

FINAL DELIVERABLE

Title	Waterloo Pedestrian Railroad Overpass	
Completed By	Sydney Bortscheller, Alexander Kettering, April Vande Brake, Nicholas Moioffer	
Date Completed	May 2021	
UI Department	Department of Civil & Environmental Engineering	
Course Name	CEE:4850:0001 Project Design & Management	
Instructor	Paul Hanley	
Community Partners	City of Waterloo	

This project was supported by the Iowa Initiative for Sustainable Communities (IISC), a community engagement program at the University of Iowa. IISC partners with rural and urban communities across the state to develop projects that university students and IISC pursues a dual mission of enhancing quality of life in Iowa while transforming teaching and learning at the University of Iowa.

Research conducted by faculty, staff, and students of The University of Iowa exists in the public domain. When referencing, implementing, or otherwise making use of the contents in this report, the following citation style is recommended:

[Student names], led by [Professor's name]. [Year]. [Title of report]. Research report produced through the Iowa Initiative for Sustainable Communities at the University of Iowa.

This publication may be available in alternative formats upon request.

Iowa Initiative for Sustainable Communities The University of Iowa 347 Jessup Hall Iowa City, IA, 52241 Phone: 319.335.0032 Email: iisc@uiowa.edu Website: http://iisc.uiowa.edu/

The University of Iowa prohibits discrimination in employment, educational programs, and activities on the basis of race, creed, color, religion, national origin, age, sex, pregnancy, disability, genetic information, status as a U.S. veteran, service in the U.S. military, sexual orientation, gender identity, associational preferences, or any other classification that deprives the person of consideration as an individual. The University also affirms its commitment to providing equal opportunities and equal access to University facilities. For additional information contact the Office of Equal Opportunity and Diversity, (319) 335-0705.

WATERLOO PEDESTRIAN RAIL BRIDGE

The top picture shown is the above-ground structure detailed in this report and the bottom picture is the University of Memphis pedestrian bridge that primarily inspired the design that follows.

Sydney Bortscheller Alexander Kettering April Vande Brake Nicholas Moioffer

Section I Executive Summary -

For this project we have designed a pedestrian cable-stayed bridge that crosses the Canadian National (CN) Railroad in Waterloo, IA. This overpass was designed by a team of senior University of Iowa students studying civil engineering in a capstone design class. During the Spring 2021 semester, the design group formulated a proposed structure for this area that they feel best fits the needs of the client and the people of Waterloo.

The structure designed is a cable-stayed pedestrian bridge over the north end of the CN railyard where it intersects East 4th Street. It will connect with the sidewalk running parallel to East 4th Street on the west side of the road. The south end of the structure is located near the intersection of East 4th Street and Dane Street, and the north end of the structure is located in the southeast corner of Five Sullivan Brothers Memorial Park.

The primary goal of this project was to provide the community with a safe method to cross the tracks, especially when train cars are parked in the intersection. While cars and trucks can easily take a detour when the tracks are blocked, there are no easy paths for foot traffic. Pedestrians are forced to either wait for up to an hour, or dodge between rail cars. Furthermore, this location sees a large amount of pedestrian foot traffic due to the nearby school, businesses, and local neighborhood. With the implementation of this overpass, the safety of pedestrians at this location will be reinstated.

The structure is in an urban setting with limited space, and the piers are placed outside of the railroad's right of way. Due to the limited space, an elevator and staircase were chosen as means of access on the south end of the bridge. On the north end, the bridge ties into a public park and is accessed by way of a spiral ramp. Having an elevator on one side and ramp on the other makes this bridge compliant with the Americans with Disabilities Act (ADA). In addition to this accessibility goal, it was important to design a structure that would enhance the uniqueness of the area. Elements like the spiral ramp access point in the park and the cable-stayed structure were chosen to prioritize the aesthetic of the bridge and its relation to its surroundings. To accomplish this, our team researched the local area and involved our client and the neighborhood services coordinator in the aesthetic decision-making process.

The overpass was designed according to Load and Resistance Factor Design (LRFD). It complies with the Iowa Department of Transportation (DOT) standards, as well as the regulations imposed by CN. The bridge was also designed to follow the Iowa Statewide Urban Design and Specifications (SUDAS) and be ADA compliant. Any other standards not found in these documents were from the Federal Railroad Administration (FRA). The American Association of State Highway and Transportation Officials (AASHTO) LRFD Bridge Design Specifications serve as the foundation of the bridge superstructure and spiral ramp designs.

The design items included in the report that follows are superstructure, spiral ramp access point, elevator tower access point, substructure, site design, and complete construction cost estimate. The superstructure design includes that of the steel cables, concrete deck, and steel girders. The bridge deck is 27.5 feet above the ground to allow for the vertical clearance required by the railroad. The tower that supports the cables is located at the north end. This twin-tower style support extends 150 feet above the top of deck and is made of reinforced concrete. Each of the two identical towers has a 5.5 feet by 5.5 feet square cross section. Below deck, it expands to a 5.5 feet by 10 feet rectangular cross section, with the 10 foot segment in the east-west direction. The beams are supported on this end by a reinforced concrete beam that has cross section dimensions of 4 feet by 4.5 feet and connects into the tower. Cables are arranged in a radial pattern, extending from the top of the tower. 15 cables connect to the main span of the bridge on each tower, spaced every 35 feet along the bridge deck. Each cable is made up of 19 strands of prestressing wire, arranged in a hexagonal formation. Each strand shall be coated in a polyethylene coating and hot dip galvanized to prevent corrosion. Additionally, the entire cable shall be sheathed. The span is made up of a twin set of W36x853 shape I beams and an 8-inch reinforced concrete slab that will serve as the deck.

The spiral ramp serves as the north-end access point to the bridge deck and has an overall edge to edge diameter of approximately 63 feet. All elements are of reinforced concrete. The path has a width of 12 feet and thickness of 11 ¼ inches. It is supported by beams that are 18 inches wide and 20 inches tall. All beams frame into a circular center column with a diameter of 39 inches. At the south end, the bridge is accessed by way of elevator or stairs. The elevator tower has an overall height of 41 feet and takes up roughly a 9 foot by 7-foot area. The roof is a Vulcraft 3NL metal deck of 22-gauge steel. All beams are W8x10 and the four corner columns are W4x13. The voids in-between beams and columns will be filled with glass panels. The stairs that wrap around the elevator tower will be precast concrete long-span step treads. Each step will be 11 inches deep and 7 inches tall as required by the International Building Code (IBC). Both the ramp on the north and the stairs on the south end of the bridge are intended to have a cable railing installed to visually tie in with the suspension cables of the bridge deck.

The foundations on the project were designed as pile foundations. The foundation on the south side must support the load from the elevator tower, stairs, bridge, and wind loading. This foundation was designed to contain 12 HP14x117 steel piles with a length of 30 feet, spaced at distance of 4 feet on center. These piles where arranged symmetrically with 4 rows and 3 columns of piles running north to south. The pile cap was designed as a 12 by 15-foot-high strength concrete pile cap that has a thickness of

2 feet. The north foundation was designed to carry the deadload from the two main support towers, the spiral ramp, along with the reactionary forces from the bridge including horizontal and vertical loads plus an overturning moment. It was determined that this foundation will contain 64 HP18x204 steel piles with a length of 60 feet, spaced at a distance of 5 feet on center. These piles where arranged in a square formation with 8 rows and 8 columns of piles respectively. The pile cap was designed to be a 40 by 40 foot high strength concrete pile cap with a thickness of 2 feet. The anchorages where designed to be located at 178 feet due north of each tower. Each anchor will contain 1 back stay cable that is angled at 45 degrees with respect to the ground, a 25 foot long-6 inch diameter steel anchor pipe, and a 10 foot cube normal weight concrete anchor block. These blocks will be anchored at a depth of 15 feet and where designed to have enough resistance to prevent failure of the tower.

For this project site design was modeled around two key elements. The first of that being to ensure that our construction and project area did not impede CN right of way. This was important to us and the client due to not knowing the willingness or coordination between the City of Waterloo and the CR Railroad. The majority of our site is located in the southeast portion of Five Sullivan Brothers Park which is all owned by the City of Waterloo. In the park a quarter-acre staging area was designated for the contractor's use throughout the life of the project. This area has the ability to expand if need be further into the park. The other key element of site design is to ensure that the project site, once complete, will match its current state if not be in an improved condition. The measures done to achieve this include the prepping of the site, resurfacing and reseeding of vegetation, silt fencing to prevent erosion, and pre/post construction surveys of the site.

