334 \ psf$
$p_{zw1p} = q_z \cdot G \cdot C_{pw} - q_z$	z• GC _{pip} = 13.655 psf	$p_{zw3p} = q_z \bullet G \bullet C_{pl} -$	$q_z \cdot GC_{pip} = -16.523 \ psf$
$p_{zw1n} = q_z \cdot G \cdot C_{pw} - q$	z•GC _{pin} = 23.487 psf	$p_{zw3n} = q_z \cdot G \cdot C_{pl} -$	<i>qz</i> • <i>GC</i> _{pin} = - 6.691 <i>psf</i>
Wall 4:	W	all 10:	
$p_{zw2p} = q_z \cdot G \cdot C_{ps} - q_z$	• <i>GC</i> _{pip} = - 21.166 psf	$p_{zw2p} = q_z \cdot G \cdot C_{ps} -$	$q_z \cdot GC_{pip} = -21.166 \text{ psf}$
$p_{zw2n} = q_z \bullet G \bullet C_{ps} - q_z$ Wall 5:	• <i>GC_{pin}</i> = - 11.334 psf W	$p_{zw2n} = q_z \bullet G \bullet C_{ps} -$ all 11:	$q_z \bullet GC_{pin} = -11.334 \text{ psf}$
$p_{zw3p} = q_z \cdot G \cdot C_{pl} - q_z$	• GC _{pip} = - 16.523 psf	$p_{zw3p} = q_z \cdot G \cdot C_{pl} -$	$q_z \cdot GC_{pip} = -16.523 \ psf$
$p_{zw3n} = q_z \bullet G \bullet C_{pl} - q_z$ Wall 6:	• <i>GC_{pin}</i> = - 6.691 <i>psf</i> W	$p_{zw3n} = q_z \bullet G \bullet C_{pl} -$ all 12:	$q_z \bullet GC_{pin} = - 6.691 \ psf$
$p_{zw2p} = q_z \cdot G \cdot C_{ps} - q_z$	• GC _{pip} = - 21.166 psf	$p_{zw2p} = q_z \cdot G \cdot C_{ps} -$	$q_z \cdot GC_{pip} = -21.166 \ psf$
$p_{zw2n} = q_z \cdot G \cdot C_{ps} - q_z$	• GC _{pin} = - 11.334 psf	$p_{zw2n} = q_z \cdot G \cdot C_{ps} -$	$q_z \cdot GC_{pin} = -11.334 \ psf$

Lenaths of Roofs:

University of Iowa Civil Engineering Senior Design Old Stone School City of Lansing, IA Appendix C: Structural Load Calculations

deg

	$L_1 = 53 ft$	$L_2 = 52 ft$	<i>L</i> ₃=53 ft	L ₄ =33 ft
	L ₅ =30 ft	L ₆ =59 ft	L ₇ =14 ft	L ₈ =14 ft
R	oof Pressure Coeff Normal to Ridge (Roof 1,3,5,6)	icients		
	h L ₁ = 0.594	h = 0.594 L ₃	$\frac{h}{L_6} = 0.5$	534 0=25
	$C_{pwn1} = -0.3$ $C_{pwn2} = 0.2$	C _{pln1} C _{pln2}	= 0 =- 0.6	
	Parallel to Ridge (Roof 2,4,7,8)			

$C_{plp1} = -0.18$
$C_{plp2} = C_{plp1} = -0.18$
$C_{plp3} = C_{plp1} = -0.18$
$C_{plp4} = C_{plp1} = -0.18$

Design Wind Pressure for Roof

Roof 1: (normal to ridge, windward)

 $p_{zw1} = q_z \cdot G \cdot C_{pwn1} - q_z \cdot GC_{pip} = -11.88 \text{ psf}$ $p_{zw3} = q_z \cdot G \cdot C_{pwn1} - q_z \cdot GC_{pin} = -2.048 \text{ psf}$

 $p_{zw2} = q_z \cdot G \cdot C_{pwn2} - q_z \cdot GC_{pip} = -0.273 \text{ psf}$ $p_{zw4} = q_z \cdot G \cdot C_{pwn2} - q_z \cdot GC_{pin} = 9.559 \text{ psf}$

Roof 2: (parallel to ridge, windward)

 $p_{zw1} = q_z \cdot G \cdot C_{pwp1} - q_z \cdot GC_{pip} = -25.808 \text{ psf} \quad p_{zw5} = q_z \cdot G \cdot C_{pwp1} - q_z \cdot GC_{pin} = -15.977 \text{ psf}$

 $p_{zw2} = q_z \cdot G \cdot C_{pwp2} - q_z \cdot GC_{pip} = -25.808 \text{ psf} \quad p_{zw6} = q_z \cdot G \cdot C_{pwp2} - q_z \cdot GC_{pin} = -15.977 \text{ psf}$

$$p_{zw3} = q_z \cdot G \cdot C_{pwp3} - q_z \cdot GC_{pip} = -16.523 \text{ psf} \quad p_{zw7} = q_z \cdot G \cdot C_{pwp3} - q_z \cdot GC_{pin} = -6.691 \text{ psf}$$

 $p_{zw4} = q_z \cdot G \cdot C_{pwp4} - q_z \cdot GC_{pip} = -11.88 \text{ psf}$ $p_{zw8} = q_z \cdot G \cdot C_{pwp4} - q_z \cdot GC_{pin} = -2.048 \text{ psf}$
CEE:4850

CEE:4850

Roof 4: (parallel to ridge, leeward)

$$p_{zl1} = q_z \cdot G \cdot C_{plp1} - q_z \cdot GC_{pip} = -9.094 \text{ psf}$$

 $p_{zl2} = q_z \cdot G \cdot C_{plp2} - q_z \cdot GC_{pip} = -9.094 \text{ psf}$
 $p_{zl2} = q_z \cdot G \cdot C_{plp2} - q_z \cdot GC_{pip} = -9.094 \text{ psf}$
 $p_{zl3} = q_z \cdot G \cdot C_{plp3} - q_z \cdot GC_{pip} = -9.094 \text{ psf}$
 $p_{zl3} = q_z \cdot G \cdot C_{plp3} - q_z \cdot GC_{pip} = -9.094 \text{ psf}$
 $p_{zl4} = q_z \cdot G \cdot C_{plp4} - q_z \cdot GC_{pip} = -9.094 \text{ psf}$
 $p_{zl8} = q_z \cdot G \cdot C_{plp4} - q_z \cdot GC_{pin} = 0.737 \text{ psf}$

Roof 5: (normal to ridge, windward)

Note: Since Roof 5 has a significant difference in length roof pressures will be used for this roof

h = 1.05 $C_{pwn15} = -0.5$ $C_{pln1} = 0$ L_5 $C_{pwn25} = 0$ $C_{pln2} = -0.6$

$$p_{zw1} = q_z \cdot G \cdot C_{pwn15} - q_z \cdot GC_{pip} = -16.523 \text{ psf } p_{zw3} = q_z \cdot G \cdot C_{pwn15} - q_z \cdot GC_{pin} = -6.691 \text{ psf}$$

$$p_{zw2} = q_z \cdot G \cdot C_{pwn25} - q_z \cdot GC_{pip} = -4.916 \text{ psf} \quad p_{zw4} = q_z \cdot G \cdot C_{pwn25} - q_z \cdot GC_{pin} = 4.916 \text{ psf}$$

Roof 6: (normal to ridge, leeward)

$$p_{zl1} = q_z \cdot G \cdot C_{pln1} - q_z \cdot GC_{pip} = -4.916 \text{ psf}$$
 $p_{zl3} = q_z \cdot G \cdot C_{pln1} - q_z \cdot GC_{pin} = 4.916 \text{ psf}$

$$p_{zl2} = q_z \cdot G \cdot C_{pln2} - q_z \cdot G C_{pip} = -18.844 \text{ psf}$$
 $p_{zl4} = q_z \cdot G \cdot C_{pln2} - q_z \cdot G C_{pin} = -9.012 \text{ psf}$

Roof 7: (parallel to ridge, leeward)

$$p_{zl1} = q_z \cdot G \cdot C_{plp1} - q_z \cdot GC_{pip} = -9.094 \text{ psf}$$
 $p_{zl5} = q_z \cdot G \cdot C_{plp1} - q_z \cdot GC_{pin} = 0.737 \text{ psf}$
 $p_{zl2} = q_z \cdot G \cdot C_{plp2} - q_z \cdot GC_{pip} = -9.094 \text{ psf}$ $p_{zl6} = q_z \cdot G \cdot C_{plp2} - q_z \cdot GC_{pin} = 0.737 \text{ psf}$
 $p_{zl3} = q_z \cdot G \cdot C_{plp3} - q_z \cdot GC_{pip} = -9.094 \text{ psf}$ $p_{zl7} = q_z \cdot G \cdot C_{plp3} - q_z \cdot GC_{pin} = 0.737 \text{ psf}$
 $p_{zl4} = q_z \cdot G \cdot C_{plp4} - q_z \cdot GC_{pip} = -9.094 \text{ psf}$ $p_{zl8} = q_z \cdot G \cdot C_{plp4} - q_z \cdot GC_{pin} = 0.737 \text{ psf}$

Roof 8: (parallel to ridge, leeward) $p_{zl1} = q_z \cdot G \cdot C_{plp1} - q_z \cdot GC_{pip} = -9.094 \text{ psf}$ $p_{zl5} = q_z \cdot G \cdot C_{plp1} - q_z \cdot GC_{pin} = 0.737 \text{ psf}$

CEE:4850

$L = 1.049$ B $C_{pw} = 0.8 \text{Windw}$ $C_{pl} = -0.5 \text{Leews}$ $C_{ps} = -0.7 \text{Sidew}$ Design Wind Pressure for Wall 1: $p_{zw1p} = q_z \cdot G \cdot C_{pl} - q_p$ $p_{zw1n} = q_z \cdot G \cdot C_{pl} - q_p$	ward Pressu ard Pressur vall Pressur or Walls $q_z \cdot GC_{pip} = -$ $q_z \cdot GC_{pin} = -$	re e 16.523 6.691	V psf	Vall 7:						
$L = 1.049$ B $C_{pw} = 0.8 \text{Windw}$ $C_{pl} = -0.5 \text{Leews}$ $C_{ps} = -0.7 \text{Sidew}$ Design Wind Pressure for Wall 1: $p_{zw1p} = q_z \cdot G \cdot C_{pl} - q_p$ $p_{zw1n} = q_z \cdot G \cdot C_{pl} - q_p$	ward Pressu ard Pressur vall Pressur or Walls $q_z \cdot GC_{pip} = -$ $q_z \cdot GC_{pin} = -$	re e 16.523 6.691	V psf	Vall 7:						
$C_{pw} = 0.8 \text{Windw}$ $C_{pl} = -0.5 \text{Leew}$ $C_{ps} = -0.7 \text{Sidew}$ Design Wind Pressure for Wall 1: $p_{zw1p} = q_z \cdot G \cdot C_{pl} - q_p$ $p_{zw1n} = q_z \cdot G \cdot C_{pl} - q_p$	ward Pressu ard Pressur vall Pressur or Walls $q_z \cdot GC_{pip} = -$ $q_z \cdot GC_{pin} = -$	re e 16.523 6.691	V psf	Vall 7:						
$C_{pw} = 0.8 \text{Windw}$ $C_{pl} = -0.5 \text{Leew}$ $C_{ps} = -0.7 \text{Sidew}$ Design Wind Pressure for Wall 1: $p_{zw1p} = q_z \cdot G \cdot C_{pl} - q_p$ $p_{zw1n} = q_z \cdot G \cdot C_{pl} - q_p$	ward Pressur ard Pressur vall Pressur or Walls $q_z \cdot GC_{pip} = -$ $q_z \cdot GC_{pin} = -$	re e 16.523 6.691	V psf	Vall 7:						
$C_{pl} = -0.5$ Leew $C_{ps} = -0.7$ Sidew Design Wind Pressure for Wall 1: $p_{zw1p} = q_z \cdot G \cdot C_{pl} - q_p$ $p_{zw1n} = q_z \cdot G \cdot C_{pl} - q_p$	ard Pressur vall Pressur or Walls $q_z \cdot GC_{pip} = -$ $q_z \cdot GC_{pin} = -$	e 16.523 6.691 j	∨ psf	Vall 7:						
$C_{ps} = -0.7$ Sidew Design Wind Pressure for Wall 1: $p_{zw1p} = q_z \cdot G \cdot C_{pl} - q_p$ $p_{zw1p} = q_z \cdot G \cdot C_{pl} - q_p$	or Walls $q_z \cdot GC_{pip} = -$ $q_z \cdot GC_{pin} = -$	e 16.523 6.691 j	∨ psf	Vall 7:						
Design Wind Pressure for Wall 1: $p_{zw1p} = q_z \cdot G \cdot C_{pl} - q_p$ $p_{zw1n} = q_z \cdot G \cdot C_{pl} - q_p$	or Walls $q_z \cdot GC_{pip} = -$ $q_z \cdot GC_{pin} = -$	16.523 6.691 J	∨ psf	Vall 7:						
Wall 1: $p_{zw1p} = q_z \cdot G \cdot C_{pl} - q_p$ $p_{zw1n} = q_z \cdot G \cdot C_{pl} - q_p$	$q_z \cdot GC_{pip} = -$ $q_z \cdot GC_{pin} = -$	16.523 6.691 j	∨ psf	Vall 7:						
$p_{zw1p} = q_z \cdot G \cdot C_{pl} - q_p$ $p_{zw1p} = q_z \cdot G \cdot C_{pl} - q_p$	$q_z \cdot GC_{pip} = -$ $q_z \cdot GC_{pin} = -$	16.523 6.691 j	psf							
$p_{zw1n} = q_z \cdot G \cdot C_{pl} - q_z$	$q_z \bullet GC_{pin} = -$	6.691 🖡		p _{zw3p}	$= q_z \cdot ($	G•C _{pw}	- qz•	$GC_{pip} =$	13.655	psf
			osf	p _{zw3n}	$= q_z \cdot ($	G•C _{pw}	$-q_z \cdot q_z$	GC _{pin} =	23.487	psf
Wall 2:	~		V	Vall 8:						
$p_{zw2p} = q_z \cdot G \cdot C_{ps} - c$	$q_z \bullet G C_{pip} = -$	21.166	psf	p _{zw2p}	= q _z • (G • C _{ps} -	$q_z \bullet C$	$GC_{pip} =$	- 21.166	່ <mark>psf</mark>
$p_{zw2n} = q_z \cdot G \cdot C_{ps} - c$ Wall 3:	$q_z \bullet GC_{pin} = -$	11.334	psf V	<i>p_{zw2n}</i> Vall 9:	= q _z • (G•C _{ps} -	$q_z \bullet 0$	GC _{pin} =	- 11.334	l pst
$p_{zw1p} = q_z \bullet G \bullet C_{pl} - q_z \bullet G \bullet C_{pl}$	$q_z \bullet GC_{pip} = -$	16.523	psf	р _{zw3p}	= q _z • (G • C _{pw}	- q _z •	$GC_{pip} =$	13.655	psf
$p_{zw1n} = q_z \cdot G \cdot C_{pl} - q_{r}$ Wall 4:	$q_z \bullet GC_{pin} = -$	6.691	osf V	p _{zw3n} Vall 10:	= q _z • (G•C _{pw}	- q _z •	GC _{pin} =	23.487	psf
$p_{zw2p} = q_z \cdot G \cdot C_{ps} - c$	$q_z \bullet GC_{pip} = -$	21.166	psf	p _{zw2p}	= q _z • (G • C _{ps} -	$q_z \bullet C$	$GC_{pip} =$	- 21.166	່ງ <mark>psf</mark>
$p_{zw2n} = q_z \cdot G \cdot C_{ps} - G$ Wall 5:	$q_z \bullet GC_{pin} = -$	11.334	psf V	p _{zw2n} Vall 11:	= q _z • (G • C _{ps} -	$q_z \bullet C$	GC _{pin} =	- 11.334	l pst
$p_{zw3p} = q_z \cdot G \cdot C_{pw} -$	$q_z \cdot GC_{pip} =$	13.655	osf	р _{zw3p}	$=q_z \cdot 0$	G•C _{pw}	$-q_z \cdot q_z$	GC _{pip} =	13.655	psf
$p_{zw3n} = q_z \cdot G \cdot C_{pw} -$	$q_z \bullet GC_{pin} = 2$	23.487	psf	p _{zw3n}	= q _z • (G • C _{pw}	$-q_z \cdot$	GC _{pin} =	23.487	psf
Wall 6:			V	Vall 12:						
$p_{zw2p} = q_z \cdot G \cdot C_{ps} - c$	$q_z \bullet GC_{pip} = -$	21.166	psf	p _{zw2p}	$= q_z \cdot ($	$G \bullet C_{ps}$ -	$q_z \bullet 0$	$GC_{pip} =$	- 21.166	່ psf
$p_{zw2n} = q_z \bullet G \bullet C_{ps} - c$	$q_z \bullet GC_{pin} = -$	11.334	psf	p _{zw2n}	= q _z • (G • C _{ps} -	$q_z \bullet C$	GC _{pin} =	- 11.334	⊧ pst
Lengths of Roofs:										
$L_1 = 53 ft$ L_2	=52 ft	L₃=53	ft	L4=3	33 ft					
$L_5=30 \ ft$ L_6	= 59 ft	L7=14	ft	$L_8 = 2$	14 ft					
Normal to Pideo	115									
(Roof 1,3,5,6)										
h = 0.594	h = 0.594	ŀ	n = 0	534	0.0					
L1	L ₂	/	0.	007	v=2	o aeg				

 $C_{pwn1} = -0.3$

 $C_{pln1} = 0$ $C_{pln2} = -0.6$

Parallel to Ridge (Roof 2,4,7,8)				
$C_{pwp1} = -0.9$ $C_{pwp2} = -0.9$ $C_{pwp3} = -0.5$ $C_{pwp4} = -0.3$	$C_{plp1} = -0.18$ $C_{plp2} = C_{plp1} = -0.12$ $C_{plp3} = C_{plp1} = -0.12$ $C_{plp4} = C_{plp1} = -0.12$	8 8 8		
Design Wind Pressure for Ro Roof 1: (normal to ridge, leew $p_{zl1} = q_z \cdot G \cdot C_{pln1} - q_z \cdot GC$	oof vard) C _{pip} = - 4.916 psf	$p_{zl3} = q_z \cdot G \cdot C_{pln1}$ -	$q_z \bullet GC_{pin} = 4.916 \ psf$	
$p_{zl2} = q_z \cdot G \cdot C_{pln2} - q_z \cdot GC$	C _{pip} = - 18.844 psf	$p_{zl4} = q_z \bullet G \bullet C_{pln2} -$	qz•GC _{pin} = - 9.012 ps	f
Roof 2: (parallel to ridge, leev $p_{zl1} = q_z \cdot G \cdot C_{plp1} - q_z \cdot GC$	ward) C _{pip} = - 9.094 psf	$p_{zl5} = q_z \cdot G \cdot C_{plp1}$ -	<i>qz</i> •GC _{pin} = 0.737 psf	
$p_{z 2} = q_z \cdot G \cdot C_{p p2} - q_z \cdot GC$	C _{pip} = - 9.094 psf	$p_{zl6} = q_z \bullet G \bullet C_{plp2} -$	$q_z \bullet GC_{pin} = 0.737 \ psf$	
$p_{zl3} = q_z \cdot G \cdot C_{plp3} - q_z \cdot GC$	C _{pip} = - 9.094 psf	$p_{zl7} = q_z \bullet G \bullet C_{plp3} -$	$q_z \bullet GC_{pin} = 0.737 \ psf$	
$p_{zl4} = q_z \cdot G \cdot C_{\rho l \rho 4} - q_z \cdot G C_{\rho l \rho 4}$	C _{pip} = - 9.094 psf	$p_{zl8} = q_z \bullet G \bullet C_{plp4} -$	$q_z \bullet GC_{pin} = 0.737 \ psf$	
Roof 3: (normal to ridge, wind $p_{zw1} = q_z \cdot G \cdot C_{pwn1} - q_z \cdot G$	dward) 6C _{pip} = - 11.88 psf	$p_{zw3} = q_z \bullet G \bullet C_{pwn1} -$	$q_z \bullet GC_{pin} = -2.048 \ p$	osf
$p_{zw2} = q_z \cdot G \cdot C_{pwn2} - q_z \cdot G$	<i>C_{pip}</i> = - 0.273 psf	$p_{zw4} = q_z \bullet G \bullet C_{pwn2} -$	$q_z \bullet GC_{pin} = 9.559 \ ps$	f
Roof 4: (parallel to ridge, wine $p_{zw1} = q_z \cdot G \cdot C_{pwp1} - q_z \cdot G$	dward) 3C _{pip} = - 25.808 psf	$p_{zw5} = q_z \cdot G \cdot C_{pwp1} -$	$q_z \bullet GC_{pin} = -15.977$	psf
$p_{zw2} = q_z \cdot G \cdot C_{pwp2} - q_z \cdot G$	<i>C_{pip}</i> = - 25.808 psf	$p_{zw6} = q_z \bullet G \bullet C_{pwp2} -$	$q_z \bullet GC_{pin} = -15.977$	psf
$p_{zw3} = q_z \bullet G \bullet C_{pwp3} - q_z \bullet G$	C _{pip} = - 16.523 psf	$p_{zw7} = q_z \bullet G \bullet C_{pwp3} -$	$q_z \bullet GC_{pin} = -6.691 \ p$	osf