The cost estimate for the construction of the project was broken up into 3 major subsections: substructure, superstructure, and site design. The substructure, which consists of the abutments, tower, and pile foundations has a final cost of \$340,000. The superstructure which includes the deck, girders lighting, railing, cables, access points, and tower has a cost of \$1,500,000. Site design which consists of the cost of preparing the site for construction as well as restoration after project completion costs \$98,000. All cost estimates prepared are for raw material and labor and do not include the contractors overhead/markups. A multiplier of 2.5 was used to calculate a final price that accounts for the contractor's overhead and risk in the project. This brings the total project cost to approximately \$5,200,000.

Section II Organization Qualifications and Experience

The project has been designed by a team of four University of Iowa students in the capstone design class. Sydney Bortscheller is the project manager.

All members of the team are Spring 2021 graduates of the University of Iowa's Civil Engineering program. Sydney Bortscheller, Nick Moioffer, and April Vande Brake are specializing in Structures, Mechanics, and Materials. Alex Kettering's focus is Civil Practice. In this project Alex assisted with the superstructure calculations, but primarily focused on site design and construction estimating. April designed the access points of the bridge including the elevator and stairs on the south end and spiral ramp on the north end. Sydney designed the superstructure, including the girder and cable designs. Nick designed the foundations.

Section III Design Services

1. Project Scope

For this project we have designed a pedestrian suspension bridge that crosses the CN Railroad in Waterloo, IA. The design is positioned just northwest of the rail yard and crosses the tracks along the west side of East Fourth Street. The north landing of the bridge outlets into Five Sullivan Brothers Memorial Park. The south landing is south of the tracks, roughly one hundred feet north of Dane Street, west of East 4th Street. The primary goal of this project was to provide the community with a safe method to cross the tracks, especially when train cars are parked in the intersection. The deck that is atop the railroad right of way is enclosed on both sides. Included with the structure is lighting for both safety and aesthetic appeal. Along with safety, it was important to design a structure that would enhance the uniqueness of the area. Elements like the spiral ramp access point in the park and the suspension-type structure were chosen to prioritize the aesthetic of the bridge and its relation to its surroundings. All members of the community are able to access this overpass as all components are compliant with the ADA. The bridge access points include an elevator and stairs at the south entrance and a spiral ramp on the north end.

Our preliminary design of this pedestrian railroad crossing contains all relevant items to successfully completing this project. The items designed are as follows: superstructure, substructure, spiral ramp access point, elevator tower access point, aesthetics, site design, and a complete construction cost estimate. The superstructure design includes steel cable, concrete deck, and steel girder design. Substructure design contains the sizes and materials needed for the abutments, tower, and foundations. The elevator and spiral ramp designs contain the sizes and materials of all their structural members.

Aesthetics were modeled to fulfill the request of our client and duty as engineers to make a structure that is not only functional but will enhance the community in which it is in. Site design encompasses the preparation, use, and restoration of the site after construction in order to return to or improve the current site conditions. The final part of the design is the cost estimation of all materials, labor, and contingencies predicted as necessary from this point onward.

2. Work Plan

The Gantt chart in Table 2 below served as our schedule of the major tasks, now completed. It begins with gathering information. After a week to gather information, the design portion began, which included designing and/or ruling out possible alternatives. Once the initial design stage was completed, the report and drawings were drafted, along with the presentation and poster. After receiving feedback on those drafts, the design was edited and finalized. The presentation and poster was finalized for the presentation to the client. After feedback, the design report and drawings were also completed. The work was mainly divided by element of design. This means that the same team member that designed an element also prepared relevant report sections and drawings for that element.

The ownership of preliminary design elements is as follows:

Table 1: Table Showing Team Member and Tasks Completes

Name:	Aesthetics	Superstructure	Substructure	Ramp	Elevator	Site	Cost Est.
Sydney	X	X	X				
April	X			X	X		
Nick			X				
Alex		X				X	X

Table 2: Gantt Chart

Section IV Constraints, Challenges, and Impacts

1. Constraints

Due to the nature of this project, the design was subject to constraints. These constraints include the horizontal and vertical clearances that the overpass satisfies. Along with this, the profile and grade requirements (physical requirements) are satisfied as well in coordination with the IBC, CN rail standards, and Iowa DOT regulations. The overpass was designed in accordance with the AASHTO LRFD Bridge Design Specifications, such that there is a more than adequate resistance of loads, including but not limited to: dead, live, wind, and snow loads. Along with this, deflection considerations were assessed. The overpass contains one access point at each end which were designed in accordance with ADA specifications. The load applied to the overpass includes an allowance for the fencing specifications required in all railroad pedestrian overpasses.

The site layout presented our group with a few different challenges. The first one encountered was pier placement. Many different options were considered but ultimately the chosen location, west of and parallel to East 4th Street was chosen due to right of way restrictions and input from the city. The two

biggest challenges with right of way were avoiding railroad property and avoiding the need to buy property from private landowners. The chosen configuration of the structure stays within the city's right of way.

2. Challenges

The final determination of the overpass location along with the direction of span in consideration with surrounding structures was a major challenge. Another challenge included the placement of the bridge abutments and access points. The final span length and width is greater than the minimum required, and the final dimensions were a challenge as they depended on the size, location, and direction of the abutments. Sizing and type of foundation were dependent on the surrounding soil, making it paramount that the final location of the overpass allowed enough surrounding space to account for this problem.

The task of designing an aesthetically pleasing structure that appeals to the entire community was heavily focused on by the team. The economic feasibility of an overpass was also a challenge that was considered when sizing and choosing materials for structural members. Although the design needed to be in accordance with the ADA, it was not allowed to take away from the functionality or look of the overpass.

3. Societal Impact within the Community and State of Iowa

The safety of Waterloo residents, those of the surrounding neighborhood in particular, is the most notable impact of this project. The design and construction of this overpass was and is significantly overdue as the railyard currently poses a fatal threat to pedestrians. It has been the site of over five dismemberments over the last thirty years (The Courier, 2019). The project site is only six blocks from the nearest high school. With the implementation of this overpass, the safety of students walking to and from school every day will be reinstated at long last. The layout of the bridge and its access points was chosen in part to optimize the safety of bridge patrons. With the spiral ramp access point in the park, there is considerable distance between it and the local bar across East 4th Street. This prevents any forced intermingling of those at the bar and those just passing by.

A priority of this project was to deliver an iconic structure for the neighborhood. Special care was taken to not only satiate the community's mobility and safety needs but also their aesthetic desires. The team met with neighborhood services coordinator, Felicia Smith-Nalls, to hear directly from someone whose priority is maintaining and increasing the local residents' quality of life. She provided critical insight on which existing neighborhood improvements to tie into and which to steer clear of. Her input

was also essential in choosing the aesthetic intentions of the bridge. This design strives to bring people together in more ways than the obvious.

Section V Alternative Solutions That Were Considered

1. Underpass

In preparation of this project's proposal, it was determined that an overpass is the optimal solution for this railroad crossing. The most sensible alternative was an underpass structure, such as a tunnel. This would allow another easy mode of transportation for pedestrians to cross the tracks safely. Even though an underpass would present less winter maintenance and eliminate the risk of pedestrians jumping or throwing objects onto the tracks, it was ruled out due to restrictive clearance requirements beneath the track and the high flooding potential.

2. Access to Bridge

Within the bounds of ADA compliance, a spiral ramp and elevator tower were chosen for the bridge access points. Other options were continuous approaches and switchback ramps. These options were ruled out on the grounds of aesthetic appeal and available space. A spiral ramp requires a smaller area than a continuous approach and will add to the ambiance of the park to the north. An elevator tower requires an even smaller area, which is why it was chosen where space is especially limited on the south end.

3. Materials

Care was taken with each element in deciding whether it was best suited by steel or concrete. The team kept in mind that concrete is lower maintenance and less prone to damage by salt and ice melting chemicals. However, it makes for a heavier structure and has a higher potential of not being able to meet span requirements. Alternatively, using strictly steel would allow for the bridge to have a much longer span. It was noted that depending on the specific type of steel, it could be a cheaper alternative. Also to its advantage, steel can be covered with an epoxy-based clear sealer for preventative aid in graffiti removal. Steel as a material poses some possible issues though. One being that a steel walkway would not be as easy or as comfortable as walking on concrete. Also, steel is prone to rust, especially in climates in the Midwest.

4. Truss

A truss was briefly considered for this bridge. However, with the final span length being over 500 feet, it was determined that a cable-stay bridge would be more economical. In addition, the City of Waterloo is looking for a signature bridge. The cable-stay design was more aesthetically pleasing and gained the attention of the neighborhood services coordinator, Felicia Smith-Nalls, and the city engineer, Jamie Knutson. It was therefore decided that this team would move forward with the design of a suspension bridge.

5. Span

Multiple spans were considered for this bridge. There were considerations to bring the north side pier over to an empty lot. However, this lot had little room and probably would have required an additional elevator. Also, the City expressed their wish to open the bridge into the park, to make it a more welcoming environment.

The south side pier was considered to be placed in a larger open lot farther west of the decided on site. However, this would have been out of the way for pedestrians, and therefore would decrease the usability of the bridge. In addition, it would have expanded the span. The most viable possible span design is located in Appendix F.

Section VI Final Design Details

Span Design:

The span was designed to be 525 feet long. A depiction of the span can be found in Appendix F. On the North end, the bridge abutment will be located in the nearby park. The pedestrians can then use a spiral ramp to exit the bridge, leading them into the park. On the south side, a small plot of land currently owned by the city will be used. Because of the small size, an elevator and staircase was designed for this segment. These two pier placements were decided on for multiple reason. The first is that both slots of land are owned by the City. Both pier locations are also close to E. 4th street, which runs north-south, and would provide easy access for pedestrians.

Drawbacks to this location, is that it is not the shortest span possible. The shortest viable span is shown in Appendix F. It is also not on the same side of the road as the high school, so pedestrians will most likely have to cross the street if they wish to use the bridge.

Aesthetic Considerations:

The bridge requires a 10 foot tall safety fence, due to the fact that it is running over a railroad. We propose that this fence be a wire mesh fence, similar to that of the cable-stay pedestrian bridge on the University of Memphis campus. Other fencing could be considered, including an 8 foot tall fence curved at the top, as specified by the AASHTO LRFD Guide and Specifications for the Design of Pedestrian Bridges. A cheaper, chain link fence, is also a viable solution, but does not match the aesthetic intent maintained as a priority in other aspects of the design of this bridge.

Lighting is also a consideration for this bridge. Traditional light posts could be placed on the bridge deck. However, for a more aesthetically intriguing look, LED lighting could be considered. LED lighting would be programmable, so the colors could change throughout the day. These lights would be fastened on the edge of the bridge deck, and could also be placed on top of the tower. Additionally, flood lights could be placed near the access points. This lighting would both increase the safety for bridge patrons as well as add some visual appeal. While the lighting is not fully designed at this time, lighting was taken into consideration when assessing the strength of every component.

Cable Design:

The cables were designed using an iterative design method. It was assumed that there would be 15 cables on each side of the bridge, for 30 total cables. These cables would be spaced apart equally every 35' in the horizontal direction, and all cables would be anchored to the top of the tower, for a radial cable design pattern. This pattern is a common pattern in cable-stay bridge construction, and is effective. However, it requires extra detailing to handle the congestion that will be apparent when anchoring multiple cables to the top of the tower.

The area of each cable was determined based on the service load applied, which is the dead load and pedestrian live load acting on each set of cables, added with no additional factors. The tower will extend 150 feet above the top of deck. Dead load was approximated based on the weight of the girders, concrete deck, lighting, and safety cage. Pedestrian loading was based on the AASHTO LRFD Guide Specifications for the Design of Pedestrian Bridges requirements and was thus assumed that a 90 PSF live load would be applied to the deck. The dead load and live load of the entire bridge was then divided by two, as there will be two sets of cables. The computation and values for this loading can be found in Appendix C. This service loading was then used to find the total tension in each cable. The area in the cable was then determine using the strength based approach. Calculations for the cable design are shown in Appendix B. Through these calculations, it was determined that each cable shall consist of 19 strands of 0.6" diameter prestressing wired.

The strands are assumed to be arranged in a parallel design pattern, as it has the most strength efficiency. As such, area may be increased to accommodate for this design. Each strand should be hotdipped galvanized and coated in a polyethylene polymer to prevent corrosion in the wires. Additionally, the each cable should be sheathed to minimize wind and rain effects. A cross sectional view of the cable can be found in Sheet 5: Superstructure Elevation of the drawing set.

Girder Design:

The entire superstructure, including the girders, cables, and tower, were modelled using a 2-D frame in Autodesk Robot. This model was used to determine the sizing of the girders, as well as the tower. This model can be seen in Appendix A.

The girders were designed in accordance with the AASHTO LRFD Bridge Design Manual. The models were first analyzed by applying the calculated dead load and live load to them. Then, these numbers were multiplied in accordance with the Strength I limit state, to approximate a maximum shear force, and maximum positive and negative moment. The axial compression model analyzed only the service loading to find maximum compression. Results of both of these models can be found in Appendix C.

The girder was analyzed for shear, and combined axial and flexural resistance. It was designed to act non-compositely with the deck. The shear resistance was designed in accordance to AASHTO LRFD Bridge Specifications Section 6.10.3.3 on shear resistance of steel members. The shear strength of the girders was much greater than the required shear strength, as determined by the Strength I load combination. Therefore, the section can resist shear without shear stiffeners.

The combined compressive resistance and flexural resistance was determined using AASHTO LRFD Handbook section 6.9.2.2. The compressive resistance was determined using section 6.9.2.1. It was also assumed that this section would have torsional bracing so that effective length for torsional buckling was equal to 5 feet. The torsional bracing itself has yet to be designed, but this will be one of the controlling parameters for said design. The flexural strength was determined in accordance with Section 6.10. It checked against lateral torsional buckling, flange local buckling, and flexural yielding of the material. The critical case was found to be the lateral torsional buckling case, for a moment resistance of approximately 13266 kip-ft. This was determined using a lateral bracing distance of 9.5 feet.

This process has resulted with the conclusion that there shall be 2 girders, which are both W36x853 standard steel section.

Slab Design:

The slab shall be an 8 inch concrete slab. It should be made out of pre-cast concrete, cast in 35' segments to match the spacing between the cables. This slab will require #4 rebar to run through it every foot for shrinkage and temperature requirements. This slab was designed as a one-way slab, using LRFD concrete design theory. It was designed to support the required live load, superimposed dead load, and the slab's self weight. This slab was checked in Strength I. The slab was designed to act completely non-compositely from the girder, and therefore does not contribute to the strength of the girder. The calculations for this can be found in Appendix G.

Tower Design:

The tower consists of two twin columns that extend 150 feet above the top of deck. The tower above the deck was analyzed using the same model of the superstructure used to analyze the girders. This model can be found in Appendix A. Each tower was analyzed using standard LRFD concrete design theory. The towers were assessed under Strength 1, Strength 3, and Service 1 load combinations in accordance with the AASHTO LRFD Bridge Design Manual. The loadings applied to the section can be found in and the results of the loads on the members can be found in Appendix C. The tower was analyzed for bending moment, compressive resistance, and buckling.

Above the deck, these columns are each 5.5' by 5.5' sections of normal weight concrete. They consist of 16 pieces of #18 bars, arranged symmetrically through the bar. The rebar is tied using #4 ties spaced every 2'. The Strength I loadings for this section were used to design this section, finding that buckling was critical. The sections were then checked in Strength 3 and Service 1 to account for strength. This included a bi-axial moment interaction check. The towers above the deck are doubly symmetric, and therefore have the same bending moment resistance in each direction.

The tower extends 27.5' down from the top of deck to the ground. The tower below the deck was modelled as a rigid frame, . A concrete beam, referred to as the pier cap, supports the girders and deck, and two concrete columns connected the frame to the ground. A model of this can be found in Appendix A. The girders rest on a Disktron fixed bearing plate, with 30% lateral load capacity. This Disktron will need to be specially designed to suit this bridge, and estimations of the dimensions for this bearing plate were made based on readily available models from RJ Watson Inc. The Disktron will distributed the load from the girders and deck properly to the pier cap.

The pier cap was analyzed for flexural strength, as well as shear strength. Tension-controlled design was used to analyze the flexural resistance. The pier cap is a 4' by 4.5' singly reinforced concrete beam. It consists of 8 pieces of #14 rebar, with #5 U-shaped stirrups placed every 1.5".

The columns below the deck were determined to be 5.5' by 10' sections. The 10' dimension will extend in the east-west direction. The concrete will taper to this dimension at a 4:1 ratio for aesthetic purposes, but the tapered section was not be counted towards strength. The columns require 54 pieces of #18 rebar, and the arrangement is detailed in Sheet 7: Tower of the drawing set. There will be #4 ties supporting the columns, spaced every 1.75 in. This section was checked similarly to the tower above the deck. Flexural resistance was checked in both the strong and weak axis of the towers. The towers were designed in Strength I, and checked in Strength 3 and Service 1. The combined axial compression and flexural resistance was critical in this section. The full calculations used to design this tower can be found in Appendix D, and the full drawing details can be found in Sheet 7: Tower of the drawing set.