$$p_{zw4} = q_z \cdot G \cdot C_{pwp4} - q_z \cdot GC_{pip} = -11.88 \text{ psf}$$
 $p_{zw8} = q_z \cdot G \cdot C_{pwp4} - q_z \cdot GC_{pin} = -2.048 \text{ psf}$

$$p_{xv1} = q_* \cdot G \cdot C_{punt2} - q_* \cdot GC_{pip} = -4.916 \text{ psf} \quad p_{xv3} = q_* \cdot G \cdot C_{punt3} - q_* \cdot GC_{pin} = 4.916 \text{ psf}$$

$$p_{xv2} = q_* \cdot G \cdot C_{punt2} - q_* \cdot GC_{pip} = -18.844 \text{ psf} \quad p_{xv4} = q_* \cdot G \cdot C_{pun25} - q_* \cdot GC_{pin} = -9.012 \text{ psf}$$
Roof 6: (normal to ridge, windward)

$$p_{xv1} = q_* \cdot G \cdot C_{pun3} - q_* \cdot GC_{pip} = -11.88 \text{ psf} \quad p_{xv3} = q_* \cdot G \cdot C_{pun2} - q_* \cdot GC_{pin} = -2.048 \text{ psf}$$

$$p_{xv2} = q_* \cdot G \cdot C_{pun3} - q_* \cdot GC_{pip} = -0.273 \text{ psf} \quad p_{xv4} = q_* \cdot G \cdot C_{pun2} - q_* \cdot GC_{pin} = -2.048 \text{ psf}$$
Roof 7: (parallel to ridge, windward)

$$p_{xv1} = q_* \cdot G \cdot C_{pun2} - q_* \cdot GC_{pip} = -25.808 \text{ psf} \quad p_{xv3} = q_* \cdot G \cdot C_{pun2} - q_* \cdot GC_{pin} = -15.977 \text{ psf}$$

$$p_{xv2} = q_* \cdot G \cdot C_{pup3} - q_* \cdot GC_{pip} = -25.808 \text{ psf} \quad p_{xv7} = q_* \cdot G \cdot C_{pup3} - q_* \cdot GC_{pin} = -6.691 \text{ psf}$$

$$p_{xv4} = q_* \cdot G \cdot C_{pup3} - q_* \cdot GC_{pip} = -16.523 \text{ psf} \quad p_{xv6} = q_* \cdot G \cdot C_{pup3} - q_* \cdot GC_{pin} = -2.048 \text{ psf}$$
Roof 8: (parallel to ridge, windward)

$$p_{xv1} = q_* \cdot G \cdot C_{pup3} - q_* \cdot GC_{pip} = -11.88 \text{ psf} \quad p_{xv7} = q_* \cdot G \cdot C_{pup3} - q_* \cdot GC_{pin} = -2.048 \text{ psf}$$
Roof 8: (parallel to ridge, windward)

$$p_{xv1} = q_* \cdot G \cdot C_{pup3} - q_* \cdot GC_{pip} = -11.88 \text{ psf} \quad p_{xv7} = q_* \cdot G \cdot C_{pup3} - q_* \cdot GC_{pin} = -2.048 \text{ psf}$$
Roof 8: (parallel to ridge, windward)

$$p_{xv1} = q_* \cdot G \cdot C_{pup3} - q_* \cdot GC_{pip} = -11.88 \text{ psf} \quad p_{xv6} = q_* \cdot G \cdot C_{pup3} - q_* \cdot GC_{pin} = -15.977 \text{ psf}$$

$$p_{xv3} = q_* \cdot G \cdot C_{pup3} - q_* \cdot GC_{pip} = -25.808 \text{ psf} \quad p_{xv6} = q_* \cdot G \cdot C_{pup3} - q_* \cdot GC_{pin} = -15.977 \text{ psf}$$

$$p_{xv3} = q_* \cdot G \cdot C_{pup3} - q_* \cdot GC_{pip} = -25.808 \text{ psf} \quad p_{xv6} = q_* \cdot G \cdot C_{pup3} - q_* \cdot GC_{pin} = -15.977 \text{ psf}$$

$$p_{xv4} = q_* \cdot G \cdot C_{pup3} - q_* \cdot GC_{pip} = -25.808 \text{ psf} \quad p_{xv6} = q_* \cdot G \cdot C_{pup3} - q_* \cdot GC_{pin} = -15.977 \text{ psf}$$

$$p_{xv4} = q_* \cdot G \cdot C_{pup3} - q_* \cdot GC_{pip} = -25.808 \text{ psf} \quad p_{xv6} = q_* \cdot G \cdot C_{pup3} - q_* \cdot GC_{pin} = -2.048 \text{ psf}$$

$$p_{xv4} = q_* \cdot$$

East Wind Pressu	B = 86 ft	L=82	ft	
1				
^L = 0.953				
В				
$C_{\rho w} = 0.8$	Windward Pressure			
$C_{pl} = -0.5$	Leeward Pressure			
$C_{ps} = -0.7$	Sidewall Pressure			
Design Wind Pre	ssure for Walls			
Wall 1:		V	/all 7:	
$p_{zw1p} = q_z \cdot G \cdot$	$C_{ps} - q_z \cdot GC_{pip} = -2$	1.166 psf	$p_{zw3p} = q_z \bullet G \bullet C_{ps} - q_z \bullet GC_{pip} = -2$	1.166 p s
$p_{zw1n} = q_z \cdot G \cdot$ Wall 2:	$C_{ps} - q_z \cdot GC_{pin} = -1$	1.334 psf W	$p_{zw3n} = q_z \bullet G \bullet C_{ps} - q_z \bullet GC_{pin} = -1$	1.334 p s
$p_{zw2p} = q_z \bullet G \bullet$	$C_{ol} - a_z \cdot GC_{oin} = -1$	6.523 psf	$p_{zw2n} = q_z \cdot G \cdot C_{nw} - q_z \cdot GC_{nin} = 13$.655 ps t
$p_{zw2n} = q_z \cdot G \cdot$	$C_{pl} - q_z \cdot GC_{pin} = -6$.691 psf	$p_{zw2n} = q_z \bullet G \bullet C_{pw} - q_z \bullet G C_{nin} = 23$.487 ps
Wall 3:		V	/all 9:	
$p_{zw1p} = q_z \cdot G \cdot$	$C_{ps} - q_z \cdot GC_{pip} = -2$	1.166 psf	$p_{zw3p} = q_z \cdot G \cdot C_{ps} - q_z \cdot GC_{pip} = -2$	1.166 p s
$p_{zw1n} = q_z \cdot G \cdot$	$C_{ps} - q_z \cdot GC_{pin} = -1$	1.334 psf	$p_{zw3n} = q_z \bullet G \bullet C_{ps} - q_z \bullet GC_{pin} = -1$	1.334 p
Wall 4:		V	/all 10:	
$p_{zw2p} = q_z \bullet G \bullet$	$C_{pl} - q_z \cdot GC_{pip} = -1$	6.523 psf	$p_{zw2p} = q_z \bullet G \bullet C_{pw} - q_z \bullet GC_{pip} = 13$.655 psf
$p_{zw2n} = q_z \cdot G \cdot$	$C_{pl} - q_z \cdot GC_{pin} = -6$.691 psf	$p_{zw2n} = q_z \bullet G \bullet C_{pw} - q_z \bullet GC_{pin} = 23$.487 ps i
Wall 5:		V	/all 11:	
$p_{zw3p} = q_z \cdot G \cdot$	$C_{ps} - q_z \cdot GC_{pip} = -2$	1.166 psf	$p_{zw3p} = q_z \cdot G \cdot C_{ps} - q_z \cdot GC_{pip} = -2$	1.166 ps
$p_{zw3n} = q_z \cdot G \cdot$	$C_{ps} - q_z \cdot GC_{pin} = -1$	1.334 psf	$p_{zw3n} = q_z \bullet G \bullet C_{ps} - q_z \bullet GC_{pin} = -1$	1.334 p
Wall 6:	0 7 00 1	V	/all 12:	055
$p_{zw2p} = q_z \bullet G \bullet$	$C_{pl} - q_z \cdot GC_{pip} = -10$	0.523 pst	$p_{zw2p} = q_z \bullet G \bullet C_{pw} - q_z \bullet GC_{pip} = 13$.655 ps
$p_{zw2n} = q_z \cdot G \cdot$	$C_{pl} - q_z \bullet GC_{pin} = -6$.691 pst	$p_{zw2n} = q_z \bullet G \bullet C_{pw} - q_z \bullet G C_{pin} = 23$.487 ps i
Lengths of Roofs				
$L_1 = 53 \ ft$	$L_2 = 52 ft \qquad L$	₃=53 ft	$L_4 = 33 \ ft$	
$L_5 = 30 \ ft$	$L_6 = 59 ft$ L	7=14 ft	$L_8 = 14 \ ft$	
Lengths of Roofs $L_1 = 53 \ ft$ $L_5 = 30 \ ft$ Roof Pressure Co	$L_2 = 52 \text{ ft} \qquad L$ $L_6 = 59 \text{ ft} \qquad L$ Defficients	3=53 ft 7=14 ft	$L_4 = 33 \ ft$ $L_8 = 14 \ ft$	
Normal to Rid	lge			
(Roof 2,4,7,8)				
^h = 0.955	h = 2.25	⁷ = 2.25	0=25 deg	

 $C_{pwn1} = -0.5$

 $C_{pln1} = 0$ $C_{pln2} = -0.6$

Parallel to Ridge (Roof 1,3,5,6)

$C_{pwp1} = -0.9$	$C_{plp1} = -0.18$
$C_{pwp2} = -0.9$	$C_{plp2} = C_{plp1} = -0.18$
$C_{pwp3} = -0.5$	$C_{plp3} = C_{plp1} = -0.18$
$C_{pwp4} = -0.3$	$C_{plp4} = C_{plp1} = -0.18$

Design Wind Pressure for Roof

Roof 1: (parallel to ridge, windward)

 $p_{zw1} = q_z \cdot G \cdot C_{pwp1} - q_z \cdot GC_{pip} = -25.808 \text{ psf} \quad p_{zw5} = q_z \cdot G \cdot C_{pwp1} - q_z \cdot GC_{pin} = -15.977 \text{ psf}$

$$p_{zw2} = q_z \cdot G \cdot C_{pwp2} - q_z \cdot GC_{pip} = -25.808 \text{ psf} \quad p_{zw6} = q_z \cdot G \cdot C_{pwp2} - q_z \cdot GC_{pin} = -15.977 \text{ psf}$$

 $p_{zw3} = q_z \cdot G \cdot C_{pwp3} - q_z \cdot GC_{pip} = -16.523 \text{ psf} \quad p_{zw7} = q_z \cdot G \cdot C_{pwp3} - q_z \cdot GC_{pin} = -6.691 \text{ psf}$

 $p_{zw4} = q_z \cdot G \cdot C_{pwp4} - q_z \cdot GC_{pip} = -11.88 \text{ psf}$ $p_{zw8} = q_z \cdot G \cdot C_{pwp4} - q_z \cdot GC_{pin} = -2.048 \text{ psf}$

Roof 2: (normal to ridge, leeward)

Note: Since Roof 2 has a significant difference in length roof pressures will be used for this roof

h = 0.606 $C_{pwn12} = -0.3$ $C_{pln12} = 0$ L_2 $C_{pwn22} = 0.2$ $C_{pln22} = -0.6$

$$p_{zw1} = q_z \cdot G \cdot C_{pln12} - q_z \cdot GC_{pip} = -4.916 \text{ psf}$$
 $p_{zw3} = q_z \cdot G \cdot C_{pln12} - q_z \cdot GC_{pin} = 4.916 \text{ psf}$

 $p_{zw2} = q_z \cdot G \cdot C_{pln22} - q_z \cdot GC_{pip} = -18.844 \text{ psf } p_{zw4} = q_z \cdot G \cdot C_{pln22} - q_z \cdot GC_{pin} = -9.012 \text{ psf}$

Roof 3: (parallel to ridge, windward) $p_{zw1} = q_z \cdot G \cdot C_{pwp1} - q_z \cdot GC_{pip} = -25.808 \text{ psf} \quad p_{zw5} = q_z \cdot G \cdot C_{pwp1} - q_z \cdot GC_{pin} = -15.977 \text{ psf}$

 $p_{zw2} = q_z \cdot G \cdot C_{pwp2} - q_z \cdot GC_{pip} = -25.808 \text{ psf} \quad p_{zw6} = q_z \cdot G \cdot C_{pwp2} - q_z \cdot GC_{pin} = -15.977 \text{ psf}$

$$p_{zw3} = q_z \cdot G \cdot C_{pwp3} - q_z \cdot GC_{pip} = -16.523 \text{ psf} \quad p_{zw7} = q_z \cdot G \cdot C_{pwp3} - q_z \cdot GC_{pin} = -6.691 \text{ psf}$$

 $p_{zw4} = q_z \cdot G \cdot C_{pwp4} - q_z \cdot GC_{pip} = -11.88 \text{ psf}$ $p_{zw8} = q_z \cdot G \cdot C_{pwp4} - q_z \cdot GC_{pin} = -2.048 \text{ psf}$

Roof 5: (parallel to ridge, leeward)	
$p_{zl1} = q_z \bullet G \bullet C_{plp1} - q_z \bullet GC_{pip} = -9.094 \text{ psf}$	$p_{zl5} = q_z \bullet G \bullet C_{plp1} - q_z \bullet GC_{pin} = 0.737 \text{ psf}$
$p_{zl2} = q_z \bullet G \bullet C_{plp2} - q_z \bullet GC_{plp} = -9.094 \text{ psf}$	$p_{zl6} = q_z \bullet G \bullet C_{plp2} - q_z \bullet GC_{pin} = 0.737 \text{ psf}$
$p_{zl3} = q_z \cdot G \cdot C_{plp3} - q_z \cdot GC_{pip} = -9.094 \text{ psf}$	$p_{zl7} = q_z \bullet G \bullet C_{plp3} - q_z \bullet GC_{pin} = 0.737 \text{ psf}$
$p_{zl4} = q_z \bullet G \bullet C_{plp4} - q_z \bullet GC_{plp} = -9.094 \text{ psf}$	$p_{zl8} = q_z \bullet G \bullet C_{plp4} - q_z \bullet GC_{pin} = 0.737 \text{ psf}$
Roof 6: (parallel to ridge, windward)	
$p_{zw1} = q_z \cdot G \cdot C_{pwp1} - q_z \cdot GC_{pip} = -25.808 \text{ psf}$	$p_{zw5} = q_z \cdot G \cdot C_{pwp1} - q_z \cdot GC_{pin} = -15.977 \text{ psf}$
$p_{zw2} = q_z \cdot G \cdot C_{pwp2} - q_z \cdot GC_{pip} = -25.808 \text{ psf}$	$p_{zw6} = q_z \bullet G \bullet C_{pwp2} - q_z \bullet GC_{pin} = -15.977 \text{ psf}$
$p_{zw3} = q_z \bullet G \bullet C_{pwp3} - q_z \bullet GC_{pip} = -16.523 \text{ psf}$	$p_{zw7} = q_z \cdot G \cdot C_{pwp3} - q_z \cdot GC_{pin} = -6.691 \text{ psf}$
$p_{zw4} = q_z \bullet G \bullet C_{pwp4} - q_z \bullet GC_{pip} = -11.88 \text{ psf}$	$p_{zw8} = q_z \cdot G \cdot C_{pwp4} - q_z \cdot GC_{pin} = -2.048 \text{ psf}$
Roof 7: (normal to ridge, leeward)	
$p_{zl1} = q_z \bullet G \bullet C_{pln1} - q_z \bullet G C_{pip} = -4.916 \text{ psf}$	$p_{z/3} = q_z \bullet G \bullet C_{p/n1} - q_z \bullet G C_{p/n} = 4.916 \text{ psf}$
$p_{z 2} = q_z \bullet G \bullet C_{p n2} - q_z \bullet GC_{p p} = -18.844 \text{ psf}$	$p_{z/4} = q_z \bullet G \bullet C_{p/2} - q_z \bullet GC_{p/n} = -9.012 \text{ psf}$
Roof 8: (normal to ridge, windward)	
$p_{zw1} = q_z \cdot G \cdot C_{pwn1} - q_z \cdot GC_{pip} = -16.523 \text{ psf}$	$p_{zw3} = q_z \cdot G \cdot C_{pwn1} - q_z \cdot GC_{pin} = -6.691 \text{ psf}$
$p_{zw2} = q_z \cdot G \cdot C_{pwn2} - q_z \cdot GC_{pip} = -4.916 \text{ psf}$	$p_{zw4} = q_z \cdot G \cdot C_{pwn2} - q_z \cdot GC_{pin} = 4.916 \text{ psf}$

West Wind Press	<i>B</i> = 86 <i>ft</i>	L=82	ft		
L _ 0.052					
= 0.953 B					
-	Windward Prossure				
$C_{pw} = 0.8$	Leeward Pressure				
$C_{ps} = -0.7$	Sidewall Pressure				
Design Wind Pres	ssure for Walls				
Wall 1:		W	/all 7:		
$p_{zw1p} = q_z \cdot G \cdot$	C_{ps} - $q_z \cdot GC_{pip} = -2^{2}$	1.166 psf	$p_{zw3p} = q_z \cdot G \cdot G$	$C_{ps} - q_z \cdot GC_{pip} = -$	21.166 psf
$p_{zw1n} = q_z \cdot G \cdot$	$C_{ps} - q_z \cdot GC_{pin} = -1^{-1}$	1.334 psf	$p_{zw3n} = q_z \bullet G \bullet G$	$C_{ps} - q_z \cdot GC_{pin} = -$	11.334 psf
Wall 2:		W	/all 8:		
$p_{zw2p} = q_z \bullet G \bullet$	$C_{pw} - q_z \cdot GC_{pip} = 13.$	655 psf	$p_{zw2p} = q_z \bullet G \bullet G$	$C_{pl} - q_z \cdot GC_{pip} = -$	16.523 psf
$p_{zw2n} = q_z \bullet G \bullet$ Wall 3:	$C_{pw} - q_z \bullet GC_{pin} = 23.$.487 psf W	$p_{zw2n} = q_z \bullet G \bullet C$ all 9:	$C_{pl} - q_z \cdot GC_{pin} = -$	6.691 psf
$p_{zw1p} = q_z \cdot G \cdot$	$C_{ps} - q_z \cdot GC_{pip} = -2^{2}$	1.166 psf	$p_{zw3p} = q_z \cdot G \cdot G$	$C_{ps} - q_z \cdot GC_{pip} = -$	21.166 psf
$p_{zw1n} = q_z \cdot G \cdot$	$C_{ps} - q_z \cdot GC_{pin} = -1^{\prime}$	1.334 psf	$p_{zw3n} = q_z \bullet G \bullet G$	$C_{ps} - q_z \cdot GC_{pin} = -$	11.334 psf
	C = -200 = 12	VV SEE mof	/all 10:	\sim	16 502 201
$p_{zw2p} = q_z \cdot G \cdot$	$C_{pw} = q_z \cdot GC_{pip} = 13.$	187 pef	$p_{zw2p} = q_z \cdot G \cdot C$	$D_{pl} - q_z \cdot GC_{pip} = -$	6 601 psf
Wall 5:	$O_{pw} = Q_z OO_{pin} = 20$	01 p31 W	/all 11:	$\mathcal{O}_{pl} = \mathbf{q}_z + \mathbf{O}_{pln} = -$	0.001 ps
$p_{zw3p} = q_z \cdot G \cdot$	C_{ns} - $q_z \cdot GC_{\text{nin}} = -2^2$	1.166 psf	$p_{zw3p} = q_z \cdot G \cdot C$	$C_{\rm ns}$ - $q_z \cdot GC_{\rm nin} = -$	21.166 psf
$p_{zw3n} = q_z \cdot G \cdot$	$C_{ps} - q_z \cdot GC_{pin} = -1$	1.334 psf	$p_{zw3n} = q_z \cdot G \cdot G$	$C_{ps} - q_z \cdot GC_{pin} = -$	11.334 psf
Wall 6:		W	/all 12:		
$p_{zw2p} = q_z \cdot G \cdot$	$C_{pw} - q_z \cdot GC_{pip} = 13.$	655 psf	$p_{zw2p} = q_z \cdot G \cdot C$	$C_{pl} - q_z \cdot GC_{pip} = -$	16.523 psf
$p_{zw2n} = q_z \cdot G \cdot$	$C_{pw} - q_z \cdot GC_{pin} = 23.$.487 psf	$p_{zw2n} = q_z \bullet G \bullet G$	$C_{pl} - q_z \cdot GC_{pin} = -$	6.691 psf
Lengths of Roofs					
$L_1 = 53 ft$	$L_2 = 52 ft \qquad L_3$	₃ =53 ft	L ₄ =33 ft		
$L_5 = 30 ft$	$L_6 = 59 ft L_7$, = 14 ft	L ₈ =14 ft		
Roof Pressure Co	pefficients				
Normal to Rid	ge				
(Roof 2,4,7,8)					
h = 0.955	h = 2.25 h	= 2.25	0 - 25 dog		
L ₄	L ₇ L,	8	0-25 deg		
		i			