Spiral Ramp Design:

The ADA specifications were used to set spiral outer-edge diameter to 62 feet and 11 ¼ inches and path width to 12 feet. This diameter was found by employing the 5% slope requirement set by the ADA and assuming a height between adjacent ramp levels of 8 feet. The Approximate Method of Analysis for Decks was used as specified in AASHTO LRFD Bridge Design Specifications Section 4.6.2 to estimate a maximum moment in the equivalent strip of slab of 114.2 kip-ft. This moment is generated by application of self-weight, lighting, railing, and pedestrian live loads. Using LRFD concrete design theory, that moment would require a mat of #4 bar spaced 9 ⁷/₈ inches on center (o.c.) in the transverse direction for shrinkage and temperature and 6 ⁵/₈ inches o.c. in the longitudinal direction for tensile strength. This shrinkage and temperature spacing was set by the ACI area of steel minimum of 0.18% of the concrete cross-sectional area. The tensile reinforcing steel spacing was found using simplified equations for tension-controlled design which assume the rebar will yield before the concrete.

Tributary area and static equilibrium were used to determine that the maximum moment and shear in each 18 inch by 20 inch cantilever beam were 2,907 kip-ft and 119.4 kip, respectively. Using LRFD concrete design theory, the moment would require 6 #7 bars centered over the top of each beam, spaced at 3 $\frac{5}{8}$ inches o.c. and the shear would require #3 stirrups spaced at 2 inches in the high shear zone which extends from the center column for 23 feet 8 inches. The spacing then widens to 4 $\frac{3}{8}$ inches until 29 feet 6 inches from the center column; at which point, stirrups are no longer required. The spacing (18 feet 8 inches o.c. along the outer edge of the path) of the beams was determined by the requirements of the deck analysis method. In order to analyze the deck as a single-spine beam of straight segments, those segments

must each span a maximum central angle of 34° . Similar to the deck, the 6 #7 bars for tensile reinforcement assume tension-controlled design. Their spacing meets the requirement that they span a distance equal to one-tenth the deck clear span. The concrete of the beam's shear strength left a difference of 114.5 kip to be covered by reinforcing stirrups. The 2 inch spacing of the stirrups in the high shear zone was determined using that difference. Past the high shear zone, the depth of the beam section was the controlling factor that set the maximum spacing at 4 $\frac{3}{8}$ inches o.c.

Static equilibrium was used to estimate a total compressive force in the central column of 3,581 kip. This is the sum of the support reactions from all beams framing into the column. Using LRFD concrete design theory, that force would require a 39 inch diameter spiral column with 6 #14 bars spaced evenly along the inside of a ¹/₂ inch diameter, 2 ³/₈ inch pitch spiral cage. This size and amount of reinforcing steel is typical of spiral columns and fulfills the steel-to-concrete ratio set by the ACI. Detailed calculations for the spiral deck, beams, and central column can be found in Appendix I and their visual depictions in Sheet 9: Spiral Ramp and Sheet 10: Spiral Ramp Section Details.

Elevator Tower Design:

ASCE 7-16 was used to calculate a total load on the elevator tower roof of 46.8 PSF. Using the Nucor Vulcraft Inward Uniform Allowable Loads tables, the optimal roof decking was determined to be 3NL22. The total load includes a superimposed dead load of ¼ inch protective layer and liquid applied waterproofing as well as standard roof live and snow loads of 20 PSF and 25 PSF, respectively. The selected roof decking can support a 58 PSF loading over a 9 foot span, which is sufficient for the Evolution 100 elevator dimensions.

The concepts of tributary width and static equilibrium were used to determine the maximum moment due to gravity loads in each of the roof framing beams to be 19.6 kip-feet. Chapter 26 of ASCE 7-10 and flexible diaphragm analysis were used to calculate the distributed wind loading over each lateral load resisting beam in the four equally spaced diaphragms and determine the maximum moment in the roof beams to be 1.435 kip-feet. The AISC Steel Construction Manual Table 3-2 was used to select a roof beam size of W8x10. The load from the roof decking, self-weight of the beam, and a required safety beam capacity of 7.5 kip by the Evolution 100 elevator manufacturer compose the gravity load applied. As the W8x10 is a section with noncompact flanges, Table 3-2 factors that into its capacity estimate of 21.9 kip-feet after the application of the ASD flexural factor of safety of 1.67. As the sum of gravity and lateral loads on the roof beams is 21.1 kip-ft, the W8x10 was determined sufficient.

ASCE 7-16 was used to determine the maximum moment due to gravity load of the glass panels on the intermediate to be 727 pound-feet. This combined with the maximum moment due to wind loading of

7.893 kip-feet is far less than that of the roof beams; therefore, the same W8x10 beam size was selected as adequate. As is the conservative choice, the wind pressure was assumed to act on the wider pair of walls. After distributing the net wind load to the roof and two intermediate diaphragms using their tributary widths, the diaphragms were assumed to behave as simply-supported beams and the wind loads were separated to supporting beams accordingly. As stated above, the weight of glass was used to size the beams beneath each panel, but this could be reanalyzed with a different material such as acrylic.

Static equilibrium was used to calculate maximum compressive force and moment due to eccentric loading in each corner column of 19.3 kip and 2.4 kip-feet, respectively. Using AISC Steel Construction Manual Table 6-2 and Chapter H of the AISC Specification, a W4x13 shape was chosen and confirmed to be adequate for strength resistance. An unbraced length of 10 feet was used to select an initial section as the 41 foot tall columns are braced at the three levels of intermediate beams. The loads from the beams are applied at the edges of the columns and not through their centers; therefore, both axial and flexural strength of the section were verified. The interaction of this combined loading was also checked and found to be within the acceptable limit. All steel members are Grade 50. Detailed calculations for all elevator tower structural elements can be found in Appendix J and its elevation and plan drawings on Sheet 11: Elevator Tower With Stairs.

The stairs that wrap around the elevator tower will be precast concrete long span step treads on steel stringers. There are 5 foot wide landings at each corner that the staircase rounds. Step depth and height are set at the International Building Code (IBC) standard of 11 inches and 7 inches, respectively. A cable railing is suggested to aesthetically coordinate with the suspension bridge design. Design of the stair supports including the stringer girders was determined to be beyond the scope of preliminary design, but the step dimensions can be seen on Sheet 11: Elevator Tower With Stairs.

South Pier Design:

The south pier was designed using standard LRFD concrete design. It is composed of normal weight concrete, and supports the load from the girders. This pier is designed in a T-shape, as is standard in pier foundation design. A model of this pier can be found in Appendix A. The girders shall rest on a Disktron Unidirectional bearing pad with 30% lateral load capacity. This Disktron is a standard, available connection that can be purchased from RJ Watson Inc, and ensures proper distribution of forces from the girder system to the pier cap.

The pier cap is a singly reinforced concrete section that is 3' by 4'. There are 4 pieces of #14 rebar, and #5 U-shaped stirrups. These stirrups should be placed every 2". A detail of this section can be found in Sheet 8: South Pier of the drawing set. The pier cap was analyzed in Strength 1. The wind loading

supplied by Strength 3 and Service 1 on the pier cap was found to be negligible, and therefore not assessed.

The pier column was assessed in Strength 1, Strength 3, and Service 1. The combined flexural strength and axial strength was assessed, as well as buckling. The pier column will be a 3' by 3' section, reinforced doubly symmetrically with 8 #14 bars. The column also includes #4 ties that shall be placed every 2 feet. The design calculations of the south pier can be found in Appendix K, and full drawing details can be found in Sheet 8: South Pier of the drawing set.

South Foundation Design:

The Standard Guidelines for the Installation and Design of Pile Foundations from ASCE was used to design this foundation. It was determined that a pile foundation would be suitable for this abutment, as space at this site on the project is limited and the loads could be high. Using an iterative design method, a pile size was first chosen to determine its capacity and resistance to the applied loads. Several piles were chosen to resist the total load acting on the foundation, and pile cap dimensions were selected to account for the number of piles in an economical way. The south foundation could experience three different loading types: Case 1 & 2 being a strength design and Case 3 being a serviceability design. When sizing this foundation all three loading cases had to be considered and can be seen in detail in Appendix L. Using these loading cases, it was found that an HP14x117 steel pile with a length of 30' would be suitable for this foundation. This pile and its corresponding length had enough capacity in pile point bearing, point load, and side friction capacity to prevent failure of an individual pile due to the loads acting on it. It was determined that a pile formation of 12 piles spaced at 4' O.C. would be able to resist each loading case with a corresponding pile cap dimension of 12'x15'x2' high strength concrete, see design sheet 12. This foundation had corresponding edge distances of 1'-6" in the N-S direction and 2' E-W direction as this pile cap is to be shaped as a rectangle. This formation of piles was shown to have enough capacity to resist failure of individual piles and the failure of the pile cap due to each loading case. The loads to be resisted in this analysis included moments and horizontal forces in only the N-S directions, along with the vertical reaction force from the bridge deck combined with the dead load from the superstructure above. The piles where oriented arbitrary with their weak axis of bending in the N-S direction. It was found in analysis that this orientation does not cause failure as the applied moment and horizontal force are relatively small.