 $C_{pwn1} = -0.5$

 $C_{pwn2} = 0$

 $C_{pln1} = 0$ $C_{pln2} = -0.6$

CEE:4850

Parallel to Ridge (Roof 1,3,5,6)

$C_{pwp1} = -0.9$	$C_{plp1} = -0.18$
$C_{pwp2} = -0.9$	$C_{plp2} = C_{plp1} = -0.18$
$C_{pwp3} = -0.5$	$C_{plp3} = C_{plp1} = -0.18$
$C_{pwp4} = -0.3$	$C_{plp4} = C_{plp1} = -0.18$

- $p_{zl1} = q_z \cdot G \cdot C_{plp1} q_z \cdot GC_{pip} = -9.094 \text{ psf}$ $p_{zl5} = q_z \cdot G \cdot C_{plp1} q_z \cdot GC_{pin} = 0.737 \text{ psf}$
- $p_{zl2} = q_z \cdot G \cdot C_{plp2} q_z \cdot GC_{pip} = -9.094 \ psf$ $p_{zl6} = q_z \cdot G \cdot C_{plp2} q_z \cdot GC_{pin} = 0.737 \ psf$

$$p_{zl3} = q_z \cdot G \cdot C_{plp3} - q_z \cdot GC_{pip} = -9.094 \text{ psf}$$
 $p_{zl7} = q_z \cdot G \cdot C_{plp3} - q_z \cdot GC_{pin} = 0.737 \text{ psf}$

 $p_{zl4} = q_z \cdot G \cdot C_{plp4} - q_z \cdot GC_{pip} = -9.094 \text{ psf}$ $p_{zl8} = q_z \cdot G \cdot C_{plp4} - q_z \cdot GC_{pin} = 0.737 \text{ psf}$

Roof 2: (normal to ridge, windward)

Note: Since Roof 2 has a significant difference in length roof pressures will be used for this roof

h = 0.606 $C_{pwn12} = -0.3$ $C_{pln12} = 0$ L_2 $C_{pwn22} = 0.2$ $C_{pln22} = -0.6$

 $p_{zw1} = q_z \cdot G \cdot C_{pwn12} - q_z \cdot GC_{pip} = -11.88 \text{ psf} \quad p_{zw3} = q_z \cdot G \cdot C_{pwn12} - q_z \cdot GC_{pin} = -2.048 \text{ psf}$

 $p_{zw2} = q_z \cdot G \cdot C_{pwn22} - q_z \cdot GC_{pip} = -0.273 \text{ psf} \quad p_{zw4} = q_z \cdot G \cdot C_{pwn22} - q_z \cdot GC_{pin} = 9.559 \text{ psf}$

Roof 3: (parallel to ridge, leeward)

$$p_{zl1} = q_z \bullet G \bullet C_{plp1} - q_z \bullet GC_{pip} = -9.094 \text{ psf}$$
 $p_{zl5} = q_z \bullet G \bullet C_{plp1} - q_z \bullet GC_{pin} = 0.737 \text{ psf}$

$$p_{zl2} = q_z \cdot G \cdot C_{plp2} - q_z \cdot GC_{pip} = -9.094 \ psf$$
 $p_{zl6} = q_z \cdot G \cdot C_{plp2} - q_z \cdot GC_{pin} = 0.737 \ psf$

 $p_{zl3} = q_z \cdot G \cdot C_{plp3} - q_z \cdot GC_{pip} = -9.094 \ psf$ $p_{zl7} = q_z \cdot G \cdot C_{plp3} - q_z \cdot GC_{pin} = 0.737 \ psf$

$$p_{zl4} = q_z \cdot G \cdot C_{plp4} - q_z \cdot GC_{pip} = -9.094 \text{ psf}$$
 $p_{zl8} = q_z \cdot G \cdot C_{plp4} - q_z \cdot GC_{pin} = 0.737 \text{ psf}$

Roof 5: (parallel to ridge, windward) $p_{zw1} = q_z \cdot G \cdot C_{pwp1} - q_z \cdot GC_{pip} = -25.808 \text{ psf} \quad p_{zw5} = q_z \cdot G \cdot C_{pwp1} - q_z \cdot GC_{pin} = -15.977 \text{ psf}$ $p_{zw2} = q_z \cdot G \cdot C_{pwp2} - q_z \cdot GC_{pip} = -25.808 \text{ psf} \quad p_{zw6} = q_z \cdot G \cdot C_{pwp2} - q_z \cdot GC_{pin} = -15.977 \text{ psf}$ $p_{zw3} = q_z \cdot G \cdot C_{pwp3} - q_z \cdot GC_{pip} = -16.523 \text{ psf} \quad p_{zw7} = q_z \cdot G \cdot C_{pwp3} - q_z \cdot GC_{pin} = -6.691 \text{ psf}$ $p_{zw4} = q_z \cdot G \cdot C_{pwp4} - q_z \cdot GC_{pip} = -11.88 \text{ psf}$ $p_{zw8} = q_z \cdot G \cdot C_{pwp4} - q_z \cdot GC_{pin} = -2.048 \text{ psf}$ Roof 6: (parallel to ridge, windward) $p_{zw1} = q_z \cdot G \cdot C_{pwp1} - q_z \cdot GC_{pip} = -25.808 \text{ psf} \quad p_{zw5} = q_z \cdot G \cdot C_{pwp1} - q_z \cdot GC_{pin} = -15.977 \text{ psf}$ $p_{zw2} = q_z \cdot G \cdot C_{pwp2} - q_z \cdot GC_{pip} = -25.808 \text{ psf} \quad p_{zw6} = q_z \cdot G \cdot C_{pwp2} - q_z \cdot GC_{pin} = -15.977 \text{ psf}$ $p_{zw3} = q_z \cdot G \cdot C_{pwp3} - q_z \cdot GC_{pip} = -16.523 \text{ psf} \quad p_{zw7} = q_z \cdot G \cdot C_{pwp3} - q_z \cdot GC_{pin} = -6.691 \text{ psf}$ $p_{zw4} = q_z \cdot G \cdot C_{pwp4} - q_z \cdot GC_{pip} = -11.88 \text{ psf}$ $p_{zw8} = q_z \cdot G \cdot C_{pwp4} - q_z \cdot GC_{pin} = -2.048 \text{ psf}$ Roof 7: (normal to ridge, windward) $p_{zw1} = q_z \cdot G \cdot C_{pwn1} - q_z \cdot GC_{pip} = -16.523 \text{ psf } p_{zw3} = q_z \cdot G \cdot C_{pwn1} - q_z \cdot GC_{pin} = -6.691 \text{ psf}$ $p_{zw2} = q_z \cdot G \cdot C_{pwn2} - q_z \cdot GC_{pip} = -4.916 \text{ psf}$ $p_{zw4} = q_z \cdot G \cdot C_{pwn2} - q_z \cdot GC_{pin} = 4.916 \text{ psf}$ Roof 8: (normal to ridge, leeward) $p_{z|1} = q_z \cdot G \cdot C_{p|n1} - q_z \cdot GC_{p|p} = -4.916 \text{ psf}$ $p_{zl3} = q_z \cdot G \cdot C_{pln1} - q_z \cdot GC_{pin} = 4.916 \text{ psf}$ $p_{zl2} = q_z \cdot G \cdot C_{pln2} - q_z \cdot GC_{pip} = -18.844 \text{ psf}$ $p_{zl4} = q_z \cdot G \cdot C_{pln2} - q_z \cdot GC_{pin} = -9.012 \text{ psf}$

GCp: (ASCE 7-16 Fi	igure 30.3-1)		
Positive:	Negative:		
$GC_{pp} = 0.7$	$GC_{pn} = -0.8$		
Decign C8C Wind D	Propouroo for Mallo		
	CC = 14.201 pcf		
$p_1 - q_2 \cdot (00_{pp} -$	GC _{pip}) - 14.201 psi		
$p_2 = q_2 \cdot (GC_{nn} -$	$GC_{pin} = 24.033 \text{ psf}$		
μ ² 42 (μμ			
$p_3 = q_z \cdot (GC_{pn} -$	<i>GC_{pip}</i> ()= - 26.764 <i>psf</i>		
p4=qz•(GCpn-	GC _{pin})= - 16.933 psf		
Lise Worst Cases			
Positive Pressure	Negative Pres	sure.	
$p_{1} = p_{2} = 24 \ \Omega_{1}^{2}$	$33 \text{ nsf} p_n = p_2 = -2$	26 764 psf	

First Floor Joist Area A Analysis

Assumptions (if needed)

- Risk factor IV
- Cold ventilated roof
- LRFD Load combination 2, 1.2D + 1.6L governs floor gravity loads
- Assume W16x36

Define Variables

$L_A = 28 ft$	All member dimensions are for a W16x36
D ₁ =54 psf	See load calculations
<i>w</i> _b =36 <i>plf</i>	From AISC Shapes Database
L ₁ =100 psf	First floor live load for lobby/gathering areas
<i>t</i> _b =5 <i>ft</i>	Assumed tributary width for joists
E=29000 ksi	Assumed Modulus of Elasticity of Steel
f _y =50 ksi	Yield stress
<i>I</i> =448 <i>in</i> ⁴	From AISC Shapes Database
$Z_x = 64.0 \ in^3$	From AISC Shapes Database
<i>t</i> _w =0.295 <i>in</i>	From AISC Shapes Database
<i>t</i> _f =0.430 <i>in</i>	From AISC Shapes Database
<i>b</i> _f =6.99 <i>in</i>	From AISC Shapes Database

Serviceability Calculations $5 \cdot \frac{W_l}{2} \cdot L_A^4$ = 0.266 *in* $8_{short} = \frac{1}{384 \cdot E \cdot I}$ Short = "Okay" $8_{long} = \begin{array}{c} 5 \cdot \begin{pmatrix} w_l \\ \mu \end{pmatrix} + w_d i \cdot L_A^4 \\ \end{pmatrix}$ = 0.592 *in* 384 · E · I $8_{tot} = 8_{short} + 8_{long} = 0.858$ in Total = "Okay" **Design Summary** A W16x36 satisfies all requirements for this preliminary design.

First Floor Joist Area B A	AREA C SUPER C
Assumptions (if needed) • Assume W16 • LRFD Load c 1.6L governs	AREA B AREA A combination 2, 1.2D + combination 2 area e
Define Variables	
$L_B = 28 ft$	All member dimensions are for a W16x36
D ₁ =54 psf	See load calculations
<i>w</i> _b =36 <i>plf</i>	From AISC Shapes Database
<i>L</i> ₁ = 100 <i>psf</i>	First floor live load for lobby/gathering areas
$t_b = 5 ft$	Assumed tributary width for joists
E = 29000 ksi	Assumed Modulus of Elasticity of Steel
<i>I</i> =448 <i>in</i> ⁴	From AISC Shapes Database
f _y =50 ksi	Yield stress
$Z_x = 64.0 \text{ in}^3$	From AISC Shapes Database
<i>t</i> _w =0.295 <i>in</i>	From AISC Shapes Database
<i>t_f</i> =0.430 <i>in</i>	From AISC Shapes Database
<i>b</i> _f =6.99 <i>in</i>	From AISC Shapes Database

d = 15.9 *in* From AISC Shapes Database

 $A_w = (d - t_f \cdot 2) \cdot t_w = 4.437 \text{ in}^2$

Member Strength	
$M_{all} = 0.9 \cdot f_y \cdot Z_x = 240 \ kip \cdot ft$	
$V_{all} = 0.6 \cdot f_y \cdot A_w = 133.104$ kip	
Strength Requirements	
$w_d = t_b \cdot D_l + w_b = 0.306 \text{ klf}$	
$w_l = t_b \cdot L_l = 0.5 \ klf$	
$w_u = \max(1.4 \cdot w_d, 1.2 \cdot w_d + 1.6 \cdot w_l) = (1.16)$	7·10 ³) <i>plf</i>
Maximum moment	
$M_{max} = w_u \cdot \frac{{L_B}^2}{8} = 114.386 \ kip \cdot ft$	
Moment = "Okay"	
Maximum shear	
$V_{max} = w_u \cdot \frac{L_B}{2} = 16.341 \text{ kip}$	
Shear = "Okay"	
Allowable Serviceability Deflections	
$8_{Sall} = \frac{L_B}{240} = 1.4$ in Short Term Allowable D	Deflection
$8_{Tall} = \frac{L_B}{360} = 0.933$ in Total Allowable Deflect	ion

FIIST FIOOD JOIST ATEA C AT						
				<u>-1</u>	D-2	
		ARE	AC	AREA	AREA	
Assumptions (if needed)						
Assume W16x I RED Load co	31	ANLA D	AREA			
governs floor	gravity loads	AREA	λE			
Define Variables						
$L_{c} = 26 \ ft$	All member dimensions are for a V	V16x31				
$D_l = 54 \ psf$	See load calculations					
<i>w</i> _b =31 <i>plf</i>	From AISC Shapes Database					
$L_{l} = 100 \ psf$	First floor live load for lobby/gathe	ring area	as			
$t_b=5$ ft	Assumed tributary width for joists					
E = 29000 ksi	Assumed Modulus of Elasticity of S	steel				
1=375 in ⁴	From AISC Shapes Database					
f _y =50 ksi	Yield stress					
$Z_x = 54.0$ in ³	From AISC Shapes Database					
<i>t_w</i> = 0.275 <i>in</i>	From AISC Shapes Database					
<i>t_f</i> =0.440 <i>in</i>	From AISC Shapes Database					
<i>b</i> _f =5.53 <i>in</i>	From AISC Shapes Database					

d = 15.9 *in* From AISC Shapes Database

 $A_w = (d - t_f \cdot 2) \cdot t_w = 4.131 \text{ in}^2$

Member Strength	
$M_{all} = 0.9 \cdot f_y \cdot Z_x = 202.5 \ kip \cdot ft$	
$V_{all} = 0.6 \cdot f_y \cdot A_w = 123.915$ kip	
Strength Requirements	
$w_d = t_b \cdot D_l + w_b = 0.301$ klf	
$w_l = t_b \cdot L_l = 0.5 \ klf$	
$w_u = \max(1.4 \cdot w_d, 1.2 \cdot w_d + 1.6 \cdot w_l) = (1.161 \cdot 10^3)$	
Maximum moment	
$M_{max} = w_u \cdot \frac{L_c^2}{8} = 98.121 \ kip \cdot ft$	
Moment = "Okay"	
Maximum shear	
$V_{max} = w_u \cdot \frac{L_c}{2} = 15.096 \ kip$	
Shear = "Okay"	
Allowable Serviceability Deflections	
$8_{Sall} = \frac{L_c}{240} = 1.3$ in Short Term Allowable Deflection	
$8_{Tall} = \frac{L_C}{360} = 0.867$ in Total Allowable Deflection	

	eability Calculations
	W_{i}
	$\frac{3}{2} \frac{1}{2}$
	$384 \cdot E \cdot I$
	Short = "Okay"
	$(w_l \rightarrow 4$
	$8_{long} = \frac{3}{2} = 0.521$ in
	384 · E · /
	$8_{tot} = 8_{short} + 8_{long} = 0.757 in$
	Total = "Okav"
	Total = Okay
Desig	n Summary
	A W16x31 satisfies all requirements for this preliminary design
	A W16x31 satisfies all requirements for this preliminary design.
	A W16x31 satisfies all requirements for this preliminary design.
	A W16x31 satisfies all requirements for this preliminary design.
	A W16x31 satisfies all requirements for this preliminary design.
	A W16x31 satisfies all requirements for this preliminary design.
	A W16x31 satisfies all requirements for this preliminary design.
	A W16x31 satisfies all requirements for this preliminary design.
	A W16x31 satisfies all requirements for this preliminary design.
	A W16x31 satisfies all requirements for this preliminary design.
	A W16x31 satisfies all requirements for this preliminary design.
	A W16x31 satisfies all requirements for this preliminary design.
	A W16x31 satisfies all requirements for this preliminary design.
	A W16x31 satisfies all requirements for this preliminary design.
	A W16x31 satisfies all requirements for this preliminary design.
	A W16x31 satisfies all requirements for this preliminary design.
	A W16x31 satisfies all requirements for this preliminary design.
	A W16x31 satisfies all requirements for this preliminary design.

First Floor Joist Area D1 A	Analysis AREA C Y Y Y	
Assumptions (if needed)	AREA B AREA A	
Assume W10x LRFD Load co governs floor Define Variables	x22 ombination 2, 1.2D + 1.6L gravity loads	
<i>L</i> _{D1} =16 <i>ft</i>	All member dimensions are for a W10x22	
<i>D</i> ₁ =54 psf	See load calculations	
<i>L</i> ₁ = 100 <i>psf</i>	First floor live load for lobby/gathering areas	
$t_b=5$ ft	Assumed tributary width for joists	
E=29000 ksi	Assumed Modulus of Elasticity of Steel	
f _y =50 ksi	Yield stress	
w _b =22 plf	From AISC Shapes Database	
<i>l</i> = 118 <i>in</i> ⁴	From AISC Shapes Database	
$Z_x = 26.0 \ in^3$	From AISC Shapes Database	
<i>t</i> _w = 0.240 <i>in</i>	From AISC Shapes Database	
<i>t</i> _f =0.360 <i>in</i>	From AISC Shapes Database	
b _f =5.75 in	From AISC Shapes Database	

d = 10.2 *in* From AISC Shapes Database

 $A_w = (d - t_f \cdot 2) \cdot t_w = 2.275 \text{ in}^2$

Member Strength	
$M_{all} = 0.9 \cdot f_y \cdot Z_x = 97.5 \ kip \cdot ft$	
$V_{all} = 0.6 \cdot f_y \cdot A_w = 68.256$ kip	
Strength Requirements	
$w_d = t_b \cdot D_l + w_b = 0.292 \ klf$	
$w_l = t_b \cdot L_l = 0.5 \ klf$	
$w_u = \max(1.4 \cdot w_d, 1.2 \cdot w_d + 1.6 \cdot w_l) = (1.15 \cdot 10^3)$	
Maximum moment	
$M_{max} = w_u \cdot \frac{L_{D1}}{8} = 36.813 \text{ kip} \cdot \text{ft}$	
Moment = "Okay"	
Maximum shear	
$V_{max} = w_u \cdot \frac{L_{D1}}{2} = 9.203 \ kip$	
Shear = "Okay"	
Allowable Serviceability Deflections	
$8_{Sall} = \frac{L_{D1}}{240} = 0.8 \text{ in}$ Short Term Allowable Deflection	
$8_{Tall} = \frac{L_{D1}}{360} = 0.533 \text{ in}$ Total Allowable Deflection	

	bility Calculations	
	W_{l} 4	
	$5 \cdot \cdot L_{D1}$	
	$8_{\text{tot}} = \frac{2}{108} = 0.108 \text{ in}$	
	384 · E · I	
	Short = "Okay"	
	$(w_l \land \downarrow)$	
	$5 \cdot 1 + w_d \cdot L_{D1}^4$	
	$8_{long} = , 2$) = 0.234 in	
	384 · E · I	
	$8_{tot} = 8_{short} + 8_{long} = 0.341 in$	
	Total = "Okay"	
Desian	Summary	
	A W10v22 actisfies all requirements for this proliminant design	
	A WTOX22 satisfies all requirements for this preniminary design.	
<u>First Flo</u>	oor Joist Area D2 A	Analysis AREA C B-2 AREA C B-2 AREA C B-2
------------------	--	--
Assum	otions (if needed)	AREA B AREA A
Define '	 Assume W16; LRFD Load congoverns floor Variables 	x26 ombination 2, 1.2D + 1.6L AREA E
	L _{D2} =24 ft	All member dimensions are for a W16x26
	D ₁ =54 psf	See load calculations
	<i>L</i> ₁ = 100 <i>psf</i>	First floor live load for lobby/gathering areas
	<i>t</i> _b =5 <i>ft</i>	Assumed tributary width for joists
	E=29000 ksi	Assumed Modulus of Elasticity of Steel
	f _y =50 ksi	Yield stress
	w _b =26 plf	From AISC Shapes Database
	/=301 <i>in</i> ⁴	From AISC Shapes Database
	$Z_x = 44.2 \ in^3$	From AISC Shapes Database
	<i>t_w</i> = 0.250 <i>in</i>	From AISC Shapes Database
	t _f =0.345 in	From AISC Shapes Database
	$b_f = 5.50$ in	From AISC Shapes Database

d = 15.7 *in* From AISC Shapes Database

 $A_w = (d - t_f \cdot 2) \cdot t_w = 3.753 \text{ in}^2$

Member Strength
$M_{all} = 0.9 \cdot f_y \cdot Z_x = 165.75 \text{ kip} \cdot \text{ft}$
$V_{all} = 0.6 \cdot f_y \cdot A_w = 112.575$ kip
Strength Requirements
$w_d = t_b \cdot D_l + w_b = 0.296 \ klf$
$w_l = t_b \cdot L_l = 0.5 \ \textit{klf}$
$w_u = \max(1.4 \cdot w_d, 1.2 \cdot w_d + 1.6 \cdot w_l) = (1.155 \cdot 10^{3})$ plf
Maximum moment
$M_{max} = w_u \cdot \frac{z_{D2}}{8} = 83.174 \text{ kip} \cdot \text{ft}$
Moment = "Okay"
Maximum shear
$V_{max} = w_u \cdot \frac{L_{D2}}{2} = 13.862 \text{ kip}$
Shear = "Okay"
Allowable Serviceability Deflections
$8_{Sall} = \frac{L_{D2}}{240} = 1.2$ in Short Term Allowable Deflection
$B_{Tall} = \frac{L_{D2}}{200} = 0.8$ in Total Allowable Deflection

<u>S</u>	ervic	eability (Calcul	ations	<u>6</u>															
				W	4															
			5·	$2 \cdot L_l$	72															
		8 _{short}	.= ૨૪	- 84 · F	= ·/	0.214	l in													
			00	54 L																
		Short	f = "∩l	(a)/"																
		011011	. – Or (1															
			5·Ì	+	w _d i · L	4 D2														
		8 _{long} :	= ,	2)	=	= 0.4	67	in											
				384	F·I															
				504	L /															
		0	0		0.0															
		$8_{tot} =$	8 _{short} -	+ 8 _{long}	, = 0.6	81 <i>II</i>)													
		Total	= "Ol	(a)/"																
		TOLA	- Or	(ay																
-																				
D	esigr)	n Summ	ary																	
												_								
		AW1	6x26	satisf	ies all	requi	reme	ents	s for	this	pre	lim	inai	'y de	esig	n.				

<u>First Floor Joist Area E Ar</u>	AREA C Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Assumptions (if needed)	AREA B AREA A
Assume W18x LRFD Load co 1.6L governs	AREA E
Define Variables	
$L_E = 29 \ ft$	All member dimensions are for a W18x35
D ₁ =54 psf	See load calculations
<i>L</i> ₁ = 100 <i>psf</i>	First floor live load for lobby/gathering areas
<i>t</i> _b =5 <i>ft</i>	Assumed tributary width for joists
E=29000 ksi	Assumed Modulus of Elasticity of Steel
f _y =50 ksi	Yield stress
w _b =35 plf	From AISC Shapes Database
/=510 in ⁴	From AISC Shapes Database
$Z_x = 66.5 \ in^3$	From AISC Shapes Database
<i>t</i> _w = 0.300 <i>in</i>	From AISC Shapes Database
<i>t_f</i> =0.425 <i>in</i>	From AISC Shapes Database
<i>b</i> _f =6.00 <i>in</i>	From AISC Shapes Database

d = 17.7 *in* From AISC Shapes Database

 $A_w = (d - t_f \cdot 2) \cdot t_w = 5.055 \text{ in}^2$

Member Strength	
$M_{all} = 0.9 \cdot f_y \cdot Z_x = 249.375 \ kip \cdot ft$	
$V_{all} = 0.6 \cdot f_y \cdot A_w = 151.65$ kip	
Strength Requirements	
$w_d = t_b \cdot D_l + w_b = 0.305$ klf	
$w_l = t_b \cdot L_l = 0.5 \ klf$	
$w_u = \max(1.4 \cdot w_d, 1.2 \cdot w_d + 1.6 \cdot w_l) = (1.166 \cdot 10^{3})$ plf	
Maximum moment	
$M_{max} = w_u \cdot \frac{L_E^2}{8} = 122.576 \ kip \cdot ft$	
Moment = "Okay"	
Maximum shear	
$V_{max} = w_u \cdot \frac{L_E}{2} = 16.907 \ kip$	
Shear = "Okay"	
Allowable Serviceability Deflections	
$8_{Sall} = \frac{L_E}{240} = 1.45$ in Short Term Allowable Deflection	
$8_{T,n} = \frac{L_E}{R_{T,n}} = 0.967$ in Total Allowable Deflection	
360	

Second Floor Joist Area A	Analysis	AREA C	AREA D-1 AREA D-2	
Assumptions (if needed)		AREA B ARE	A A	
 Assume W16x LRFD Load co 	26 ombination 2, 1.2D +	AREA E		
Define Variables			l 	
$L_{A} = 28 \ ft$	All member dimensions are for a	a W16x26		
D ₁ =54 psf	See load calculations			
<i>L</i> ₁ =40 <i>psf</i>	Proposed use is residential			
<i>t</i> _b =5 <i>ft</i>	Assumed tributary width for joist	ts		
<i>E</i> = 29000 <i>ksi</i>	Assumed Modulus of Elasticity of	f Steel		
f _y =50 ksi	Yield stress			
w _b =26 plf	From AISC Shapes Database			
<i>I</i> =301 <i>in</i> ⁴	From AISC Shapes Database			
$Z_x = 44.2 \ in^3$	From AISC Shapes Database			
<i>t</i> _w =0.250 <i>in</i>	From AISC Shapes Database			
<i>t_f</i> =0.345 <i>in</i>	From AISC Shapes Database			
<i>b</i> _f = 5.50 <i>in</i>	From AISC Shapes Database			

d = 15.7 *in* From AISC Shapes Database

 $A_w = (d - t_f \cdot 2) \cdot t_w = 3.753 \text{ in}^2$

Member Stre	ength
Mal	$f_y = 0.9 \cdot f_y \cdot Z_x = 165.75 \ kip \cdot ft$
V _{all}	$=0.6 \cdot f_y \cdot A_w = 112.575 \ kip$
Strength Rec	quirements
W _d =	$= t_b \cdot D_l + w_b = 0.296 \ klf$
w,=	$t_b \cdot L_l = 0.2 \text{ klf}$
<i>w</i> _u =	$= \max(1.4 \cdot w_d, 1.2 \cdot w_d + 1.6 \cdot w_l) = 675.2 \text{ plf}$
Мах	kimum moment
M _m	$w_{ax} = w_u \cdot \frac{L_A^2}{8} = 66.17 \text{ kip} \cdot ft$
Mor	ment = "Okay"
Мах	kimum shear
V _{ma}	$w_x = w_u \cdot \frac{L_A}{2} = 9.453 $ kip
She	ear = "Okay"
Allowable Se	erviceability Deflections
8 _{Sall} =	$\frac{L_A}{240} = 1.4$ in Short Term Allowable Deflection
8 _{Tall} =	$\frac{L_A}{360} = 0.933$ <i>in</i> Total Allowable Deflection

Second Floor Joist Area E	<u>Analysis</u>	ARE	> C AREA D-1	AREA D-2	
Assumptions (if needed)		AREA B	AREA A		
 Assume W16 LRFD Load congoverns floor 	<26 ombination 2, 1.2D + 1.6L gravity loads	ARE/	λE		
Define Variables					
$L_B = 28 ft$	All member dimensions are for	a W16x26			
<i>D</i> _l =54 psf	See load calculations				
<i>L</i> ₁ =40 <i>psf</i>	Proposed use is residential				
$t_b=5$ ft	Assumed tributary width for jois	sts			
<i>E</i> = 29000 <i>ksi</i>	Assumed Modulus of Elasticity c	of Steel			
f _y =50 ksi	Yield stress				
w _b =26 plf	From AISC Shapes Database				
/=301 <i>in</i> ⁴	From AISC Shapes Database				
$Z_x = 44.2 \text{ in}^3$	From AISC Shapes Database				
<i>t</i> _w =0.250 <i>in</i>	From AISC Shapes Database				
<i>t_f</i> =0.345 <i>in</i>	From AISC Shapes Database				
<i>b</i> _f =5.50 <i>in</i>	From AISC Shapes Database				

d = 15.7 *in* From AISC Shapes Database

 $A_w = (d - t_f \cdot 2) \cdot t_w = 3.753 \text{ in}^2$

Member Strength	
$M_{all} = 0.9 \cdot f_y \cdot Z_x = 165.75 \ kip \cdot ft$	
$V_{all} = 0.6 \cdot f_y \cdot A_w = 112.575$ kip	
Strength Requirements	
$w_d = t_b \cdot D_l + w_b = 0.296 \ klf$	
$w_l = t_b \cdot L_l = 0.2 \ klf$	
$w_u = \max(1.4 \cdot w_d, 1.2 \cdot w_d + 1.6 \cdot w_l) = 675.2 plf$	
Maximum moment	
$M_{max} = w_u \cdot \frac{L_B^2}{8} = 66.17 \text{ kip} \cdot \text{ft}$	
Moment = "Okay"	
Maximum shear	
$V_{max} = w_u \cdot \frac{L_B}{2} = 9.453 \ kip$	
Shear = "Okay"	
Allowable Serviceability Deflections	
$8_{Sall} = \frac{L_B}{240} = 1.4$ in Short Term Allowable Deflection	
$8_{Tall} = \frac{L_B}{360} = 0.933$ in Total Allowable Deflection	

Second Floor Joist Area	<u>C Analysis</u>	ARE	AREA D-1	AREA D-2	
Assumptions (if needed)	AREA B	AREA A		
Assume W1 LRFD Load 1.6L govern Define Variables	2x26 combination 2, 1.2D + s floor gravity loads	ARE	AE		
$L_c = 26 \ ft$	All member dimensions are for	a W12x26			
D ₁ =54 psf	See load calculations				
<i>L</i> ₁ =40 <i>psf</i>	Proposed use is residential				
$t_b = 5 ft$	Assumed tributary width for jois	sts			
E=29000 ksi	Assumed Modulus of Elasticity of	of Steel			
f _y =50 ksi	Yield stress				
<i>w_b</i> =26 <i>plf</i>	From AISC Shapes Database				
<i>l</i> =204 <i>in</i> ⁴	From AISC Shapes Database				
Z _x =37.2 <i>in</i> ³	From AISC Shapes Database				
<i>t_w</i> =0.230 <i>in</i>	From AISC Shapes Database				
<i>t_f</i> =0.380 <i>in</i>	From AISC Shapes Database				
<i>b</i> _f =6.49 <i>in</i>	From AISC Shapes Database				

d = 12.2 *in* From AISC Shapes Database

 $A_w = (d - t_f \cdot 2) \cdot t_w = 2.631 \text{ in}^2$

Member Strength		
$M_{all} = 0.9 \cdot f_y \cdot Z_x = 139.5 \ kip \cdot ft$		
$V_{all} = 0.6 \cdot f_y \cdot A_w = 78.936$ kip		
Strength Requirements		
$w_d = t_b \cdot D_l + w_b = 0.296 \text{ klf}$		
$w_l = t_b \cdot L_l = 0.2$ klf		
$w_u = \max(1.4 \cdot w_d, 1.2 \cdot w_d + 1.6 \cdot w_l) = 675.2 \text{ plf}$		
Maximum moment		
$M_{max} = w_u \cdot \frac{L_c^2}{8} = 57.054 \text{ kip} \cdot \text{ft}$		
Moment = "Okay"		
Maximum shear		
$V_{max} = w_u \cdot \frac{L_c}{2} = 8.778 \ kip$		
Shear = "Okay"		
Allowable Serviceability Deflections		
$8_{Sall} = \frac{L_c}{240} = 1.3$ in Short Term Allowable Deflection		
$8_{Tall} = \frac{1}{360} = 0.867$ in Total Allowable Deflection		

Second Floor Joist Area D	01 Analysis	AREA C	AREA D-1	AREA D-2	
Assumptions (if needed)		AREA B AI	REA A		
Assume W8x1 LRFD Load co governs floor Define Variables	8 ombination 2, 1.2D + 1.6L gravity loads	AREA E			
L _{D1} =16 ft	All member dimensions are for a	W8x18			
<i>D</i> ₁ =54 psf	See load calculations				
<i>L</i> ₁ =40 psf	Proposed use is residential				
$t_b=5$ ft	Assumed tributary width for joists	6			
E=29000 ksi	Assumed Modulus of Elasticity of	Steel			
f _y =50 ksi	Yield stress				
<i>w_b</i> =18 <i>plf</i>	From AISC Shapes Database				
<i>I</i> =61.9 <i>in</i> ⁴	From AISC Shapes Database				
$Z_x = 17.0 \ in^3$	From AISC Shapes Database				
<i>t</i> _w =0.230 <i>in</i>	From AISC Shapes Database				
<i>t_f</i> = 0.330 <i>in</i>	From AISC Shapes Database				
b _f =5.25 in	From AISC Shapes Database				

d = 8.14 *in* From AISC Shapes Database

 $A_w = (d - t_f \cdot 2) \cdot t_w = 1.72 \text{ in}^2$

Member Strength	
$M_{all} = 0.9 \cdot f_y \cdot Z_x =$	= 63.75 <i>kip · ft</i>
$V_{all} = 0.6 \cdot f_y \cdot A_w =$	= 51.612 <i>kip</i>
Strength Requirements	
$w_d = t_b \cdot D_l + w_b = 0$	0.288 <i>klf</i>
$w_l = t_b \cdot L_l = 0.2$ k	lf
$w_u = \max(, 1.4 \cdot w_d)$	$(1, 1.2 \cdot w_d + 1.6 \cdot w_l) = 665.6 plf$
Maximum momen	ıt
$M_{max} = w_u \cdot \frac{L_{D1}^2}{8}$	= 21.299 <i>kip</i> · <i>ft</i>
Moment = "Okay"	, , , , , , , , , , , , , , , , , , ,
Maximum shear	
$V_{max} = w_u \cdot \frac{L_{D1}}{2} =$	5.325 <i>kip</i>
Shear = "Okay"	
Allowable Serviceability De	flections
$8_{Sall} = \frac{L_{D1}}{240} = 0.8$ in	Short Term Allowable Deflection
$B_{Tall} = L_{D1} = 0.533$ i	<i>n</i> Total Allowable Deflection
360	

	<i>W</i> ₁ 4	
	$5 \cdot L_{D1}$	
	$8_{\rm short} = \frac{2}{0.082} = 0.082$ in	
	384 E I	
	Short = "Okay"	
	$(w_l \land a_l)$	
	$5 \cdot l = \frac{1}{2} + w_{di} \cdot L_{D1}$	
	$8_{long} = , 2) = 0.319 in$	
	384 · F · I	
	$8_{tot} = 8_{short} + 8_{long} = 0.401 in$	
	<i>Total</i> = "Okay"	
Design	Summary	
	A W8x18 satisfies all requirements for this preliminary design.	
	A W8x18 satisfies all requirements for this preliminary design.	
	A W8x18 satisfies all requirements for this preliminary design.	
	A W8x18 satisfies all requirements for this preliminary design.	
	A W8x18 satisfies all requirements for this preliminary design.	
	A W8x18 satisfies all requirements for this preliminary design.	
	A W8x18 satisfies all requirements for this preliminary design.	
	A W8x18 satisfies all requirements for this preliminary design.	
	A W8x18 satisfies all requirements for this preliminary design.	
	A W8x18 satisfies all requirements for this preliminary design.	
	A W8x18 satisfies all requirements for this preliminary design.	
	A W8x18 satisfies all requirements for this preliminary design.	
	A W8x18 satisfies all requirements for this preliminary design.	
	A W8x18 satisfies all requirements for this preliminary design.	
	A W8x18 satisfies all requirements for this preliminary design.	
	A W8x18 satisfies all requirements for this preliminary design.	
	A W8x18 satisfies all requirements for this preliminary design.	
	A W8x18 satisfies all requirements for this preliminary design.	
	A W8x18 satisfies all requirements for this preliminary design.	
	A W8x18 satisfies all requirements for this preliminary design.	
	A W8x18 satisfies all requirements for this preliminary design.	

Second Floor Joist Area D	02 Analysis	AREA C	AREA D-1	AREA D-2	
Assumptions (if needed)		AREA B ARE	A A		
Assume W12x LRFD Load co	26 ombination 2, 1.2D + 1.6L	AREA E			
Define Variables	gravity loads				
L _{D2} =24 ft	All member dimensions are for a V	V12x26			
D _l =54 psf	See load calculations				
<i>L</i> ₁ =40 <i>psf</i>	Proposed use is residential				
<i>t_b</i> =5 <i>ft</i>	Assumed tributary width for joists				
<i>E</i> = 29000 <i>ksi</i>	Assumed Modulus of Elasticity of S	Steel			
f _y =50 ksi	Yield stress				
w _b =26 plf	From AISC Shapes Database				
<i>l</i> =204 <i>in</i> ⁴	From AISC Shapes Database				
$Z_x = 37.2 \text{ in}^3$	From AISC Shapes Database				
<i>t</i> _w =0.230 <i>in</i>	From AISC Shapes Database				
<i>t_f</i> = 0.380 <i>in</i>	From AISC Shapes Database				
<i>b</i> _f =6.49 <i>in</i>	From AISC Shapes Database				

d = 12.2 *in* From AISC Shapes Database

 $A_w = (d - t_f \cdot 2) \cdot t_w = 2.631 \text{ in}^2$

Member Strength
$M_{all} = 0.9 \cdot f_y \cdot Z_x = 139.5 \ kip \cdot ft$
$V_{all} = 0.6 \cdot f_y \cdot A_w = 78.936$ kip
Strength Requirements
$w_d = t_b \cdot D_l + w_b = 0.296 \text{ klf}$
$w_l = t_b \cdot L_l = 0.2 \ klf$
$w_u = \max(1.4 \cdot w_d, 1.2 \cdot w_d + 1.6 \cdot w_l) = 675.2 plf$
Maximum moment
$M_{max} = w_u \cdot \frac{E_{D2}}{8} = 48.614 \text{ kip} \cdot \text{ft}$
Moment = "Okay"
Maximum shear
$V_{max} = w_u \cdot \frac{E_{D2}}{2} = 8.102 \text{ kip}$
Shear = "Okay"
Allowable Serviceability Deflections
$8_{Sall} = \frac{L_{D2}}{240} = 1.2$ in Short Term Allowable Deflection
$B_{T_{2}} = L_{D2} = 0.8$ <i>in</i> Total Allowable Deflection
360

Service	ability Calculations
	W ₁ 4
	$5 \cdot L_{D2}$
	$8_{\rm short} = \frac{2}{100000000000000000000000000000000000$
	384 · E · 1
	Short = "Okay"
	$(w_1 \rightarrow 4$
	$5 \cdot 1 + W_{d1} \cdot L_{D2}$
	$o_{long} - , 2) = 0.5 $ in
	384 · E · I
	$\delta_{tot} = \delta_{short} + \delta_{long} = 0.626$ in
	$T_{atal} = "O(a)$ "
	Tolar – Okay
Design	Summany
Design	
	A W12x26 satisfies all requirements for this preliminary design

Second Floor Joist Area E	Analysis	AREA C	AREA D-1 AREA D-2
Assumptions (if needed)			
Assume W18 LRFD Load co governs floor	k35 ombination 2, 1.2D + 1.6L gravity loads	AREA E	
$L_{r} = 29 \text{ ft}$	All member dimensions are for a	W18x35	
$L_E = 23 R$	All member dimensions are for a	W10,35	
D ₁ =54 psf	See load calculations		
<i>L</i> ₁ =40 psf	Proposed use is residential		
$t_b=5$ ft	Assumed tributary width for joists	S	
E = 29000 ksi	Assumed Modulus of Elasticity of	Steel	
f _y =50 ksi	Yield stress		
w _b =35 plf	From AISC Shapes Database		
<i>I</i> =510 <i>in</i> ⁴	From AISC Shapes Database		
$Z_x = 66.5 \ in^3$	From AISC Shapes Database		
<i>t</i> _w =0.300 <i>in</i>	From AISC Shapes Database		
<i>t_f</i> = 0.425 <i>in</i>	From AISC Shapes Database		
<i>b</i> _f =6.00 <i>in</i>	From AISC Shapes Database		

d = 17.7 *in* From AISC Shapes Database

 $A_w = (d - t_f \cdot 2) \cdot t_w = 5.055 \text{ in}^2$

Member Strength	
$M_{all} = 0.9 \cdot f_y \cdot Z_x = 249.375 \ kip \cdot ft$	
$V_{all} = 0.6 \cdot f_y \cdot A_w = 151.65$ kip	
Strength Requirements	
$w_d = t_b \cdot D_l + w_b = 0.305 \ klf$	
$w_l = t_b \cdot L_l = 0.2 \ klf$	
$w_u = \max(1.4 \cdot w_d, 1.2 \cdot w_d + 1.6 \cdot w_l) = 686 \text{ plf}$	
Maximum moment	
$M_{max} = w_u \cdot \frac{L_E^2}{2} = 72.116 \ kip \cdot ft$	
8 Moment = "Okay"	
Maximum shear	
$V_{max} = w_u \cdot \frac{L_E}{2} = 9.947 \ \textit{kip}$	
Shear = "Okay"	
Allowable Serviceability Deflections	
$8_{Sall} = \frac{L_E}{240} = 1.45$ in Short Term Allowable Deflection	
$8_{Tall} = \frac{L_E}{360} = 0.967$ in Total Allowable Deflection	

0	CEADINITY CAICULATIONS	
Servic		
	$5 \cdot \frac{w_l}{2} \cdot L_E^4$	
	8 = 0.108 in	
	short 284. E. I	
	364 · E · 1	
	Short = "Okay"	
	(w_1)	
	$8_{logg} = \frac{2}{2} = 0.436$ in	
	384 · E · I	
	$8_{tot} = 8_{short} + 8_{long} = 0.543 $ in	
	Total = "Okay"	
	Total – Okay	
Desig	n Summary	
Desig	n Summary	
Desig	n Summary A W18x35 satisfies all requirements for this preliminary design.	
Desig	n Summary A W18x35 satisfies all requirements for this preliminary design.	
Desig	n Summary A W18x35 satisfies all requirements for this preliminary design.	
Desig	n Summary A W18x35 satisfies all requirements for this preliminary design.	
Desig	n Summary A W18x35 satisfies all requirements for this preliminary design.	
Desig	n Summary A W18x35 satisfies all requirements for this preliminary design.	
Desig	n Summary A W18x35 satisfies all requirements for this preliminary design.	
Desig	n Summary A W18x35 satisfies all requirements for this preliminary design.	
Desig	n Summary A W18x35 satisfies all requirements for this preliminary design.	
Desig	n Summary A W18x35 satisfies all requirements for this preliminary design.	
Desig	n Summary A W18x35 satisfies all requirements for this preliminary design.	
Desig	n Summary A W18x35 satisfies all requirements for this preliminary design.	
Desig	n Summary A W18x35 satisfies all requirements for this preliminary design.	
Desig	n Summary A W18x35 satisfies all requirements for this preliminary design.	
Desig	n Summary A W18x35 satisfies all requirements for this preliminary design.	
Desig	n Summary A W18x35 satisfies all requirements for this preliminary design.	