Settlement of the piles where also analyzed in the design of this foundation. This included the settlement of an individual pile and the settlement of the pile group. Using the Bowles Method, the pile settlement for an individual pile for each loading case was found to be less than the required settlement of

3 times the pile diameter or 0.617", see Appendix L. The elastic settlement of the entire pile group was determined using the Strain Influence Factor Method with accordance to equivalent footings in pile foundation design and analysis. It was found that for each loading case, the settlement of the group did not reach or go past the maximum limit of 1".

Buckling of the piles was the final design criterion. According to ASCE, the maximum allowed stress in the piles before buckling occurs at 35% of the yield stress (50 ksi). In this case it was found that 17500 psi was the allowable limit, in which each loading case passed well within the range with a magnitude in the 10000-psi range.

Many assumptions about the surrounding soil were made during the design and analysis of this foundation. USGS geodata provided soil data for only about 6' into the ground. Since soil boring is not an option at this point in the design, it was assumed that the soil in this site is a purely granular soul. This assumption was made in accordance with the fact that the project site is excessively drained as seen in the geodata. Final design shall include a soil boring which will influence the design of this foundation as the piles are to be embedded at a depth of 30'.

It should be noted that this foundation will have to contain the necessary requirements for building an elevator. This includes but is not limited to, an elevator pit that is embedded into the foundation, along with a hydraulic ram that will penetrate the entire foundation in order to operate the elevator. These elements were not considered during the design and analysis of this foundation but due to the loads applied and the nature of how pile foundations react to given loads, these changes will not impact the strength greatly and the piles can be rearranged to account for this.

North Foundation Design:

The Standard Guidelines for the Installation and Design of Pile Foundations from ASCE was used to design this foundation. It was determined that the loading acting on this foundation would warrant the design of a pile formation as these loads have a very high magnitude. Using an iterative design method, a pile size was first chosen to determine its capacity and resistance to the applied loads. Several piles were chosen to resist the total load acting on the foundation, and pile cap dimensions were selected to account for the number of piles in an economical way. Through this design process, it was determined that the north foundation could experience three different loading types: Case 1 & 2 being a strength design and Case 3 being a serviceability design. When sizing this foundation all three loading cases had to be considered and can be seen in detail in Appendix L. Using these loading cases, it was found that an HP18x204 steel pile with a length of 60' would be suitable for this foundation. This pile and its corresponding length had enough capacity in pile point bearing, point load, and side friction capacity to

prevent failure of an individual pile. It was determined that a pile formation of 64 piles spaced at 5' O.C. would be able to resist each loading case with a corresponding pile cap dimension of 40'x40'x2' high strength concrete. This foundation had corresponding edge distances of 1'-6" in both the N-S and E-W directions as this pile cap is shaped as a symmetric square. This formation of piles was shown to have enough capacity to resist failure of individual piles and the failure of the pile cap due to each loading case. The loads to be resisted in this analysis included moments and horizontal forces in both N-S and E-W directions, along with the vertical reaction force from the bridge deck combined with the dead load from the superstructure above. The piles are specifically oriented with their strong axis of bending in the N-S direction. The reason for doing this is due to the high horizontal force that will be acting on this foundation. It was found that orienting the piles in this fashion will be able to resist this load and orienting them along their weak axis would not, see design sheet 13.

Settlement of the piles where also analyzed in the design of this foundation. This included the settlement of an individual pile and the settlement of the pile group. Using the Bowles Method, the pile settlement for an individual pile for each loading case was found to be less than the required settlement of 3 times the pile diameter or 0.772", see Appendix L. The elastic settlement of the entire pile group was determined using the Strain Influence Factor Method with accordance to equivalent footings in pile foundation design and analysis. It was found that for each loading case, the settlement of the group did not reach or go past the maximum limit of 1".

Buckling of the piles was the final design criterion. According to ASCE, the maximum allowed stress in the piles before buckling occurs at 35% of the yield stress (60 ksi). In this case it was found that 21000 psi was the allowable limit, in which each loading case passed well within the range with a magnitude in the 10000-psi range.

It should be noted that many assumptions about the surrounding soil was made during the design and analysis of this foundation. USGS geodata provided soil data for only about 6' into the ground. Since soil boring is not an option at this point in the design, it was assumed that the soil in this site is a purely granular soul. This assumption was made in accordance with the fact that the project site is excessively drained as seen in the geodata. Final design shall include a soil boring which will influence the design of this foundation as the piles are to be embedded at a depth of 60'.

Backstay Cables Design:

The sizing for the backstay cables was designed in the same way as the previous cables. This time, however, they were designed to take all the horizontal force that the cables would exert on the tower under the service load. It was also determined that the backstay cables would be placed at a 45 degree

angle with the ground. Similarly to the main span cables, these backstay cables shall be anchored to the top of the tower. This anchors the cables 177.5' away from the north tower. The cables should be placed in line with the bridge to prevent unnecessary torsion on the tower. There shall be two backstay cables, each using 127 strands of 0.6" diameter prestressing wire, arranged hexagonally. They shall be treated and coated the same way as the other cables.

Using equations and references found in Foundation Analysis and Design, the anchorages were designed. With references to the USS Steel Sheet Piling Design Manual for information on anchors and tiebacks, a block anchor (deadman anchor) foundation was designed. This foundation was designed to counteract the load on the two support towers from the bridge deck and keep the towers upright and sturdy. These types of anchorages are common in suspension bridge design and was an ideal solution to use in this project due to the limitation of space on this project. The anchors were designed such that each tower will have one back-stay cable and one block anchor. Each block anchor will be a 10'x10'x10' block of normal weight concrete embedded at a depth of 15' with one 6" diameter anchor rod spanning 25', see design sheet 14. This anchor carries the necessary dimensions to develop the adequate passive resistance for the back stay cable. It was found that the anchorage resistance of this formation would be 3380 kips, which is suitable to counter act the load of each back-stay cable, see Appendix L. These anchors where only analyzed for the critical load case (strength based), which controls cable design. This anchor must be carefully backfilled both around the sides and on the top so that the assumed passive condition with friction can develop. Carefully looking through design manuals and text, an assumed water depth table should not influence the anchorage resistance but may be important to note during the construction process. The anchor block will be connected to the anchor rod through a typical anchor rod connection, see Appendix L. This Rod will be connected to the main back-stay cable through a concrete transition block that can be seen on design sheet 14. With all these elements in place these anchorages will be able to support the two towers and prevent the bridge from failing.

Site Design:

In order to properly prepare for the construction of our project we must take proper steps to prepare our site for construction. We began by identifying which area is best to use as a staging area for equipment, materials, and on-site fabrication. We decided that the best location would be North of the structure in Five Sullivan Brothers Park. This land is owned by the city and is currently open space with a few small trees. Clearing and preparing this site would be easy and convenient. The total area is approximately .3 acres, a drawing of the area on Google Maps is shown below in Appendix C. The site is initially to be cleared and graded to provide a smooth and level surface for equipment and fabrication. Then a base/subbase of material will be brought in to preserve the ground from being damaged from constant movement of heavy equipment. Then a silt fence will be installed around the perimeter to prevent erosion of topsoil from the site. A survey crew will survey the land before and after construction to ensure that the site is restored to near its previous condition. After construction the base/subbase will be removed and the previously removed topsoil will be reapplied to the area. On the newly placed soil, sod matching the surrounding grass type (assuming Kentucky Bluegrass) will be planted. Six native Iowa trees will also be planted in lot after the grass is sewn.

Section VII Engineer's Cost Estimate

The estimated final cost of the complete project is \$5,200,000. This was determined using materials quantity estimation from design calculations and industry sources for pricing. All quantities and sources are listed in the project estimation spreadsheet below. The document is split up into four major cost sections. The following sections are substructure, superstructure/pylon/access points, and site design.

Substructure is all the materials, labor, and equipment needed to drive pile and construct the pile caps and anchors. Superstructure/pylon/access points has all the costs related to the deck, cables, and end structures (elevator and ramp). Site design includes all necessary material and labor for preparing the site for construction as well as restoring it to its final condition once the bridge is complete. The costliest section of the project is the superstructure/pylon/access points section. This is due to the amount of material needed to be included in this section as well as the nature of it. With our superstructure being primarily steel it makes sense that it will be the most expensive portion of the project due to the material and labor required. The total time of construction for this project is estimated to be 12 full working weeks on site. This does not include fabrication times of objects that can be built off-site. The timeline of 12 weeks is ambitious for this project, but it is important to work quickly and efficiently around the CN property to minimize the delays construction may cause to their operations.