Page 36

First Flo	or Beam Area A/B	Analysis
<u>Assum</u> p	otions (if needed)	AREA C Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
	 Risk factor IV Cold ventilated LRFD Load co governs floor Assume W21x 	d roof ombination 2, 1.2D + 1.6L gravity loads 68
Define \	/ariables	AREA E
	L = 19 <i>ft</i>	All member dimensions are for a W21x68
	D ₁ =54 psf	See load calculations
	L ₁ = 100 psf	First floor live load for lobby/gathering areas
	$L_{A} = 28 \ ft$	Joist length
	w _b =36 plf	Joist weight from AISC Shapes Database
	<i>t</i> _b =5 <i>ft</i>	Assumed tributary width for joists
	E=29000 ksi	Assumed Modulus of Elasticity of Steel
	f _y =50 ksi	Yield stress
	/=1480 <i>in</i> ⁴	From AISC Shapes Database
	$Z_x = 160 \ in^3$	From AISC Shapes Database
	<i>t_w</i> =0.430 <i>in</i>	From AISC Shapes Database
	t _f =0.685 in	From AISC Shapes Database

 $b_f = 8.27$ in From AISC Shapes Database

d = 21.1 *in* From AISC Shapes Database

 $A_w = (d - t_f \cdot 2) \cdot t_w = 8.484 \text{ in}^2$

<u>Calcu</u>	Ilation of Point Loads
	$P_d = L_A \bullet \left(\langle t_b \bullet D_l + w_b \right) = 8.568 \text{ kip}$
	$P_l = t_b \bullet L_l \bullet L_A = 14 \ kip$
	$P_u = \max(1.4 \cdot P_d, 1.2 \cdot P_d + 1.6 \cdot P_l) = 32.682 \ kip$
	Moment, Shear, Deflection analysis performed in ROBOT. Results are summarized below.
Member	Strength
	$M_{all} = 0.9 \cdot f_y \cdot Z_x = 600 \ kip \cdot ft$
	$V_{all} = 0.6 \cdot f_y \cdot A_w = 254.517 \ kip$
Strength	Requirements
	Maximum moment
-0.00	
	FZ=73.05 273.35 308.17 308.17 FZ=59.29
M	_{max} = 308.17 <i>kip</i> • <i>ft</i>
Мо	oment = "Okay"

First Floor Beam Area C Analysis

Assumptions (if needed)

- Risk factor IV
- Cold ventilated roof
- LRFD Load combination 2, 1.2D + 1.6L governs floor gravity loads
- Assume W21x44

Define Variables

L = 18 ft	All member dimensions are for a W21x44
D ₁ =54 psf	See load calculations
L ₁ = 100 psf	First floor live load for lobby/gathering areas
L _c =26 ft	Joist length
w _b =31 plf	Joist weight from AISC Shapes Database
t _b =5 ft	Assumed tributary width for joists
$F = 29000 \ ksi$	Assumed Modulus of Elasticity of Steel
L 20000 N31	Assumed modulus of Elasticity of Oleci
f _y =50 ksi	Yield stress
$f_y = 50 \text{ ksi}$ $l = 843 \text{ in}^4$	Yield stress From AISC Shapes Database
$f_y = 50$ ksi l = 843 in ⁴ $Z_x = 95.4$ in ³	Yield stress From AISC Shapes Database From AISC Shapes Database
$f_y = 50$ ksi l = 843 in ⁴ $Z_x = 95.4$ in ³ $t_w = 0.350$ in	Yield stress From AISC Shapes Database From AISC Shapes Database From AISC Shapes Database

	<u>Analysis</u>				1
Assumptions (if needed)		AREA C	EA D-1	EA D-2	-
 Risk factor IV Cold ventilate LRFD Load of governs floor Assume W21 	ed roof combination 2, 1.2D + 1.6L r gravity loads x44	AREA B ARE	A A	ARI	
Define Variables		AREA E			
L = 18 ft	All member dimensions are for a	W21x44			
D ₁ =54 psf	See load calculations				
<i>L</i> ₁ = 100 <i>psf</i>	First floor live load for lobby/gathe	ering areas			
$L_{D1} = 24 \ ft$	Joist length				
$w_b=26$ plf	Joist weight from AISC Shapes Da	atabase			
<i>t</i> _b =5 <i>ft</i>	Assumed tributary width for joists				
E=29000 ksi	Assumed Modulus of Elasticity of	Steel			
f _y =50 ksi	Yield stress				
/=843 <i>in</i> ⁴	From AISC Shapes Database				
Z _x =95.4 in ³	From AISC Shapes Database				
<i>t</i> _w =0.350 <i>in</i>	From AISC Shapes Database				
t _f =0.450 in	From AISC Shapes Database				

*b*_f = 6.50 *in* From AISC Shapes Database

d = 20.7 *in* From AISC Shapes Database

 $A_w = (d - t_f \cdot 2) \cdot t_w = 6.93 \text{ in}^2$

	<u> </u>	<u>and yord</u>			
Assum	<u>ptions</u> (if needed)			EA D-2	
	 Risk factor IV Cold ventilate LRFD Load c governs floor Assume W21 	ed roof ombination 2, 1.2D + 1.6L gravity loads x44	AREA B AREA A	AR	
Define	Variables		AREA E	_	
	L = 14 <i>ft</i>	All member dimensions are for	a W21x44		
	D ₁ =54 psf	See load calculations			
	L ₁ =100 psf	First floor live load for lobby/ga	thering areas		
	L _E =24 ft	Joist length			
	<i>w_b</i> =35 <i>plf</i>	Joist weight from AISC Shapes	Database		
	<i>t</i> _b =5 <i>ft</i>	Assumed tributary width for join	sts		
	E=29000 ksi	Assumed Modulus of Elasticity	of Steel		
	f _y =50 ksi	Yield stress			
	1=843 <i>in</i> ⁴	From AISC Shapes Database			
	$Z_x = 95.4 \text{ in}^3$	From AISC Shapes Database			
	<i>t</i> _w =0.350 <i>in</i>	From AISC Shapes Database			
	<i>t_f</i> =0.450 <i>in</i>	From AISC Shapes Database			

*b*_f = 6.50 *in* From AISC Shapes Database

d = 20.7 *in* From AISC Shapes Database

 $A_w = (d - t_f \cdot 2) \cdot t_w = 6.93 \text{ in}^2$

Second Floor Beam Area	A/B Analysis
Assumptions (if needed)	
 Risk factor IV Cold ventilate LRFD Load co governs floor Assume W21> 	d roof ombination 2, 1.2D + 1.6L gravity loads <44
Define Variables	AREA E
L = 19 <i>ft</i>	All member dimensions are for a W21x44
D ₁ =54 psf	See load calculations
<i>L</i> ₁ =40 psf	First floor live load for lobby/gathering areas
$L_A = 28 \ ft$	Joist length
w _b =26 plf	Joist weight from AISC Shapes Database
$t_b = 5 ft$	Assumed tributary width for joists
E=29000 ksi	Assumed Modulus of Elasticity of Steel
f _y =50 ksi	Yield stress
<i>l</i> =843 <i>in</i> ⁴	From AISC Shapes Database
$Z_x = 95.4 \text{ in }^3$	From AISC Shapes Database
<i>t</i> _w =0.350 <i>in</i>	From AISC Shapes Database
<i>t_f</i> = 0.450 <i>in</i>	From AISC Shapes Database

*b*_f = 6.50 *in* From AISC Shapes Database

d = 20.7 *in* From AISC Shapes Database

 $A_w = (d - t_f \cdot 2) \cdot t_w = 6.93 \text{ in}^2$

<u>Assı</u>	umptions (if needed)		
	 Risk factor IV Cold ventilate LRFD Load congoverns floor Assume W21: 	ed roof ombination 2, 1.2D + 1.6L gravity loads x44	
Defi	ne Variables	AREA E	
	L = 18 <i>ft</i>	All member dimensions are for a W21x44	
	D ₁ =54 psf	See load calculations	
	L ₁ =40 psf	First floor live load for lobby/gathering areas	
	$L_c = 26 \ ft$	Joist length	
	<i>w</i> _b =31 <i>plf</i>	Joist weight from AISC Shapes Database	
	<i>t_b</i> =5 <i>ft</i>	Assumed tributary width for joists	
	E=29000 ksi	Assumed Modulus of Elasticity of Steel	
	f _y =50 ksi	Yield stress	
	1=843 in ⁴	From AISC Shapes Database	
	$Z_x = 95.4 \ in^3$	From AISC Shapes Database	
	t _w =0.350 <i>in</i>	From AISC Shapes Database	
	t _f =0.450 in	From AISC Shapes Database	

 $b_f = 6.50$ in From AISC Shapes Database

d = 20.7 *in* From AISC Shapes Database

 $A_w = ((d - t_f \cdot 2)) \cdot t_w = 6.93 \text{ in}^2$

Calculation of Point Loads

Fall 2022

<u>Assı</u>	umptions (if needed)		
	 Risk factor IV Cold ventilate LRFD Load congoverns floor Assume W21: 	ed roof ombination 2, 1.2D + 1.6L gravity loads x44	
Defir	ne Variables	AREA E	
	L = 18 <i>ft</i>	All member dimensions are for a W21x44	
	D ₁ =54 psf	See load calculations	
	L ₁ =40 psf	First floor live load for lobby/gathering areas	
	$L_{D1} = 24 \ ft$	Joist length	
	<i>w_b</i> =26 <i>plf</i>	Joist weight from AISC Shapes Database	
	<i>t</i> _b =5 <i>ft</i>	Assumed tributary width for joists	
	E=29000 ksi	Assumed Modulus of Elasticity of Steel	
	f _y =50 ksi	Yield stress	
	1=843 in ⁴	From AISC Shapes Database	
	Z _x =95.4 in ³	From AISC Shapes Database	
	t _w =0.350 in	From AISC Shapes Database	
	t _f =0.450 in	From AISC Shapes Database	

 $b_f = 6.50$ in From AISC Shapes Database

d = 20.7 *in* From AISC Shapes Database

 $A_w = (d - t_f \cdot 2) \cdot t_w = 6.93 \text{ in}^2$

<u>Assı</u>	umptions (if needed)	
	 Risk factor IV Cold ventilate LRFD Load construction Assume W21; 	ed roof ombination 2, 1.2D + 1.6L gravity loads x44
Defir	ne Variables	AREA E
	L = 14 <i>ft</i>	All member dimensions are for a W21x44
	D ₁ =54 psf	See load calculations
	L ₁ =40 psf	First floor live load for lobby/gathering areas
	$L_E = 24 \ ft$	Joist length
	<i>w_b</i> =35 <i>plf</i>	Joist weight from AISC Shapes Database
	t _b =5 ft	Assumed tributary width for joists
	E=29000 ksi	Assumed Modulus of Elasticity of Steel
	f _y =50 ksi	Yield stress
	/=843 in ⁴	From AISC Shapes Database
	$Z_x = 95.4 \ in^3$	From AISC Shapes Database
	<i>t</i> _w =0.350 <i>in</i>	From AISC Shapes Database
	t _f =0.450 in	From AISC Shapes Database

 $b_f = 6.50$ in From AISC Sha

From AISC Shapes Database

d = 20.7 *in* From AISC Shapes Database

 $A_w = (d - t_f \cdot 2) \cdot t_w = 6.93 \text{ in}^2$

Column Analysis Overview

Assumptions (if needed)

- Risk factor IV
- Foundation to Roof 26'
- Foundation to 2nd floor 16'

Define Variables

<i>H</i> _r = 26 ft	Height of column from foundation to roof
<i>H_f</i> = 16 <i>ft</i>	Height of column from foundation to second floor
S=87 psf	Peak snow load due to unbalanced loading, see load calculations
D _r =34 psf	Roof dead load from trusses and roof coverings
D _f =60 psf	Floor dead load from slab, joists, beams, and misc.
L _r =20 psf	Roof live load, see load calculations
L ₁₁ =100 psf	First floor live load
L ₁₂ =40 psf	Second floor live load
W=9.6 psf	Worst case wind load on roof
W _u =- 26 psf	Worst case wind uplift on roof

Note: Column loads will be calculated from each columns respective tributary area.

$$F_{1} = \max(1.4 \cdot D_{f}, 1.2 \cdot D_{f} + 1.6 \cdot L_{11}) = 232 \text{ psf}$$

$$F_{2} = \max(1.4 \cdot D_{f}, 1.2 \cdot D_{f} + 1.6 \cdot L_{12}) = 136 \text{ psf}$$

$$F_{r} = \max(0.9 \cdot D_{r} + 1 \cdot W_{u}) = 4.6 \text{ psf}$$

Column B3 Analysis	
Assumptions (if needed)	····································
Risk factor IV	AREA C 🦾 💭 📴 🙀 🥵
Foundation to Roof 2	26' 02
Foundation to 2nd fl	oor 16'
	AREA B CAL AREA A CE7
	FU F6 F7
	AREA E
Define Variables	63 67
$T_r = 1$	1 for roof bearing, 0 for non-roof bearing
$H = I \text{ if } T_r = 0 = 26 \text{ fr}$	
q=1.5 ksf As	ssumed Bearing Pressure
First Floor Load	
<i>d</i> _{rf} = 26 ft	Distance away from next column to the right in plan view
$d_{lf} = 0 ft$	Distance away from next column to the left in plan view
$d_{uf} = 0 ft$	Distance away from next column above in plan view
$d_{df} = 18 ft$	Distance away from next column below in plan view
$T = \begin{pmatrix} d_{rf} \\ + \end{pmatrix} \begin{pmatrix} d_{lf} \\ \cdot \end{pmatrix}$	$+ \frac{d_{df}}{1} = 117 ft^2$
$P_{u1} = F_1 \bullet T_{Af} = 27.144$	kip
Second Floor Load	
$P_{u2} = F_2 \cdot T_{Af} = 15.912$	

Roof Load	
<i>d</i> _{rr} = 26 <i>ft</i>	Distance away from next column to the right in plan view
$d_{lr}=0$ ft	Distance away from next column to the left in plan view
$d_{ur}=0$ ft	Distance away from next column above in plan view
$d_{dr} = 18 \; ft$	Distance away from next column below in plan view
$(d_{rr} d_{lr}) (d_{ur})$	d_{dr} 2
$T_{Ar} = [+] +] + $, 2 2), 2	2)
$P_{ur} = F_r \cdot T_{Ar} = 21.622$ kip)
Strength Requirements	
$\frac{(P_{u1} + P_{u2} + P_{ur})}{P_{u1} = \text{ceil } I, kip$	kip=65 kip
Member Strength	
H = 26 ft HSS 6 >	x 6 x 5/16
$\psi_{c}P_{n} = 79.6 \text{ kip}$ $U = \frac{P_{u}}{\psi_{c}P_{n}} \cdot 100 = 81.658$	Percent strength of column utilized
Design Summary	
An HSS 6 x 6 x 5/16 for co	blumn B3 satisfies this preliminary design
Footing Design: $A = \frac{P_u}{q} = 43.333 \text{ ft}^2$	
L = A = 6.583 ft	

Use 7 ft square footing

<u>Assur</u>	nptions (if needed)	
_	Risk factor IV	AREA C 🔓 යූ 🛵 🚛 🥵
	Foundation to Roof	26'
	Foundation to 2nd	floor 16' 03 04 05 07 78
_		
		AREA B AREA A EF
		FU F6 F <mark>7</mark>
		FL AREA E
Define	e Variables	<u>6</u> 3 67
	$T_r = 1$	1 for roof bearing, 0 for non-roof bearing
	$H = {}^{I}$ if $T_r = 0$ = 26	ft
	else	
First F	loor Load	
	$d_{rf} = 16 ft$	Distance away from next column to the right in plan view
	$d_{lf} = 26 ft$	Distance away from next column to the left in plan view
	$d_{uf} = 0$ ft	Distance away from next column above in plan view
_	d _{df} = 18 ft	Distance away from next column below in plan view
	$T_{Af} = \begin{bmatrix} a_{ff} & a_{ff} \\ 2 & + 2 \end{bmatrix} \cdot \begin{bmatrix} a_{ff} \\ 2 \end{bmatrix}$	$\frac{df}{2} + \frac{df}{2} = 189 \text{ ft}^2$
	,),	
	$P_{14} = F_4 \bullet T_{14} = 43.848$	3 kin
-	nd Floor Load	
Secor		
<u>Secor</u>		25 704 <i>kin</i>

CEE:4850

Assur	<u>nptions</u> (if needed)	
	Risk factor IV	🕂 🖂 🖓 AREA C 👍 🏹 🎝 🙀 🥵
	Foundation to F	Roof 26'
	Foundation to .	
		AREA B AREA A VER
D. C.		63 63
Define	e Variables	
	<i>T_r</i> = 1	1 for roof bearing, 0 for non-roof bearing
	$H = I \text{ if } T_r = 0 =$	26 ft
_	else	
	H,	
Cirot [
<u> </u>		
	<i>d</i> _{rf} = 23 <i>ft</i>	Distance away from next column to the right in plan view
	$d_{\rm re} = 16$ ft	Distance away from next column to the left in plan view
	$d_{uf} = 0$ ft	Distance away from next column above in plan view
	<i>d_{df}</i> = 18 <i>ft</i>	Distance away from next column below in plan view
	$T_{Af} = \begin{bmatrix} 0_{H} \\ 2 \end{bmatrix} + \begin{bmatrix} 0_{H} \\ 2 \end{bmatrix}$	$\cdot I_{2} + \frac{a_{df}}{2} = 175.5 \ ft^{2}$
	, ,)	· · · · · · · · · · · · · · · · · · ·
	$P_{u1} = F_1 \bullet T_{Af} = 40$	0.716 <i>kip</i>
Secor	nd Floor I oad	
		c = 23.868 kin

<u>Assun</u>	nptions (if needed)	
	Risk factor IV	AREA C 🔓 🕁 🛵 🛃 🖊
	Foundation to Roof	26' 01 4
	Foundation to 2nd 1	iloor 16' 07 08 04 05 07 78
_		AREA B AREA A E7
		FI F6 F7
Define	Variables	63 67
	$T_r = 1$	1 for roof bearing, 0 for non-roof bearing
	$H = 1$ if $T_{r} = 0$ = 26	Ff
_		
First F	loor Load	
	$d_{rf} = 0$ ft	_ Distance away from next column to the right in plan view
	$d_{lf} = 23 \ ft$	Distance away from next column to the left in plan view
	$d_{uf} = 0$ ft	Distance away from next column above in plan view
	$d_{df} = 18 ft$	Distance away from next column below in plan view
	$(d_{rf} d_{lf}) (d_{lf})$	$d_{df} = 102 \text{ f} \text{ f}^2$
	$I_{Af} = 1_2 + 2_1 \cdot 1_2$	$+ 2 = 103.5 \pi^{-1}$
	$P_{u1} = F_1 \bullet T_{Af} = 24.012$	kip
Secon	d Floor I oad	
<u></u>		
	$P_{u2} = F_2 \bullet T_{Af} = 1$	4.076 <i>kip</i>

<u>olumn C</u>	<u>3 Analysis</u>	
<u>Assum</u>	otions (if needed)	
	Risk factor IV	AREA C 🔏 🖉 📴 🗸 🦊
	Foundation to Roo	of 26'
	Foundation to 2nd	1 floor 16' 03 04 05 04 08
		er area b en area a per
		FY F6 F7
		FL AREA E
Define '	Variables	
	$T_r = 1$	1 for roof bearing, 0 for non-roof bearing
	$H = {}^{I}$ if $T_r = 0 = 26$	5 ft
	else	
	H_r	
First Flo	bor Load	
	$d_{rf} = 26 ft$	 Distance away from next column to the right in plan view
	$d_{lf} = 0$ ft	Distance away from next column to the left in plan view
	d - 12 ff	Distance availy from next column above in plan view
	$u_{uf} = 13 \ \mathbf{n}$	Distance away noni next column above in plan view
	<i>d</i> _{df} = 18 <i>ft</i>	Distance away from next column below in plan view
	(d_{ℓ}, d_{ℓ})	$d_{re} = d_{re}$
	$T_{Af} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix}$	$\frac{2}{2} + \frac{2}{2} = 201.5 \text{ ft}^2$
	,),	
	$P_{u1} = F_1 \bullet T_{Af} = 46.74$	l8 <i>kip</i>
Second		
Second		
	$P_{u2} = F_2 \bullet T_{Af} =$	27.404 <i>kip</i>

Δεειιο	notions (if needed)	
Assun	iptions (in needed)	
	Risk factor IV	
	 Foundation to Roo Foundation to 2nd 	of 26'
		AREA B AREA A 257
		63 67
Define	variables	
	$T_r = 1$	1 for roof bearing, 0 for non-roof bearing
_	H = I if $T = 0$ $I = 26$	
First F	loor Load	
	$d_{-} = 16$ ff	Distance away from payt column to the right in plan view
	$d_{lf} = 26 \ ft$	Distance away from next column to the left in plan view
	$d_{uf} = 18 \ ft$	Distance away from next column above in plan view
	$d_{df} = 13 \ ft$	Distance away from next column below in plan view
	(d, d_{n})	
	$T_{Af} = \begin{bmatrix} a_{H} \\ 2 \end{bmatrix} + \begin{bmatrix} a_{H} \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 0 \end{bmatrix}$	$\frac{2}{2} + \frac{2}{2} = 325.5 \text{ ft}^2$
	· · · · · · · · · · · · · · · · · · ·	
	$P_{u1} = F_1 \bullet T_{Af} = 75.51$	6 <i>kip</i>
0		
Secon		
	$P_{u2} = F_2 \bullet T_{Af} =$	44.268 <i>kip</i>

olumn C7	Analysis	
Assump	tions (if needed)	B ³ ⁶⁷ 2 ⁶ ⁸
	Risk factor IV	123 AREA C 🔏 🕁 🛵 🥁 🦊
	Foundation to Room	f 26'
	 Foundation to 2nd 	
		G3 67
Define \	/ariables	
	$T_r = 0$	1 for roof bearing, 0 for non-roof bearing
	$H = \Pi I_r = 0 = 16$	
First Flo	or Load	
	$a_{rf} = 23$ m	Distance away from next countrin to the right in plan view
	$d_{lf} = 0$ ft	Distance away from next column to the left in plan view
	<i>d</i> _{uf} = 18 <i>ft</i>	Distance away from next column above in plan view
	d _{df} = 13 ft	Distance away from next column below in plan view
	$(d_{rf} - d_{lf}) (d_{rf}) = 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +$	$J_{uf} = d_{df} \sqrt{2}$ 2 + 2 = 178.25 ft ²
	, , ,	
	$P_{1} - F_{2} = T_{2} - A135$	
	$1 u_1 = 1 + 1 + 1 A_1 = 4 + 1.33$	
Second	Floor Load	
	$P_{0} = F_{0} \cdot T_{0} -$	24.242 kin
	1 u2 - 1 2 TAt -	

Assum	iptions (if needed)	⁸⁵ <u>5</u> <u>6</u> 6
	Risk factor IV	
	Foundation to Roof	
	Foundation to 2nd to	
		AREA B AREA A 153
<u>Define</u>	Variables	
	$T_r = 0$	1 for roof bearing 0 for non-roof bearing
	$H = if T_r = 0 = 16$	ft
	else	
	<i>H</i> _r	
First F	loor Load	
	$d_{rf} = 0$ ft	Distance away from next column to the right in plan view
	$d_{lf} = 24 ft$	Distance away from next column to the left in plan view
	$a_{uf} = 18 \pi$	Distance away from next column above in plan view
	<i>d</i> _{df} = 13 <i>ft</i>	Distance away from next column below in plan view
	$T_{Af} = \begin{bmatrix} a_{ff} & a_{lf} \\ 2 & + 2 \end{bmatrix} \begin{bmatrix} \bullet \end{bmatrix} 2$	$\frac{d_{df}}{dt} + \frac{d_{df}}{2} = 186 \ ft^2$
	, , , , ,	
	$P_{1} = F_{1} \cdot T_{1} = 43.152$) kin
	$1 u_1 - 1 1 u_1 - 40.102$	
Secon	d Floor Load	
	$P_{\alpha} = F_{\alpha} \cdot T_{\alpha} - C_{\alpha}$	25 296 <i>kin</i>

Assum	ptions (if needed)	
	Risk factor IV	C AREA C C A AREA C A AREA C C A AREA C A AREA C
	Foundation to Re	
		AREA B AREA A PE7
		EI F6 F7
		F ¹ AREA E
Define	Variables	<u>63</u>
	$J_r = 1$	1 for root bearing, 0 for non-root bearing
	$H = \text{ if } T_r = 0 = 2$	26 ft
	H ₁ H ₁	
	else	
First Fl	oor Load	
	<i>d</i> _{rf} = 13 <i>ft</i>	Distance away from next column to the right in plan view
	$d_{tf} = 0$ ft	Distance away from next column to the left in plan view
	$a_{uf} = 0 \pi$	Distance away from next column above in plan view
	$d_{df} = 20 ft$	Distance away from next column below in plan view
	$(d_{rf} d_{lf})$	$(d_{uf} d_{df})$
	$T_{Af} = \begin{bmatrix} n \\ 2 \end{bmatrix} + \begin{bmatrix} n \\ 2 \end{bmatrix}$	$ \frac{1}{2} + \frac{1}{2} = 65 \frac{ft^2}{1}$
	$P_{u1} = F_1 \bullet T_{Af} = 15.0$	08 <i>kip</i>
<u>Secon</u>	d Floor Load	
	$P_{\mu_2} = F_2 \bullet T_{Af}$	= 8.84 <i>kip</i>
	<u> </u>	

Roof Load	$K_r = 0$ 1 m	natching, 0 for non-matching
$d_{rr} = 1$ if $K_r = 1 = 13$ ft	t Distance aw	ay from next column to the right in plan view
d _r else 13 ft	$d_{lr} = \begin{array}{c} \text{if } \mathcal{K}_r = 1 \\ \mathcal{D}_{lf} \\ \text{else} \\ \mathcal{D} ft \end{array}$	= 0 <i>ft</i> Distance away from next column to the left in plan ^{viev}
$d_{ur} = \begin{bmatrix} \text{if } K_r = 1 \end{bmatrix} = 0 \text{ ft}$	Distance aw	ay from next column above in plan view
d _{uf} else 0 ft	$d_{dr} = \begin{bmatrix} \text{if } K_r = 1 \\ d_{df} \end{bmatrix}$ else 33 ft	= 33 <i>ft</i> Distance away from next column below in plan view
$T_{Ar} = \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i}$	$\begin{bmatrix} I & I \\ I & I \end{bmatrix}^{I} \begin{bmatrix} a_{ur} \\ + \end{bmatrix}^{I} \begin{bmatrix} a_{dr} \\ I \end{bmatrix} = 1$	07.25 <i>ft</i> ²
$P_{ur} = F_r \bullet T_{Ar} =$	19.82 <i>kip</i>	
Strength Requiremen	<u>its</u>	P _{ur} = 19.82 <i>kip</i>
$P_u = \operatorname{ceil} I$	$P_{u2} + P_{ur} \setminus \frac{ kip }{ kip }$	14 <i>kip</i>
Member Strength		
<i>H</i> = 26 <i>ft</i>	HSS 6 x 6 x 5/1	6
$\phi_c P_n = 79.6$ kij	D	
$U = \begin{array}{c} P_u \\ \bullet 100 \\ \theta_r P_n \end{array}$	= 55.276 Percer	nt strength of column utilized
Design Summary		
An HSS 6 x 6 x	5/16 for column D	2 satisfies this preliminary design

<u>Column D3 A</u>	nalysis
Assumptic	ns (if needed)
•	Risk factor IV
•	Foundation to Roof 26'
•	Foundation to 2nd floor 16'
	AREA B AREA A PE7
	FU F6 7
	FL AREA E
	6367
7	r = 1 1 for roof bearing, 0 for non-roof bearing
	I = 1 if $T = 0$ $I = 26$ ft
First Floor	Load
d	f = 15 ft Distance away from next column to the right in plan view
d	f = 13 <i>ft</i> Distance away from next column to the left in plan view
d	uf = 13 <i>ft</i> Distance away from next column above in plan view
d	df = 19 <i>ft</i> Distance away from next column below in plan view
	$(d_{ee}, d_{ee}) (d_{ee}, d_{ee}) (d_{ee}, d_{ee})$
7	$A_{f} = \begin{bmatrix} n \\ 2 \end{bmatrix} + \begin{bmatrix} n \\ 2 $
	· · · · · · · · · · · · · · · · · · ·
	$u_{1} = F_{1} \bullet T_{af} = 42.166$ kip
Second Flo	bor Load
	$h_{0} = F_{0} \cdot T_{0} = 24.718 \text{ kin}$

Roof Load	$K_r = 0$ 1 matching, 0 for non-matching
$d_{rr} = \begin{bmatrix} \text{if } K_r = 1 \end{bmatrix} = 15 \text{ ft}$	Distance away from next column to the right in plan view
$\begin{vmatrix} & & \\ & $	$d_{lr} = \left \begin{array}{c} \text{if } \mathcal{K}_{r} = 1 \\ \mathbf{d}_{lf} \\ \text{else} \\ 0 \text{ ft} \end{array} \right = 0 \text{ ft}$
$d_{ur} = \begin{array}{c} \text{if } K_r = 1 \\ \text{if } K_r = 1 \end{array} = 13 \text{ ft}$	Distance away from next column above in plan view
I d _{uf} leise l 13 ft	$d_{dr} = \begin{vmatrix} if & K_r = 1 \\ & d_{df} \\ & Distance away from next column below in plan view \\ & else \\ & 0 & ft \\ & 1 & d_{df} \\ & 0 & ft \\ & 0 & ft$
$T_{Ar} = \mathbf{i}^{(a_{rr})} + \mathbf{i}^{(a_{rr})}$	$i \cdot i \stackrel{u_{r}}{=} + \stackrel{u_{dr}}{=} + \stackrel{i}{=} 1 \stackrel{u_{r}}{=} 48.75 \text{ ft}^{2}$
$P_{ur} = F_r \bullet T_{Ar} = 9$.009 <i>kip</i>
Strength Requirement	<u>s</u> $P_{ur} = 9.009 \ kip$
$P_{v} = \operatorname{ceil} I$	$P_{u2} + P_{ur} $ $ kip = 76 kip$ $ kip = 76 kip$
Member Strength	
<i>H</i> = 26 <i>ft</i>	HSS 7 x 7 x 5/16
¢ _c P _n = 130 kip	
$U = P_u \cdot 100 = \phi_c P_n$	58.462 Percent strength of column utilized
Design Summary	
	5/16 for column D3 satisfies this preliminary design

<u>Assun</u>	nptions (if needed)	
	Risk factor IV	
	Foundation to Roof	26'
	 Foundation to 2nd f 	loor 16'
		AREA B AREA A 122
		63 CF
<u>Define</u>	e Variables	
	$T_r = 1$	1 for roof bearing, 0 for non-roof bearing
	$H = 1$ if $T_c = 0 = 26$ f	F#
<u>First</u> F	-loor Load	
	<i>d</i> _{rf} = 12 ft	Distance away from next column to the right in plan view
	d - 15 f f	Distance away from payt column to the left in plan view
	$u_{lf} = 15 m$	Distance away norm next column to the left in plan view
	$d_{uf} = 13 ft$	Distance away from next column above in plan view
	$d_{df} = 19 ft$	Distance away from next column below in plan view
	$\begin{array}{c c} & (d_{rf} & d_{lf} \setminus (d_{u} \\ T_{Af} = 1 & 2 & + & 2 & \bullet & 2 \end{array}$	$d_{df} = \frac{d_{df}}{1 + 2} = 216 ft^2$
	, <u>,</u> ,	
	$D = E \cdot T = 50.112$	
	$F_{u1} - F_{1} + T_{Af} - 30.112$	
Secor	nd Floor Load	
	$P_{10} = F_0 \cdot T_{14} = 20.376$	
	<u> </u>	

Roof Load	$K_r = 0$	1 matching, 0 for non-matching
$d_{rr} = \begin{bmatrix} \text{if } K_r = 1 \end{bmatrix} = 12 \text{ ft}$	Distanc	e away from next column to the right in plan view
$\begin{bmatrix} d_{rf} \\ else \\ 1 \end{bmatrix}$	$d_{lr} = \begin{array}{c} \text{if } K \\ a \\ else \\ 1 \end{array}$	$f_r = 1 = 15 ft$ f_{f_r} Distance away from next column to the left in plan vie 5 ft
$d_{ur} = \begin{bmatrix} \mathbf{I} & \mathbf{K}_r = \mathbf{I} \end{bmatrix} = 0 \ \mathbf{ft}$	Distanc	e away from next column above in plan view
else 0 ft	$d_{dr} = \begin{bmatrix} I & \text{if } k \\ I & I \\ I $	$x_r = 1 = 19 ft$ d_{df} Distance away from next column below in plan view e = 9 ft
$T_{Ar} = I + \frac{T_{Ar}}{2}$	• ⁻ + ⁻	$\vec{r} = 128.25 ft^2$
$P_{ur} = F_r \bullet T_{Ar} = 2$	23.701 <i>kip</i>	
Strength Requirement	<u>.s</u>	<i>P_{ur}</i> = 23.701 <i>kip</i>
$P_u = \operatorname{ceil} I,$	P _{u2} + P _{ur} \ k k	<i>ip</i> = 104 <i>kip</i>
Member Strength		
H = 26 ft	HSS 7 x 7	x 5/16
$\phi_c P_n = 130$ kip		
$U = \begin{array}{c} P_u \\ \bullet 100 \\ \phi_c P_n \end{array}$	= 80 P	ercent strength of column utilized
Design Summary		
An HSS 7 x 7 x	5/16 for colu	mn D4 satisfies this preliminary design

	Risk factor IV	
	Risk factor IV	
	 Foundation to Roof Foundation to 2nd to 	
		AREA B AREA A CE7
		C3 63
<u>Define \</u>	/ariables	
	$T_c = 1$	1 for roof bearing, 0 for non-roof bearing
	$H = f I_r = 0 = 26 i$	
	H_{f}	
	else	
First Flo	or Load	
	$d_{rf} = 16 ft$	Distance away from next column to the right in plan view
	$d_{lf} = 12 \ ft$	Distance away from next column to the left in plan view
	$a_{uf} = 13 \pi$	Distance away from next column above in plan view
	$d_{df} = 19 ft$	Distance away from next column below in plan view
	$\begin{pmatrix} d_{rf} & d_{lf} \\ d_{rf} & d_{lf} \end{pmatrix} \begin{pmatrix} d_{lf} \\ d_{lf} \end{pmatrix}$	$d_{df} = \frac{d_{df}}{1 + 2}$
	, <u>)</u> ,	
	$P_{u1} = F_1 \bullet T_{Af} = 51.968$	3 <i>kip</i>
Second	Floor Load	
	$P_{u2} = F_2 \bullet T_{Af} = 30.464$	kip

Roof Load	$K_r = 1$	1 matching, 0 for non-matching
$d_{rr} = \begin{bmatrix} \text{if } K_r = 1 \end{bmatrix} = 16 \text{ ft}$	Distance	away from next column to the right in plan view
$\begin{bmatrix} d_{rf} \\ else \\ 1 \\ 16 ft \end{bmatrix}$	$d_{lr} = \begin{array}{c} \text{if } \mathcal{K}_r \\ \mathcal{M}_{lr} \\ \mathcal{M}_{lr} \\ \text{else} \\ \mathcal{M}_{lr} \\ $	=1 = 12 <i>ft</i> Distance away from next column to the left in plan
$d_{ur} = \begin{bmatrix} \mathbf{I} & \mathbf{K}_r = 1 \end{bmatrix} = 13 \ ft$	Distance	away from next column above in plan view
else 13 ft	$d_{dr} = \begin{bmatrix} \text{if } K_r \\ I \\ $	=1 = 19 <i>ft</i> Distance away from next column below in plan view
$T_{Ar} = \begin{bmatrix} & \sigma_{rr} \\ & & \sigma_{$	$ \begin{array}{c} \bullet \\ \bullet $	$= 224 ft^{2}$
$P_{ur} = F_r \bullet T_{Ar} = 4^{\circ}$	1.395 <i>kip</i>	
Strength Requirements		<i>P_{ur}</i> = 41.395 <i>kip</i>
$P_u = \operatorname{ceil} I$	P _{u2} +P _{ur} \ kip)	e= 124 <i>kip</i>
Member Strength		
<i>H</i> = 26 <i>ft</i>	HSS 8 x 8 x	1/4
$\phi_c P_n = 156 \ kip$		
$U = P_u \bullet 100 = \phi_c P_n$	79.487 Per	cent strength of column utilized
Design Summary		
An HSS 8 x 8 x 1	/4 for column	D5 satisfies this preliminary design

Assum	otior	<u>າຣ</u> (if n	eed	lec	1)															5	6		0-7		58
	•	Ri	sk 1	fact	or	IV										E.		AR	EA	С	4	REA	67	REA		68=
	•	Fo	un	dat	ion	to	Ro	of 2	26'					02			1		Dell		_	<	0.7	A		
	•	Fo	un	dat	ion	to	2n	d fl	oor	16	5'								04				U.T.			28
																	•	_			- •					
														•	EZ	ARE	.A	в	ह्य	AR	EA	A	E7			_
			<u> </u>												8		55	6	FY		F6	F	7			_
			<u> </u>											F	2	,	2	ARE	ΑE				-			_
Define	Vari	abl	es													6	っつ									_
	T _r	=	1	<u> </u>					1	for	roc	of b	ear	ing	, 0	for	nc	on-r	oof	be	ariı	ng				_
	H	=	if	Tr	=0	=	= 20	6 f	t						+											+
				ļ,																						
			el	н se																						
				Ц																						
				· · ,	-																					
<u>First Flo</u>	oor L	<u>_0</u> 2	<u>id</u>																							
			~ 4																							
	d _{rf}	=	24	tt					D	ista	inc	e a	way	/ frc	m	nex	xt (coli	ımr	i to	the	e riç	ght i	np	lan	vie
	d _{lf}	=	16	ft					D	ista	inc	e a	way	/ frc	m	ne>	xt d	colu	ımr	ı to	the	e le	ft in	pla	an v	view
	4	_	12	£4						inte				, fra			.+ .	a li				. in	nla		iou	
	a _{ui}	r —	13	11					U	ISIE	Ince	e a	way	/ IFC		nex		SOIL		a	000	3 10	ріа	ΠV	lew	
	d_{d}	_f =	19	ft					D	ista	inc	e a	way	rrc /	m	ne>	kt c	colu	ımn	be	elov	/ in	pla	n v	iew	
												<u> </u>											-			
	τ		((d _{rf}	(d_{lf}		d _{ut}		d_{di}	<u>\</u>	((l _{df}	d _r	.\	່າ	16	f								
	14	.f —	· I ,	2	T	2),	2	т	2)	 ,	2	2)	20	0	11								
								<u> </u>																		
	Pu	1 =	F ₁	• T,	Af =	4	7.7	92	kiļ	•														_		
Second	l Flo	or	Lor	ad											+									_		
	P_{u}	2 =	F_2	• T,	$A_f =$	2	8.0	16	kiļ	,																