When calculating and estimating labor costs various online sources were used and are linked in our spreadsheet. Labor was estimated using our best judgement and experience from internships and construction estimating. Labor values were pulled directly from an Iowa DOT sheet showing union workers' wages based on trade. For materials, industrial companies and professional websites were used as guides for estimation. To value the true cost of the project as it would appear to the client, a 2.5 multiplier was applied to all costs for the contractor's overhead and liability on this project. This multiplier is used due to the fact that material and labor pricing was not adjusted for profit by the sources.

Overhead is also to include costs related to mobilization and other items and materials that will be used on the project outside of what is needed for the structure itself.

To see a full breakdown of pricing, reference Appendix N below. The price of the subsections with the 2.5 multiplier are: substructure (\$850,000), superstructure (\$3,600,000). site design (\$250,000). The total of these combined sections is \$5,200,000. This will display the line items in each section of the project cost analysis along with their unit pricing. A breakdown of each section's price is also given. In the cost estimation spreadsheet, the sources for where a price was obtained are linked for certain materials. Scratch work for material quantity estimation is also included below in the appendix.

Appendices

A. Robot Models
B. Cable Design
C. Main Span Applied Loadings
D. Tower Design
E. Girder Design
F. Span Design
G. Slab Design
H. Span Deflection
I. Spiral Ramp Design
J. Elevator Tower Design
K. South Pier Design
L. Foundation Design
M. Site Design
N. Project Cost Estimate

Supo									
ыше	rstructu	re model							
Jupo			•						
* r	-100.0		р т т т т 0.0	100.0	200.0	300.0	400.0	500.0	1 1
500.0									
								10 a a a	• •
· ·			• • • • •					· · · ·	· ·
0.00		/							
=									
	/		,						e e
	/.		• • • \ • · \•						•
	/			/. /./.					· ·
ë 1									A [
				10ρ.ο	200.0	300.0	40p.0		1. (DL1)
	100.0	Tabl	e of Resul	ts: Unfact	pred Shea	r Force (kip	, 400.0 , , 400.0 ,	Cases: - 500.0	1. (DL1)
	1q0.0	Tabl	e of Resul	ts: Unfacto	pred Shea	r Force (kip)) LLL-	-Ped	1. (DL1)
	1000	Tabl	e of Resul De D Pos	ts: Unfacto	pred Shea	r Force (kip)) LL- Pos	-Ped Neg	1. (DL1)
	<u>x (ft)</u>	Tabl	e of Result Pos 109.99	ts: Unfacto	pred Shea Pos 1.89	r Force (kip) LL- Pos 39.2	-Ped Neg	1. (DL1)
	<u>x (ft)</u> 0 35	Tabl <u>Span</u> 0 0.07	e of Resul D Pos 109.99 56.97	ts: Unfacto	ored Shea Pos 1.89 1.89	r Force (kip CT Neg -) LL- Pos 39.2 20.3	-Ped Neg	1. (DL1)
	<u>x (ft)</u> 0 35 70	Tabl <u>Span</u> 0 0.07 0.13	e of Result Pos 109.99 56.97 22.01	ts: Unfacto Neg 8.37	2000 Dred Shea Pos 1.89 1.89 0.22	r Force (kip CT Neg -0.17)) LL- Pos 39.2 20.3 7.85	-Ped Neg -2.98	1. (DL1)
	x (ft) 0 35 70 105	Tabl <u>Span</u> 0 0.07 0.13 0.20	e of Result Pos 109.99 56.97 22.01 18.58	1000 ts: Unfacto Neg -8.37 -31.01	200.0 Dred Shea Pos 1.89 1.89 0.22	r Force (kip CT Neg -0.17 -0.13	b) LL- Pos 39.2 20.3 7.85 6.62	-Ped Neg -2.98 -11.05	1. (DL1)
	x (ft) 0 35 70 105 140	Tabl <u>Span</u> 0 0.07 0.13 0.20 0.27	e of Resul Pos 109.99 56.97 22.01 18.58 19.47	1000 ts: Unfacto Neg -8.37 -31.01 -34.45	Dred Shea Dred Shea Dred Shea 1.89 1.89 0.22 - -	r Force (kip CT Neg -0.17 -0.13 -0.06) LL- Pos 39.2 20.3 7.85 6.62 6.94	-Ped Neg -2.98 -11.05 -12.28	1. (DL1)
	x (ft) 0 35 70 105 140 175	Tabl 0 0.07 0.13 0.20 0.27 0.33	e of Result Pos 109.99 56.97 22.01 18.58 19.47 22.09 27.62	•••• ts: Unfactor ••• ••• ••• ••• ••• ••• ••• •	2000 Dred Shea Pos 1.89 0.22 - -	r Force (kip CT -0.17 -0.13 -0.06 -0.02 -0.2)) LL- Pos 39.2 20.3 7.85 6.62 6.94 7.87 0.07	-Ped Neg -2.98 -11.05 -12.28 -11.96	
	x (ft) 0 35 70 105 140 175 210	Tabl Span 0 0.07 0.13 0.20 0.27 0.33 0.40 0.40	Pos 109.99 56.97 22.01 18.58 19.47 22.09 27.68	1000 ts: Unfacto Neg 	2000 Dred Shea Pos 1.89 0.22 - - - 0.01	r Force (kip CT Neg - -0.17 -0.13 -0.06 -0.02 -0.02	20.3 7.85 6.62 6.94 7.87 9.87	-Ped Neg -2.98 -11.05 -12.28 -11.96 -11.03	
	x (ff) 0 35 70 105 140 175 210 245	Tabl Span 0 0.07 0.13 0.20 0.27 0.33 0.40 0.47 0.52	e of Resul Pos 109.99 56.97 22.01 18.58 19.47 22.09 27.68 36.95 48.71	1000 ts: Unfacto Neg -8.37 -31.01 -34.45 -33.56 -30.94 -25.35 16.07	Dred Shea	r Force (kip CT Neg 	20.3 7.85 6.62 6.94 7.87 9.87 13.17	-Ped Neg -2.98 -11.05 -12.28 -11.96 -11.03 -9.03	
	x (ft) 0 35 70 105 140 175 210 245 280 215	Tabl 0 0.07 0.13 0.20 0.27 0.33 0.40 0.47 0.53 0.60	e of Result Pos 109.99 56.97 22.01 18.58 19.47 22.09 27.68 36.95 48.71 50.71	**************************************	2000 Dred Shea Pos 1.89 0.22 - - 0.01 0.03 0.06 0.02	r Force (kip CT Neg - -0.17 -0.13 -0.06 -0.02 -0.02 - -	20.3 7.85 6.62 6.94 7.87 9.87 13.17 17.36 21.22	-Ped Neg -2.98 -11.05 -12.28 -11.96 -11.03 -9.03 -5.73	
	x (ft) 0 35 70 105 140 175 210 245 280 315 250	Tabl Span 0 0.07 0.13 0.20 0.27 0.33 0.40 0.47 0.53 0.60 0.67	e of Result Pos 109.99 56.97 22.01 18.58 19.47 22.09 27.68 36.95 48.71 59.71 65.00	1000 ts: Unfactor Neg 	2000 Dred Shea Pos 1.89 1.89 0.22 - - 0.01 0.03 0.06 0.08 0.00	r Force (kip CT Neg - -0.17 -0.13 -0.06 -0.02 - -0.02 - -	b) LL- Pos 39.2 20.3 7.85 6.62 6.94 7.87 9.87 13.17 17.36 21.28 22.2	-Ped Neg -2.98 -11.05 -12.28 -11.96 -11.03 -9.03 -5.73 -1.54	
	x (ff) 0 35 70 105 140 175 210 245 280 315 350 285	Tabl 5pan 0 0.07 0.13 0.20 0.27 0.33 0.40 0.47 0.53 0.60 0.67 0.72	e of Result Pos 109.99 56.97 22.01 18.58 19.47 22.09 27.68 36.95 48.71 59.71 65.09 50.2	1000 ts: Unfacto Neg -8.37 -31.01 -34.45 -33.56 -30.94 -25.35 -16.07 -4.31	2000 Dred Shea Pos 1.89 1.89 0.22 - - 0.01 0.03 0.06 0.08 0.09 0.00	r Force (kip CT Neg -0.17 -0.13 -0.06 -0.02 -0.02 - -	b) LL- Pos 39.2 20.3 7.85 6.62 6.94 7.87 9.87 13.17 17.36 21.28 23.2 21.14	-Ped Neg -2.98 -11.05 -12.28 -11.96 -11.03 -9.03 -5.73 -1.54	
	x (ft) 0 35 70 105 140 175 210 245 280 315 350 385 420	Tabl 5pan 0 0.07 0.13 0.20 0.27 0.33 0.40 0.47 0.53 0.60 0.67 0.73 0.90	e of Result Pos 109.99 56.97 22.01 18.58 19.47 22.09 27.68 36.95 48.71 59.71 65.09 59.3 27.16	1000 ts: Unfactor Neg 	2000 Dred Shea Pos 1.89 1.89 0.22 - - 0.01 0.03 0.06 0.08 0.09 0.09 0.07	r Force (kip CT -0.17 -0.13 -0.06 -0.02 -0.02 - - - - - - - - - - - - -	20.3 7.85 6.62 6.94 7.87 9.87 13.17 17.36 21.28 23.2 21.14 13.25	-Ped Neg -2.98 -11.05 -12.28 -11.96 -11.03 -9.03 -5.73 -1.54 -	
	x (ft) 0 35 70 105 140 175 210 245 280 315 350 385 420 455	Tabl 5pan 0 0.07 0.13 0.20 0.27 0.33 0.40 0.47 0.53 0.60 0.67 0.73 0.80 0.87	e of Result Pos 109.99 56.97 22.01 18.58 19.47 22.09 27.68 36.95 48.71 59.71 65.09 59.3 37.16	1000 ts: Unfactor Neg 	2000 Dred Shea Pos 1.89 1.89 0.22 - - - - - - 0.01 0.03 0.06 0.08 0.09 0.09 0.07 0.01	r Force (kip CT Neg - -0.17 -0.13 -0.06 -0.02 - - - - - - - - - - - - -	b) LL- Pos 39.2 20.3 7.85 6.62 6.94 7.87 9.87 13.17 17.36 21.28 23.2 21.14 13.25	-Ped Neg -2.98 -11.05 -12.28 -11.96 -11.03 -9.03 -5.73 -1.54	
	x (ft) 0 35 70 105 140 175 210 245 280 315 350 385 420 455 400	Tabl Span 0 0.07 0.13 0.20 0.27 0.33 0.40 0.47 0.53 0.60 0.67 0.73 0.80 0.87 0.02	e of Result Pos 109.99 56.97 22.01 18.58 19.47 22.09 27.68 36.95 48.71 59.71 65.09 59.3 37.16	1000 ts: Unfactor Neg 	2000 Dred Shea Pos 1.89 1.89 0.22 - - 0.01 0.03 0.06 0.08 0.09 0.09 0.07 0.01	r Force (kip CT Neg 	2000 LL- Pos 39.2 20.3 7.85 6.62 6.94 7.87 9.87 13.17 17.36 21.28 23.2 21.14 13.25 -	-Ped Neg -2.98 -11.05 -12.28 -11.96 -11.03 -9.03 -5.73 -1.54 	