Roof Load	$K_r = 1$ 1 matching, 0 for non-matching
$d_{rr} = \text{if } K_r = 1 = 24 \text{ ft}$	Distance away from next column to the right in plan view
d _{ff} else 16 ft	$d_{lr} = \begin{bmatrix} \text{if } \mathcal{K}_{r} = 1 \\ \mathbf{d}_{fr} \end{bmatrix} = 16 \text{ ft}$ $d_{lr} = \begin{bmatrix} \mathbf{d}_{fr} \\ \mathbf{d}_{fr} \end{bmatrix}$ $d_{lr} = \begin{bmatrix} \text{if } \mathcal{K}_{r} = 1 \\ \mathbf{d}_{fr} \end{bmatrix}$ $d_{lr} = \begin{bmatrix} \text{if } \mathcal{K}_{r} = 1 \\ \mathbf{d}_{fr} \end{bmatrix}$ $d_{lr} = \begin{bmatrix} \mathbf{d}_{rr} \\ \mathbf{d}_{rr} \end{bmatrix}$
$d_{ur} = \begin{bmatrix} i & K_r = 1 \end{bmatrix} = 13 \ ft$	Distance away from next column above in plan view
i d _{uf} else 13 ft	$d_{dr} = \begin{vmatrix} i & K_r = 1 \\ i & d_{df} \end{vmatrix} = 19 \ ft$ Distance away from next column below in plan view $\begin{vmatrix} e \\ e \\ 0 \ ft \end{vmatrix}$
$T_{Ar} = I + U_{Ir}$	$\begin{array}{c} \mathbf{u}_{1} \\ \mathbf{v}_{1} \\ \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}$
$P_{\mu r} = F_r \bullet T_{Ar} = 38$	3.069 <i>kip</i>
Strength Requirements	$P_{ur} = 38.069 \text{ kip}$
$P_u = \operatorname{ceil} I$	$P_{u2} + P_{ur}$ $ kip = 114 kip$
Member Strength	
H = 26 ft	HSS 8 x 8 x 1/4
¢ _c P _n =156 kip	
$U = P_u \bullet 100 =$	73.077 Percent strength of column utilized
¢cPn	
An HSS 8 x 8 x 1	/4 for column D7 satisfies this preliminary design

<u>Assun</u>	nptions (if needed)	
	Risk factor IV	AREA C 🧯 🖉 🔓 🗸 🦊
	Foundation to Re	$pof 26'$ p_1 p_2 p_3 p_4 p_7 p_7
	Foundation to 2r	
		AREA B AREA A PE7
Define	Variables	<u>6</u> 3 6
	$T_r = 1$	1 for roof bearing, 0 for non-roof bearing
	$H = 1$ if $T_r = 0$ = 2	26 ft
	else	
First F	loor Load	
	$d_{rf} = 0$ ft	Distance away from next column to the right in plan view
	$d_{lf} = 24 ft$	Distance away from next column to the left in plan view
	$d_{uf} = 13$ ft	Distance away from next column above in plan view
	$d_{df} = 0 ft$	Distance away from next column below in plan view
	$(d_{rf} d_{lf})$	$(d_{uf} d_{df})$
	$T_{Af} = 2 + 2 \cdot $	$ _{2} + _{2} _{1} = 78 ft^{2}$
	$P_{u1} = F_1 \bullet T_{Af} = 18.0$	096 <i>kip</i>
Secon	d Floor Load	
	$P_{0} = F_{0} \cdot T_{0} = 10.6$	308 kin

Roof Load	K	= 1	1 ma	ching, 0 for non-matching
$d_{rr} = \begin{bmatrix} \text{if } K_r = 1 \end{bmatrix} = 0 \text{ ft}$		Distance	e away	r from next column to the right in plan view
$\begin{bmatrix} & & & \\ $	dır	$= \frac{1}{1} \text{ if } \mathcal{K}_r$	=1 = , 2 ft	= 24 <i>ft</i> Distance away from next column to the left in plan ^{view}
$d_{ur} = \frac{1}{10} \text{ if } K_r = 1 = 13 \text{ ft}$		Distance	e away	r from next column above in plan view
else 13 ft	d _d	$f = \begin{bmatrix} i & f \\ i & f $	-=1 : # ft	= 0 <i>ft</i> Distance away from next column below in plan view
$T_{Ar} = \mathbf{I} + \mathbf{I}_{Ir}$	•),	ur + ⁰ dr 2 2	= 78)	ft ²
$P_{ur} = F_r \bullet T_{Ar} = 1$	4.4	14 kip		
Strength Requirements	<u>s</u>			P _{ur} = 14.414 kip
$P_{u} = \operatorname{ceil} I$	u2 u2	⊧ P _{ur} \ ki)	p = 44	· kip
Member Strength				
H = 26 ft	н	SS 6 x 6 >	: 5/16	
¢cPn=79.6 kip				
$U = \frac{P_u}{\phi_c P_n} \cdot 100 =$	55	276 Pe	ercent	strength of column utilized
Design Summary				
An HSS 6 x 6 x 5	5/16	for colun	nn D8	satisfies this preliminary design

Δεειιη	antions (if needed)	
Assun		
	Risk factor IV	
	Foundation to Roof Foundation to 2nd	
		C3 67
<u>Define</u>	variables	
	T = 0	1 for roof bearing 0 for non-roof bearing
	$H = \text{ if } T_r = 0 = 16$	ft
	$-H_{f}$	
	else	
	H_r	
Firet F		
1 11311		
	<i>d</i> _{rf} = 13 <i>ft</i>	Distance away from next column to the right in plan view
	$d_{lf} = 0$ ft	Distance away from next column to the left in plan view
	<i>d</i> _{<i>u</i>f} = 19 <i>ft</i>	Distance away from next column above in plan view
	$d_{df} = 14 ft$	Distance away from next column below in plan view
	(d_{t}, d_{t})	
	$T_{Af} = 1 \frac{7}{2} + \frac{7}{2} 1 \cdot 1 \frac{7}{2}$	$\frac{di}{2} + \frac{di}{2} = 107.25 ft^2$
	, , ,	
	$P_{\mu 1} = F_1 \bullet T_{Af} = 24.882$	2 <i>kip</i>
Secon		
	$P_{12} = F_2 \bullet T_{AE} = 14.586$	3 <i>kip</i>
	<u> </u>	

Assur	nptions (if needed)	
	Risk factor IV	😕 AREA C 👍 🗛 🗛 🖊 🚺
	Foundation to Ro	Dof 26'
	Foundation to 2r	$\frac{1}{10} \frac{1}{10} \frac$
		Fy F6 77
		Ft AREA E
Define	e Variables	
	$T_r = 0$	1 for roof bearing, 0 for non-roof bearing
	$H = $ ^I if $T_c = 0 \mid = 1$	6 <i>ft</i>
First F	loor Load	
_		
_	$d_{rf} = 12$ ft	Distance away from next column to the right in plan view
	$d_{lf} = 15 ft$	Distance away from next column to the left in plan view
_	$a_{uf} = 19$ ft	Distance away from next column above in plan view
	$d_{df} = 14 ft$	Distance away from next column below in plan view
	(d_{rf}, d_{lf})	$\begin{pmatrix} d_{uf} & d_{df} \end{pmatrix}$
	$I_{Af} = 1 2 + 2 \cdot $, 2 + 2 = 222.15 Tt ²
	$P_{u1} = F_1 \bullet T_{Af} = 51.6$	378 <i>kip</i>
Secor	nd Floor I oad	
<u></u>		
	$P_{u2} = F_2 \bullet T_{Af} = 30.2$	294 <i>kip</i>

Assum	otions (if needed)	
	Risk factor IV	C3 AREA C C C C
	 Foundation to Ro Foundation to 2n 	of 26'
		AREA B CH AREA A CE7
		EI F6 F
		FI AREA E
Define	Variables	63 67
	$T_r = 0$	1 for roof bearing, 0 for non-roof bearing
	$H = \text{if } T_r = 0 = 1$	6 ft
	else	
First Flo	oor Load	
	$a_{rf} = 0$	Distance away from next column to the right in plan view
	<i>d</i> _{if} = 16 <i>ft</i>	Distance away from next column to the left in plan view
	$d_{uf} = 19 \ ft$	Distance away from next column above in plan view
	$d_{df} = 14 \ ft$	Distance away from next column below in plan view
	$(d_{rf} d_{lf}) $	$d_{uf} = d_{df} $
	$T_{Af} = _{2} + _{2} \cdot _{1}$	2 + 2 = 132 ft ²
	$P_{u1} = F_1 \bullet T_{Af} = 30.6$	24 <i>kip</i>
<u>Seconc</u>	Floor Load	
	$P_{u2} = F_2 \bullet I_{Af} = 17.9$	

Assur	<u>nptions</u> (if needed)	
	Risk factor IV	—————————————————————————————————————
	Foundation to F	Roof 26'
	Foundation to 2	2nd floor 16' 05 04 05 04 06
		F5 F4 F6 F ⁷
		AREA E
Define	variables	
	$T_r = 1$	1 for roof bearing, 0 for non-roof bearing
	$H = $ if $T_r = 0$ =	26 ft
_	else	
	H _r	
First F	loor Load	
	$d_{rf} = 13 \ ft$	Distance away from next column to the right in plan view
	$d_{if} = 0$ ft	Distance away from next column to the left in plan view
	$d_{uf} = 14 ft$	Distance away from next column above in plan view
	$d_{df} = 0 ft$	Distance away from next column below in plan view
	$(d_{rf} - d_{lf})$	$(d_{if} d_{df})$
	$T_{Af} = \begin{bmatrix} n & n \\ 2 & + & 2 \end{bmatrix}$	•1 $\frac{1}{2}$ + $\frac{1}{2}$ = 45.5 ft^2
	, ,	
	$P_{u1} = F_1 \cdot T_{Af} = 10$	0.556 <i>kip</i>
Secon		
Secor		
	$P_{u2} = F_2 \bullet T_{Af} = 6.$	188 <i>kip</i>

٨٠٠٠٠٠	ntiona (if pooded)	
Assum	puons (il needed)	
	Risk factor IV	
	Foundation to Roof 2	
		G3 67
<u>Define</u>	Variables	
	$T_r = 1$	1 for roof bearing 0 for non-roof bearing
	$H = 1$ if $T_r = 0 = 26$ f	
	else	
First Fl	oor Load	
	$d_{rf} = 15 ft$	Distance away from next column to the right in plan view
	$d_{lf} = 13 \ ft$	Distance away from next column to the left in plan view
	$a_{uf} = 14 \pi$	Distance away from next column above in plan view
	$d_{df} = 14 ft$	Distance away from next column below in plan view
	$\begin{bmatrix} d_{rf} & d_{lf} \\ T_{Af} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$d_{df} \setminus (d_{df} d_{lf} \setminus d_{lf})$ + 2 1- 1 2 2 1= 150 5 ff ²
	, <u>)</u> , <u>)</u> ,	
	$P_{u1} = F_1 \bullet T_{Af} = 34.916$	
Second	I Floor Load	
	$P_{u2} = F_2 \bullet T_{Af} = 20.468$	kip kip

Roof Load	$K_r = 1$ 1 matching, 0 for non-matching	
$d_{rr} = 1$ if $K_r = 1$ = 15 ft	Distance away from next column to the right in plan view	
d _{rf} else 15 ft	$d_{lr} = \begin{vmatrix} \text{if } \mathcal{K}_r = 1 \end{vmatrix} = 13 \text{ ft}$ d_{lf} d	ew
$d_{ur} = \frac{1}{1} \text{ if } K_r = 1 = 14 \text{ ft}$	Distance away from next column above in plan view	
i d _{uf} else 13 ft	$d_{dr} = \begin{vmatrix} \text{if } K_r = 1 \\ d_{df} \end{vmatrix} = 14 \text{ ft}$ Distance away from next column below in plan view $ e se \\ 0 \text{ ft} \end{vmatrix}$	
$T_{Ar} = 1 + 1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$P_{ur} = F_r \cdot T_{Ar} = 27$	7.812 <i>kip</i>	
Strength Requirements	<i>P_{ur}</i> = 27.812 <i>kip</i>	
$P_u = \operatorname{ceil} I$	$P_{u2} + P_{ur} \setminus $ $ kip = 84 kip$ $kip \qquad)$	
Member Strength		
H = 26 ft	HSS 7 x 7 x 1/4	
¢cPn=108 kip		
$U = P_u \bullet 100 = $	77.778 Percent strength of column utilized	
Design Summary		
An HSS 7 x 7 x 1	/4 for column F3 satisfies this preliminary design	

<u>Assum</u>	ptions (if needed)	
	Risk factor IV	AREA C 🤅 🕁 🛵 🕁 🖊
	 Foundation to Roof Foundation to 2nd f 	26' 07 07 08 08 08 08 08 08 08 08 08 08 08 08 08
		FY F6 F ⁷
		63 67
<u>Define</u>	Variables	
	<i>T_r</i> = 1	1 for roof bearing, 0 for non-roof bearing
	$H = {}^{1}$ if $T_r = 0 = 26$	ft i
	else	
	H _r	
First Fl	oor Load	
	$d_{rf} = 15 \ ft$	Distance away from next column to the right in plan view
	d _{if} = 15 ft	Distance away from next column to the left in plan view
	$d_{uf} = 14 ft$	Distance away from next column above in plan view
	$d_{df} = 14 ft$	Distance away from next column below in plan view
	$= (d_{rf} d_{lf}) (d_{u}$	d_{df}
	$I_{Af} = \begin{bmatrix} 2 & + & 2 & & \cdot \end{bmatrix} $	$+ 2$ $ = 210 \pi^2$
	$P_{u1} = F_1 \bullet T_{Af} = 48.72$	
Secon	d Floor Load	
	$P_{\mu 2} = F_2 \bullet T_{Af} = 28.56$	kip

Roof Load	$K_r = 0$ 1 ma	atching, 0 for non-matching
$d_{rr} = \text{ if } K_r = 1 = 15 \text{ ft}$	Distance awa	y from next column to the right in plan view
$ d_{f} d_$	$d_{lr} = \begin{bmatrix} \text{if } \mathcal{K}_r = 1 \\ & d_{lf} \end{bmatrix}$ else 15 ft	= 15 <i>ft</i> Distance away from next column to the left in plan ^{view}
$d_{ur} = \begin{array}{c} \text{if } K_r = 1 \\ \text{if } K_r = 1 \end{array} = 14 \ ft$	Distance awa	y from next column above in plan view
else 14 ft	$d_{dr} = \begin{bmatrix} \text{if } K_r = 1 \\ d_{df} \end{bmatrix}$	= 0 <i>ft</i> Distance away from next column below in plan view
$T_{Ar} = I + I^{rr}$	$ \begin{vmatrix} \mathbf{u}_{ur} \\ \mathbf{i} \\$	D5 <i>ft</i> ²
$P_{ur} = F_r \bullet T_{Ar} = 1$	9.404 <i>kip</i>	
Strength Requirements	<u>s</u>	<i>P</i> _{ur} = 19.404 <i>kip</i>
$P_{u} = \operatorname{ceil} I$	P _{u2} + P _{ur} \ kip = 9 kip)	7 <i>kip</i>
Member Strength		
H = 26 ft	HSS 7 x 7 x 1/4	
¢ _c P _n =108 kip		
$U = P_u \cdot 100 =$	89.815 Percen	t strength of column utilized
Design Summary		
An HSS 7 x 7 x 7	1/4 for column F4 :	satisfies this preliminary design

<u>Column F6 Ana</u>	alysis	
Assumption	<u>s</u> (if needed)	83 95 I ¹⁶ 7 I ⁶ 86
•	Risk factor IV	C 🛵 🗛 🛵 🛵
• F	Foundation to Roof 2	6' 01
• 6	-oundation to 2nd flo	bor 16'
		C3 63
Define Varia	bles	
T_r	= 1	1 for roof bearing, 0 for non-roof bearing
<u> </u>	= if $T = 0 = 26$ ft	
	- III / / - 20 / 20 / 20 / 20 / 20 / 20 / 20	
	I I H _f else	
First Floor L	<u>oad</u>	
d _{rf}	= 13 <i>ft</i>	Distance away from next column to the right in plan view
<i>d_{lf}</i> :	= 16 <i>ft</i>	Distance away from next column to the left in plan view
d _{uf}	= 14 <i>ft</i>	Distance away from next column above in plan view
d	- 1 4 5 4	
	$(d_{rf} d_{lf}) (d_{uf})$	$d_{df} \setminus (d_{df} d_{ff})$
	=1 2 + 2 I · I 2 ,),	+ 2 1- 1 2 • 2 1= 157.5 π^2
<i>P</i> _{u1}	$= F_1 \cdot T_{Af} = 36.54$ k	<i>ip</i>
Second Floc	r Load	
P _{u2}	$=F_2 \bullet I_{Af} = 21.42$ k	<i>Ip</i>

Roof Load	$K_r = 1$ 1 m	atching, 0 for non-matching
$d_{rr} = \text{ if } K_r = 1 = 13 \text{ ft}$	Distance awa	ay from next column to the right in plan view
d _{rf} else 16 ft	$d_{lr} = \begin{array}{c} \text{if } \mathcal{K}_r = 1 \\ d_{lf} \\ \text{else} \\ 12 \ ft \end{array}$	= 16 <i>ft</i> Distance away from next column to the left in plan ^{view}
$d_{ur} = \mathbf{I}$ if $K_r = 1 = 14$ ft	Distance awa	ay from next column above in plan view
d _{uf} else 13 ft	$d_{dr} = \begin{bmatrix} \text{if } K_r = 1 \\ 0 \end{bmatrix}$	= 14 <i>ft</i> Distance away from next column below in plan view
$T_{Ar} = I + C_{Ir}$	$ \begin{vmatrix} \cdot \\ \cdot$	$G_{dr} \bullet G_{rr}$ = 157.5 ft^2 2 2)
$P_{ur} = F_r \bullet T_{Ar} = 2$	29.106 <i>kip</i>	
Strength Requirement	<u>s</u>	P _{ur} = 29.106 <i>kip</i>
$P_{u} = \operatorname{ceil} I$	$P_{u2} + P_{ur} \\ I kip = 8 \\ kip)$	8 <i>kip</i>
Member Strength		
H = 26 ft	HSS 7 x 7 x 1/4	
$\phi_c P_n = 108 \ kip$		
$U = \begin{array}{c} P_u \\ \bullet 100 \end{array}$	= 81.481 Percen	t strength of column utilized
<i>⊌cPn</i> Design Summary		
An HSS 7 x 7 x	1/4 for column F6	satisfies this preliminary design

<u>Assun</u>	n <u>ptions</u> (if needed)	
	Risk factor IV	AREA C 🧞 🛱 📴 🙀 🥵
	Foundation to Roof	26'
	Foundation to 2nd	floor 16' 0^{3} 0^{4} 0^{5} 0^{7} 0^{8}
		Fy F4 F6 F7
		AREA E
Define	Variables	
	$I_r = 1$	1 for root bearing, 0 for non-root bearing
	$H = \text{if } T_r = 0 = 26 $	ft ft
	else	
	H _r	
Eirct E		
<u>1 51 </u>		
	$d_{rf} = 0 ft$	Distance away from next column to the right in plan view
_	d - 12 5	Distance away from pays calumn to the left in plan view
	$u_{lf} = 13 n$	Distance away from next column to the left in plan view
	$d_{uf} = 14 ft$	Distance away from next column above in plan view
	$d_{\rm c} = 0$ ft	Distance away from payt column below in plan view
		Distance away non-next column below in plan view
_	$(d_{rf} d_{lf}) (d_{lf})$	$d_{df} = d_{df} + c_{f} + c_$
	$I_{Af} = 1_2 + 2_1 \cdot 1_2$	$\frac{1}{2} + \frac{1}{2}$ = 45.5 <i>ft</i> ²
	$P_{u1} = F_1 \bullet T_{Af} = 10.556$	i kip
Secon	d Floor Load	

Roof Load	<i>K</i> _{<i>r</i>} = 1	1 matching, 0 for non-matching
$d_{rr} = \begin{bmatrix} \text{if } K_r = 1 \end{bmatrix} = 0 \text{ ft}$	Distance	away from next column to the right in plan view
$\begin{bmatrix} & & & \\ $	$d_{lr} = \begin{array}{c} \text{if } \mathcal{K}_{r} \\ d_{lf} \\ \text{else} \\ 12 \end{array}$	=1 = 13 <i>ft</i> Distance away from next column to the left in plan view <i>ft</i>
$d_{ur} = \int \mathbf{K}_r = 1 = 14 \mathbf{ft}$	Distance	away from next column above in plan view
i d _{uf} else 13 ft	$d_{dr} = \begin{bmatrix} i & \text{if } K_r \\ i & d_{dr} \end{bmatrix}$	=1 = 0 <i>ft</i> Distance away from next column below in plan view
$T_{Ar} = \begin{bmatrix} & \sigma_{rr} \\ + & & \\ & & 2 \end{bmatrix}$	\cdot	$= 45.5 ft^2$
$P_{ur} = F_r \bullet T_{Ar} = 8.$	408 <i>kip</i>	
Strength Requirements		Pur = 8.408 kip
$P_u = \operatorname{ceil} I$	P _{u2} +P _{ur} \ kip)	e= 26 <i>kip</i>
Member Strength		
H = 26 ft	HSS 5 x 5 x	1/4
¢cPn=37.2 kip		
$U = P_u \cdot 100 =$	69.892 Pe	cent strength of column utilized
vcrn Design Summary		
An HSS 5 x 5 x 1	/4 for column	F7 satisfies this preliminary design

Column G3 Analysis	
Assumptions (if needed)	B ³³ GF Z ^B ³⁷ Z [−] ⁸⁴
Risk factor IV	23 AREA C 👌 🗛 🙀 🥵
Foundation to Roof	26' 01
Foundation to 2nd f	iloor 16'
	FXF4F672
	G3 67
Define Variables	
$T_r = 1$	1 for roof bearing. 0 for non-roof bearing
$H = 1 \text{ if } I_r = 0 = 261$	
First Floor Load	
$d_{1} = 15$ ft	Distance away from payt column to the right in plan view
	Distance away non next column to the right in plan view
$d_{lf} = 0 ft$	Distance away from next column to the left in plan view
$d_{uf} = 14 ft$	Distance away from next column above in plan view
$d_{df} = 0 ft$	Distance away from next column below in plan view
$(d_{rf} d_{lf} \setminus (d_{l}))$	d_{df}
$T_{Af} = \begin{bmatrix} 1 & 2 & + & 2 \\ 2 & + & 2 & \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$	$\frac{n}{2} + \frac{n}{2}$ I= 52.5 ft ²
, , ,	
$P_{u1} = F_1 \cdot T_{Af} = 12.18$	kip
Second Floor Load	
$P_{u2} = F_2 \bullet T_{Af} = 7.14$ k	

Column G6 Analysis	
Assumptions (if needed)	⁸³ ⁸⁵ ∑ ¹⁶⁷ ∑ ⁸⁸
Risk factor IV	🖧 🗛 🔓 🙀 🛵 🛵
Foundation to Roof	26'
Foundation to 2nd f	floor 16'
	FyF4F4
	G3 67
Define Variables	
$T_c = 1$	1 for roof bearing, 0 for non-roof bearing
First Floor Load	
$d_{rf} = 0$ ft	Distance away from next column to the right in plan view
$d_{lf} = 15 ft$	Distance away from next column to the left in plan view
$d_{uf} = 0 ft$	Distance away from next column above in plan view
$d_{df} = 14 ft$	Distance away from next column below in plan view
$(d_{ff} - d_{ff}) (d_{ff})$	$d_{df} = d_{df}$
$T_{Af} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} + \begin{bmatrix} 2 \\ 2 \end{bmatrix} + \begin{bmatrix} 2 \\ 2 \end{bmatrix}$	$\frac{1}{2} + \frac{1}{2} = 52.5 \ ft^2$
$P_{u1} = F_1 \bullet T_{Af} = 12.18$	kip
Second Floor Load	
$P_{u2} = F_2 \bullet T_{Af} = 7.14$ k	

University of Iowa Civil Engineering Senior Design Old Stone School City of Lansing, IA Appendix G: Truss Design Guidelines

Truss Manufactu	uring Design
Truss design manufacture category IV b truss dimens	a to be performed by cold roll steel truss r. Designs should be completed for a risk puilding with the following load, span, and pions.
Area A Truss	Requirements
<i>H</i> = 11 <i>ft</i>	Truss height is 11 ft.
Length = 37	<i>ft</i> Truss 2 be designed for a 33 ft. span including a 2 ft. overhang on either side.
S=87 psf	Truss to be designed for this snow loading.
D=34 psf	Truss to be designed for this superimposed dead load.
<i>W</i> = 10 <i>psf</i>	Truss to be designed for this wind load.
W _u =- 26 ps	of Truss to be designed for this wind uplift.
Area B Truss	Requirements
<i>H</i> = 11 <i>ft</i>	Truss height is 11 ft.
Length = 37	<i>ft</i> Truss 2 be designed for a 33 ft. span including a 2 ft. overhang on either side.
S=87 psf	Truss to be designed for this snow loading.
D=34 psf	Truss to be designed for this superimposed dead load.
<i>W</i> = 10 <i>psf</i>	Truss to be designed for this wind load.
W _u =- 26 ps	sf Truss to be designed for this wind uplift.

University of Iowa Civil Engineering Senior Design Old Stone School City of Lansing, IA Appendix G: Truss Design Guidelines

H = 11 ft	Truss beight is 11 ft
Length = 26	ft Truss 2 be designed for a 30 ft. span including a 2 ft. overhang on either side
S=87 psf	Truss to be designed for this snow loading.
D=34 psf	Truss to be designed for this superimposed dead load.
<i>W</i> = 10 <i>psf</i>	Truss to be designed for this wind load.
<i>W</i> _u =- 26 ps	f Truss to be designed for this wind uplift.
Area D Truss	Requirements
<i>H</i> = 11 <i>ft</i>	Truss height is 11 ft.
Length = 35	ft Truss 2 be designed for a 31 ft. span including a 2 ft. overhang on either side
S=87 psf	Truss to be designed for this snow loading.
D=34 psf	Truss to be designed for this superimposed dead load.
<i>W</i> = 10 <i>psf</i>	Truss to be designed for this wind load.
W _u =- 26 ps	f Truss to be designed for this wind uplift.
Area E Truss	Requirements
<i>H</i> = 11 <i>ft</i>	Truss height is 11 ft.
Length = 33	ft Truss 2 be designed for a 29 ft. span including a 2 ft. overhang on either side
S=87 psf	Truss to be designed for this snow loading.
D=34 psf	Truss to be designed for this superimposed dead load.
<i>W</i> = 10 <i>psf</i>	Truss to be designed for this wind load.
W_{-26} pc	f Truss to be designed for this wind unlift

University of Iowa Civil Engineering Senior Design Old Stone School City of Lansing, IA Appendix H: Footing Design Calculations

Footing Size:	Column	Size	Column Load:	Assumptions:	
<i>B</i> = 11 <i>ft</i>	B _{col} =	9 <i>in</i>	<i>P_c</i> =180 <i>kip</i>	q_=1.5 ksf	
<i>H</i> = 11 <i>ft</i>				')' _{con} = 150 pcf	
<i>t_f</i> =2.5 <i>ft</i>				f' _c =4000 psi	
$h = t_f$				f _y =60 ksi	
				$c_c = 3$ in	
Compute Effectiv	e Denth:			<i>D_b</i> = 1.128 <i>in</i>	
	- 25 872 in				
$u = m - c_c - D_b$	– 25.672 11				
Bearing Pressure					
$q_u = 1.5 \ ksf$					
Check One Way	Shear:				
	(B-B _c				
$V_{uOneWay} = q_u$	• <i>B</i> •		8.989 <i>kip</i>		
	\ Z)			
$d V_{0} = 0$	75.02.1.	f' • nsi •	$B \cdot d' = 323.985 kin$		
· · · · · · · · · · · · · · · · · · ·	<u> </u>	c)		
	\sim) / /		
Check= ^I if ¢	$V_{cOneWay} > V$	C LIONEWay			
Check= ¹ if ¢	V _{cOneWay} > V	c uOneWay			
Check= ¹ if ¢	∖ √ V _{cOneWay} > ∖ eturn "Oka	c /uOneWay y"			
Check = ¹ if ¢	V _{cOneWay} > V eturn "Oka e	c /uOneWay Y"			
Check = I if ¢	∖ √ V _{cOneWay} > ∖ eturn "Oka e eturn "Fail"	c /uOneWay Y"			
$Check = I \text{ if } \phi$	V _{cOneWay} > V eturn "Oka eturn "Fail"	c /uOneWay y"		Image: state	
Check = ¹ if ¢	V _{cOneWay} > N eturn "Oka e eturn "Fail" y"	y"		I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I <td></td>	
$Check = ^{ } if \phi$ $\begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	V _{cOneWay} > ∖ eturn "Oka eturn "Fail" y"	c /uOneWay y"			
Check = ¹ if ¢	∖ √ V _{cOneWay} > ∖ eturn "Oka e eturn "Fail" y"	y"			
$Check = ^{ } if \phi$ $\begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	V _{cOneWay} > N eturn "Oka eturn "Fail" y"	c uOneWay y"		Image: set of the set of th	
Check = ¹ if ¢	V _{cOneWay} > N eturn "Oka eturn "Fail" y"	y"		Image:	
$Check = ^{ } if \phi$ $\begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	V _{cOneWay} > N eturn "Oka eturn "Fail" y"	c /uOneWay y"		Image: set of the set of th	
Check = ¹ if ¢ if ¢ else Check = "Okay	V _{cOneWay} > N eturn "Oka eturn "Fail" y"	c uOneWay y"			
$Check = ^{ } if \phi$ $ free else else else else else else else e$	V _{cOneWay} > N eturn "Oka eturn "Fail" y"	c uOneWay y" i i i i i i i i i i i i i			
$Check = ^{ } if \phi$ $ free = ^{ } if \phi$ $ free = ^{ } if \phi$ $ free = ^{ } if \phi$	V _{cOneWay} > V eturn "Oka eturn "Fail" y"	c /uOneWay y" , , , , , , , , , , , , ,			
$Check = if \phi$ $ fe$ $ e se$ $ fe$	V _{cOneWay} > N eturn "Oka eturn "Fail" y"	c uOneWay y" i i i i i i i i i i i i i			
$Check = ^{1} if \phi$ $= ^{1} i$	V _{cOneWay} > V eturn "Oka eturn "Fail" y"	c uOneWay y" a a a a a a a a a a a a a			
$Check = ^{1} if \phi$ $= ^{1} i$	V _{cOneWay} > N eturn "Oka eturn "Fail" y"	c uOneWay y" a a a a a a a a a a a a a			
$Check = ^{ } if \notin$ $else$ $check = "Oka;$	V _{cOneWay} > N eturn "Oka eturn "Fail" y"	c /uOneWay y" , , , , , , , , , , , , ,			

University of Iowa Civil Engineering Senior Design Old Stone School City of Lansing, IA Appendix H: Footing Design Calculations

v uPunchi	$= q \cdot B^{2}$	² - (B \ col	+ d\)))	68.83	33 ki	p						
,6=1	<i>a</i> _s = 20	<i>b</i> _o =2•	(B _{col}	+ a^)	+2•(B_{col}	+ a [\]):	= 11.6	624 ft				
		((<u> </u>		• d \	\						
¢ V _{cPunc}	_{hing} = 0.75•	min 4,	(2+ \	,6) \	2+	b_o	\• 1 •))	√f'c•	•psi•	b _o •d=	684.7	728 🖌	<i>ip</i>
Check	=' if ¢ V _{cPu}	_{nching} > \	/ _{uPun}	ching									
	return	ı "Okay	r"										
	l Ireturn	"Fail"											
Check=	"Okay"												
Check Ben	ding Mome	nt:											
$M_u = q_u$	•B•	Dcol \ (D \•) \	- Þa	;))	216.6	91 k	ti p∙f t	E N	/lomer	nt Rec	quired		
Steel Requ	ired:												
$p_{min} = 0$.0018												_
A _{sreq} =p	min • B • h =	7.128 <mark>i</mark>	n ²										
Provided S	teel:		Provi	de 8 7	#9 Re	ebar							
A _s =8•1	<i>in</i> ² = 8 <i>ir</i>	1 ²											
3ar Spacin	g:												
BarSpa	ce _{max} = min	(3• <i>h</i> ,1	8) = 18	3 <i>in</i>								
BarSpa	$ce = \frac{B}{4} = 33$	3 <i>in</i>	Sp	bace F	Rebar	[.] the	max ´	18in					
	onath of oir	ala rain	force	droo	topau	ulara	ootior						
depth =	$h = 2.5 \ ft$	igle rein	As	= 8 <i>i</i>	n ²		ection						
$y_{s_1} = c_{c_1}$	$+ \frac{D_b}{2} = 3.56$	64 <i>in</i>	b=	: B =	11 ft	•							
		074	C	-00									

University of Iowa Civil Engineering Senior Design Old Stone School City of Lansing, IA Appendix H: Footing Design Calculations

University of Iowa Civil Engineering Senior Design Old Stone School City of Lansing, IA Appendix I: Rational method Calculations

To determine the rainfa	ll inte	ensity	'i, tin	ne of	conc	entra	ation	must	be fo	ound		
The method to determir	ne the	e time 4- 1: R	e of c	once	ntrati	on is ne Ratio	the N	NRCS	S velo	ocity	meth	iod is
Hydrologic Soil Group	Hydrologic Soil Group A B C D											
Recurrence Interval	5	10	100	5	10	100	5	10	100	5	10	100
Land Use Or Surface Characteris	tics Bus	siness:										
A. Commercial Area	.75	.80	.95	.80	.85	.95	.80	.85	.95	.85	.90	.95
B. Neighborhood Area	.50	.55	.65	.55	.60	.70	.60	.65	.75	.65	.70	.80
Residential:												
A. Single Family	.25	.25	.30	.30	.35	.40	.40	.45	.50	.45	.50	.55
B. Multi-Unit (Detached)	.35	.40	.45	.40	.45	.50	.45	.50	.55	.50	.55	.65
C. Multi-Unit (Attached)	.45	.50	.55	.50	.55	.65	.55	.60	.70	.60	.65	.75
D. 1/2 Lot Or Larger	.20	.20	.25	.25	.25	.30	.35	.40	.45	.40	.45	.50
E. Apartments	.50	.55	.60	.55	.60	.70	.60	.65	.75	.65	.70	.80
Industrial												
A. Light Areas	.55	.60	.70	.60	.65	.75	.65	.70	.80	.70	.75	.90
B. Heavy Areas	.75	.80	.95	.80	.85	.95	.80	.85	.95	.80	.85	.95
Parks, Cemeteries Playgrounds	.10	.10	.15	.20	.20	.25	.30	.35	.40	.35	.40	.45
Schools	.30	.35	.40	.40	.45	.50	.45	.50	.55	.50	.55	.65
Railroad Yard Areas	.20	.20	.25	.30	.35	.40	.40	.45	.45	.45	.50	.55
Streets	a2 - 1				2 1							
A. Paved	.85	.90	.95	.85	.90	.95	.85	.90	.95	.85	.90	.95
B. Gravel	.25	.25	.30	.35	.40	.45	.40	.45	.50	.40	.45	.50
Drives, Walks, & Roofs	.85	.90	.95	.85	.90	.95	.85	.90	.95	.85	.90	.95
Lawns A. 50%-75% Grass (Fair Condition)	.10	.10	.15	.20	.20	.25	.30	.35	.40	.30	.35	.40
B. 75% Or More Grass	05	05	10	15	15	20	25	25	20	20	25	40
(Good Condition) Undeveloped Surface ¹ (By Slope) ²	.05	.05	.10	.15	.15	.20	.43	.23	.50	.50	.33	.40
A. Flat (0-1%)	0	.04-0.0	9	0	.07-0.1	2	0	.11-0.1	6	0.15-0.20		
B. Average (2-6%)	0	.09-0.1	4	0	.12-0.1	7	0	.16-0.2	1	0	.20-0.2	5
C Steen	0	13-01	8	0	18-0.2	4	0	23-03	1	0 28-0 38		

 $A_{pre.dev.impervious} = 41892 ft^2 = 0.962 acre$

A_{pre.dev.pervious} = Area - A_{pre.dev.impervious} = 0.787 acre
Mup Unit Description: Zwin	gle silt loa	n, 1 to 9 percent slop	en Allumakoe Cour	nty, Iowa		
No. 1997 Sectore Record Constant Products of				2428.000 000 94400		
	Allama	kee County	, lowa			
		100 000 000 000 000 000 000 000 000 000				
	249C	-Zwingle silt	Ioam, 1 to 9	percent slope	BS	
	Map	Unit Setting				
		National map un	il symbol: fhr2			
		Mean annual pr	ecipitation: 31 to	39 inches		
		Mean annual air	temperature: 4	1 to 50 degrees I	F	
		Farmlar d classi	fication: Farmla	nd of statewide in	riportance	
	мар	Zwingle and sin	nilar soils: \$15 per	cent		
		Minor compone	nis: 5 percent	Alana duard d	and transformed	
		Estimates are b	ased on observa	tions, description	is, and transects of	
	Des	cription of Zwin	3ie			
	S	Landform: Te	rraces			
		Landform po:	sition (two-dimen	sional): Toeslope	•	
		Down-slope :	shape. Linear	ensional): Tread		
		Across skipe	shape: Linear			
		Parent mater	al: Clayey lacus	trine deposits ov	er loamy and sandy	
	T	voical profile				
	- 27	1+1 - 0 to 11 ii	nches: silt loam			
		112 - 11 to 41	inches: clay inches: stratifie	d loamy sand to	loam	
	P	roperties and ou	alities			
		Slope: 1 to 9	percent			
		Depth to rest	nictive feature: M	ore than 80 inche	es	
		Runoff class:	Very high			
		Capacity of the	te most limiting l	ayer to transmit	water (Ksat): Very low	
		Depth to wate	er table: About ()	to 12 inches		
		Frequency of	tooding: None			
		Available wat	er supply, 0 to 6	0 inches: Moder	ate (about 8.2	
	000	inches)				
	In	Land capabil	H ty classification	(irrigated): None	specified	
		Land capabil	ty classification	nonirrigated): 3	Barrier and the second se	
		Ecological sit	e: F105X1/005/	VI - Wet Loarny-C	avey Lov/land	
		ground				
USDA Natural Repource	S		Wet Soil S	urvey		11/14/2022
	FICE		nauonal Cooperativ	e our vey		rage i of z

CEE:4850

CEE:4850

Appendix J: Gantt Chart

;	21 Au	ıg - 2	7 Aug)				28 Au	ıg - 0	3 Sep	D				04 Se	ep - 1	0 Sep)			ep - 1	7 Sep		
22	23	24	25	26	27	28	29	30	31	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Pro	oposa	al Pro	ocess																					
					(Client	t Cor	ntact	& Pro	oject	Intro	oduct	tion											
							Pro	niect	Rese	arch	ର RI	ED W	riteu	n										
								oject	Rese	uren			incou	۲ 										
																	9	Site V	/isit					
																			F	Proje	ct Pre	esent	atior	n –

		11 Se	ep - 1	7 Sep	C				18 S	ep - 2	24 Se	р			ć	25 Se	p - 01	1 Oct	t				02 0	oct - (08 00	t				09 0	Oct -	15 Oc	t				16 C	22 Oc	2 Oct				
11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	5 17	18	19	20	21	22	23	
																										Prog	rami	ng Pi	roces	s													
																																Fi	nalize	e Arc	hite	ctural	layo	ut					
												Discu	uss ai	chite	ctura	Idea	as Wi	ith C	lient																								
											Re	evise	Idea	S																													
	De	sign	Proc	ess																																							
	Stru	uctui	ral Ev	valua	ition																																						
																		[Discu	iss St	tructu	ural F	Proble	ems '	With	Clier	nt																
																										Finali	ze St	truct	ural F	lan	With	Clien	t										
																																	Ī										
																									Si	ite De	sign																

15 Oct 16 Oct - 22 Oct 23 Oct - 29 Oct 30 Oct - 05 Nov 06 Nov - 12 Nov 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 2 3 4 5 6 7 8 9 10 11 12 Client 13 Nov - 19 Nov 20 Nov - 26 Nov 27 Nov - 03 Dec 04 Dec - 10 Dec																															
Client 2 Nov - 19 Nov 20 Nov - 26 Nov 27 02 07 07 07 08 09 00 11 12 04 05 06 7 08 09 10 11 12	15 Oct				16 O	ct - 2	2 Oct					23 C	oct - 2	9 Oc	t				30 Oc	t - 05	Nov					06 N	lov-12	2 Nov	/		
Client	13 14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31		2	3	4	5	6	7	8	9	10	11	12	13
Client																															
Client 																															
13 Nov - 19 Nov 20 Nov - 26 Nov 27 Nov - 03 Dec 04 Dec - 10 Dec	Client																														
13 Nov - 19 Nov 20 Nov - 26 Nov 27 Nov - 03 Dec 04 Dec - 10 Dec																															
13 Nov - 19 Nov 20 Nov - 26 Nov 27 Nov - 03 Dec 04 Dec - 10 Dec																															
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3 4 5 6 7 9 9 10 14	10 12	14	13 No	v - 1	9 Nov	18	10	20	21	20 N	ov -	26 N	OV	5 24	s 0'	7 21	27 8 2	Nov ·	- 03 🗆)ec		2	4	0.	4 De	c - 10) Dec	0	10	11	12

	Prepare Construction Documents Finalize Project Draft - Project Presentation Rehearsal • Project Presentation	Finalize Project