÷		D	C	Ι	CT	LI	-Ped
x (ft)	Span	Pos	Neg	Pos	Ne	g Pos	Neg
0	0		-3531.08	-	-61	.6 -	-1258.6
35	0.07		-609.31	4.63	3		-217.18
70	0.13	25.524	-	12.39	0. 6	9.1	÷
105	0.20	2	-131.94	6.51	100	1 <u>4</u> 1	-47.03
140	0.27	2	-409.71	1.82	762	2 <u>8</u>	-146.04
175	0.33	-	-656.35		-0_	32 -	-233.95
210	0.40	-	-811.19	170	-0.9	96 -	-289.14
245	0.47	-	-770.41	-	-0.0	56 -	-274.6
280	0.53	2	-405.07	0.5	22	a 😫	-144.38
315	0.60	372	-	2.57	122	132.59	2
350	0.67	1533.92	1.70	5.42	37	546.74	2
385	0.73	2884.2		8.55		1028.03	-
420	0.80	4031.75		11.03	.	1437.06	-
455	0.87	4404.57	(4 3)	11.49	82	1569.94	-
490	0.93	3304.48	826	8.36	72	1177.84	2
525	1	0	-	0	-	0	-
	0	0	846.0	7 -	1.91	301.57	
	x(ft)	Sp an	DC	1	DCT	LL-Ped	
	0	0	846.0	7 -	1.91	301.57	
	35	0.07	848.9	5 -	1.91	302.59	
	70	0.13	848.9	5 -	1.52	302.59	
	105	0.20	834.7	6 -	1.36	297.54	
_	140	0.27	800.0	5 -	1.43	285.17	
	175	0 33	749 7	3 -	148	267.23	
	210	0.40	684.8	1 -	151	244.09	
	245	0.10	602.7		1.55	214.84	
	240	0.53	501		1.6	179.57	
	200	0.55	200.0	c	1.65	125.47	
	315	0.60	380.0	o -	1.00	135.4/	
	350	0.67	245.6	- 1	1.67	87.55	
	385	0.73	109.3	3-	1.67	38.97	
	420	0.80	-98.39) -	1.62	-13.52	
	455	0.87	-131.5	8 -	1.46	-46.9	
	490	0.93	-131.5	8 -	1.15	-46.9	
	525	1	-99.04	5 -	0.66	-35.31	

	oad com	bination:					
1.25*D	C + 1.75	*LL					
		St	renath I SI	near (kip))		
			5				
		I)C	D	CT	Ш	Ped
x (ft)	Span	Pos	Neg	Pos	Neg	Pos	Neg
0	0	137.49	-	2.36	5	68.60	
35	0.07	71.21		2.36		35.53	
70	0.13	27.51	-10.46	0.28	-0.21	13.74	-5.22
105	0.20	23.23	-38.76	12	-0.16	11.59	-19.34
140	0.27	24.34	-43.06	22	-0.08	12.15	-21.49
175	0.33	27.61	-41.95		-0.03	13.77	-20.93
210	0.40	34.60	-38.68	0.01	-0.03	17.27	-19.30
245	0.47	46.19	-31.69	0.04	-	23.05	-16
280	0.53	60.89	-20	0.08	-	30.38	-10
315	0.60	74.64	-5	0.10	2	37.24	-3
350	0.67	81.36	-	0.11	-	40.60	-
385	0.73	74.13	-	0.11	-	37.00	-
420	0.80	46.45	-	0.088	-	23.19	-
455	0.87	-	-19.83	0.013	-0.11	2	-9.89
490	0.93	2	-84.88	-	-0.30	723	-42.35
525	1	-	-151.16		-0.30	-	-75 43

Strength I Bending Moment (kip-ft)

		I	C	D	СТ	LL-	-Ped	
x(ft)	Span	Pos	Neg	Pos	Neg	Pos	Neg	
0	0	-	-4413.85	17	-77	-	-2202.55	
35	0.07	-	-761.64	5.788	-	-	-380.07	
70	0.13	31.91	*	15.488	-	16	-	
105	0.20	2	-164.93	8.138	2	122	-82.30	
140	0.27	8	-512.14	2.275	2	1023	-255.57	
175	0.33	-	-820.44	15	-0.4	-	-409.41	
210	0.40	-	-1013.99	÷	-1.2		-506.00	
245	0.47	*	-963		-0.825	0048	-481	
280	0.53	<u> </u>	-506	0.63	2	-	-253	
315	0.60	465.00		3.21	2	232.03	1.0	
350	0.67	1917.40	2	6.78	5	956.80		
385	0.73	3605.25	-	10.69	-	1799.05		
420	0.80	5039.69	-	13.79	-	2514.86	-	
455	0.87	5505.71	12	14.36	2	2747.40	2	
490	0.93	4130.60	2	10.45	2	2061.22	2	
525	1	0	-	0	-	0		

Str	ength I	Axial Comp	pression	(kip)	
x (ft)	Sp an	DC	DCT	LL-Ped	
0	0	1057.59	-2.39	527.75	
35	0.07	1061.19	-2.39	529.53	
70	0.13	1061.19	-1.90	529.53	
105	0.20	1043.45	-1.70	520.70	
140	0.27	1000.06	-1.79	499.05	
175	0.33	937.16	-1.85	467.65	
210	0.40	856.01	-1.89	427.16	
245	0.47	753.44	-1.94	375.97	
280	0.53	626.25	-2.00	312.50	
315	0.60	475.08	-2.06	237.07	
350	0.67	307.01	-2.09	153.21	
385	0.73	136.66	-2.09	68.20	
420	0.80	-122.99	-2.03	-23.66	
455	0.87	-164.48	-1.83	-82.08	
490	0.93	-164.48	-1.44	-82.08	
525	1	-123.81	-0.83	-61.79	
	Strength	I Design	Shear (k	ip)	
	-		1		
		- Vu	-		
		Pos	Neg		
	2	08.45	53		
	1	09.10	7		
	4	+1.53 -	15.89		
		34.81 -	58.26		
		36.48 -	64.63		
	4	41.39 -	62.91		
	- 1	51.89 -:	58.00		
	- (59.27 -	47.49		
	9	91.34 -	30.12		
	1	11.98 -	8.08		
	1	22.08			
	1	11.23	-		
	1	59.73	-		
			20.83		
		1	27.53		
		1	26.80		
	21;	2	20.09		

Strength I Des	ign Moment (kip-ft)
	Mu
Pos	Neg
570	-0095.40
5.19	-1141.70
914	247.23
2.28	-767 71
2.20	-1230.25
	-1521.18
	-1444.39
0.63	-759.00
700.2	5 -
2880.9	97 -
5414.9	99 -
7568.2	33 -
8267.4	47 -
6202.2	27 -
0.00	
Change with a Avriat C	
	ompression (kip)
	P ₁
15	82.95
15	88.33
15	88.82
15	62.45
14	97.32
14	02.97
12	81.28
11	27.47
92	36.75
	10.09
4:	58.14
20	02.77
-1	48.67
-2	48.38
-2	47.99
-1	86.43

Wind	Lo	adi	na

Applied to same model

	-9		Win	d		
	x (ff)	Span	Pos	Neg		
	0	0	26.81	24		
	35	0.07	23.32	-3.61		
	70	0.13	0.1	-7.11		
	105	0.20	1.83	-3.4		
	140	0.27	1.87	-1.67		
	175	0.33	1.72	-1.63		
	210	0.40	1.55	-1.78		
	245	0.47	1.49	-1.95		
	280	0.53	1.83	-2.01		
	315	0.60	2.83	-1.67		
	3 5 0	0.67	4.33	-0.67		
	385	0.73	5.51	-		
	420	0.80	4.88	-		
	455	0.87	1.38	-		
	490	0.93	127	-8.09		
	525	1	528	-11.59		
Unfa	actored Ben	ding Mon	nent in W	eak direc	tion (k	
Unfa	actored Ben	ding Mon	nent in W	eak direc ind	tion (k	
Unfa	actored Ben	ding Mon	nent in W W Pos	eak direc ind <u>Neg</u>	tion (k	
Unfa	actored Ben	ding Mon	nent in W W Pos 651.93	eak direc ind <u>Neg</u>	tion (k	
Unfa	actored Ben	ding Mon <u>Span</u> 0 0.07	nent in W <u>Pos</u> 651.93 -225.22	eak direc ind <u>Neg</u> -	tion (k	
Unfa	actored Ben <u>x(ff)</u> 0 35 70	ding Mon <u>Span</u> 0 0.07 0.13	nent in W Pos 651.93 -225.22 -37.46	eak direc ind <u>Neg</u> - - -	tion (k	
Unfa	actored Ben x (ff) 0 35 70 105	ding Mon <u>Span</u> 0 0.07 0.13 0.20	nent in W Pos 651.93 -225.22 -37.46 20.42	eak direc ind <u>Neg</u> - - - -	tion (k	
Unfa	actored Ben 0 35 70 105 140	ding Mon <u>Span</u> 0 0.07 0.13 0.20 0.27	nent in W Pos 651.93 -225.22 -37.46 20.42 16.67	eak direc ind <u>Neg</u> - - - - -	tion (k	
Unfa	actored Ben 0 35 70 105 140 175	ding Mon <u>Span</u> 0 0.07 0.13 0.20 0.27 0.33	nent in W Pos 651.93 -225.22 -37.46 20.42 16.67 12.47	eak direc ind Neg - - - - - - -	tion (k	
Unfa	actored Ben 0 35 70 105 140 175 210	ding Mon <u>Span</u> 0 0.07 0.13 0.20 0.27 0.33 0.40	nent in W Pos 651.93 -225.22 -37.46 20.42 16.67 12.47 13.69	eak direc ind Neg - - - - - - - - - - - - -	tion (k	
Unfa	actored Ben 0 35 70 105 140 175 210 245	ding Mon <u>Span</u> 0 0.07 0.13 0.20 0.27 0.33 0.40 0.47	Pos 651.93 -225.22 -37.46 20.42 16.67 12.47 13.69 19.94	eak direc And Neg - - - - - - - - - - - - - - - - - - -	tion (k	
	actored Ben 0 35 70 105 140 175 210 245 280	ding Mon <u>Span</u> 0 0.07 0.13 0.20 0.27 0.33 0.40 0.47 0.53	Pos 651.93 -225.22 -37.46 20.42 16.67 12.47 13.69 19.94 27.16	eak direc ind Neg - - - - - - - - - - - - -	tion (k	
	actored Ben 0 35 70 105 140 175 210 245 280 315	ding Mon <u>Span</u> 0 0.07 0.13 0.20 0.27 0.33 0.40 0.47 0.53 0.60	nent in W Pos 651.93 -225.22 -37.46 20.42 16.67 12.47 13.69 19.94 27.16 29.77	eak direc ind Neg - - - - - - - - - - - - -	tion (k	
	actored Ben 0 35 70 105 140 175 210 245 280 315 350	ding Mon 5pan 0 0.07 0.13 0.20 0.27 0.33 0.40 0.47 0.53 0.60 0.67	Pos 651.93 -225.22 -37.46 20.42 16.67 12.47 13.69 19.94 27.16 29.77 15.82	eak direc ind 	tion (k	
	actored Ben 0 35 70 105 140 175 210 245 280 315 350 385	ding Mon 0 0.07 0.13 0.20 0.27 0.33 0.40 0.47 0.53 0.60 0.67 0.73	nent in W Pos 651.93 -225.22 -37.46 20.42 16.67 12.47 13.69 19.94 27.16 29.77 15.82	eak direc ind <u>Neg</u> - - - - - - - - - - - - -	tion (k	
	actored Ben 0 35 70 105 140 175 210 245 280 315 350 385 420	ding Mon 0 0.07 0.13 0.20 0.27 0.33 0.40 0.47 0.53 0.60 0.67 0.73 0.80	nent in W Pos 651.93 -225.22 -37.46 20.42 16.67 12.47 13.69 19.94 27.16 29.77 15.82 -	eak direc ind Neg - - - - - - - - - - - - -	tion (k	
	actored Ben 0 35 70 105 140 175 210 245 280 315 350 385 420 455	ding Mon 5pan 0 0.07 0.13 0.20 0.27 0.33 0.40 0.47 0.53 0.60 0.67 0.73 0.80 0.87	nent in W Pos 651.93 -225.22 -37.46 20.42 16.67 12.47 13.69 19.94 27.16 29.77 15.82 - -	eak direc ind Neg - - - - - - - - - - - - -	tion (k	
	actored Ben 0 35 70 105 140 175 210 245 280 315 350 385 420 455 490	ding Mon <u>Span</u> 0 0.07 0.13 0.20 0.27 0.33 0.40 0.47 0.53 0.60 0.67 0.73 0.80 0.87 0.93	nent in W Pos 651.93 -225.22 -37.46 20.42 16.67 12.47 13.69 19.94 27.16 29.77 15.82 -	eak direc ind Neg - - - - - - - - - - - - -	tion (k	

Strength 3 Fac	tored Shear F	orce (kip)	
	Vu		
<u></u>	Pos Neg		
13	39.85 -		
7	3.58 -		
2	7.79 -11		
2	3.23 -39 4.24 42		
22	7.61 .42		
3	4 61 -39		
4	6.23 -32		
6	0.96 -20		
7	4.74 -5		
8	1.48 -		
7	4.24 -		
4	0.54 -		
	85		
	151		
Strongth 2 Day	ding Nomont	(kip ft)	
Strength 3 Ber	laing woment	(кір-іт)	
	м		
	Pos Nor		
	4490.84		
	5.79 -761.64		
4	7.39 -		
19	8.14 -164.93		
1.0	510 14		
	2.28 -512.14		
	820.84		
	820.84 1015.19	i	
	820.84 1015.19 963.84		
	963.84 506.34		
4	963.84 963.84 506.34		
4	963.84 963.84 506.34 24.18 -		
4	963.84 1015.19 963.84 506.34 58.21 - 24.18 - 15.94 - -		
44	963.84 963.84 963.84 506.34 58.21 - 24.18 - 15.94 - 53.48 - 		
44 19 36 50 55	963.84 963.84 506.34 58.21 - 24.18 - 15.94 - 53.48 - 20.08 - 41.05		
44 19 36 50 55 41	963.84 1015.19 963.84 506.34 58.21 - 24.18 - 15.94 - 53.48 - 20.08 - 41.05 - 0		
44 19 36 50 55 41	963.84 1015.19 963.84 506.34 58.21 - 24.18 - 15.94 - 53.48 - 20.08 - 41.05 - 0 -		
44 19 36 50 55 41	963.84 1015.19 963.84 506.34 58.21 - 24.18 - 15.94 - 53.48 - 20.08 - 41.05 - 0 -		
4 19 36 50 55 41	963.84 1015.19 963.84 506.34 58.21 - 24.18 - 15.94 - 53.48 - 20.08 - 41.05 - 0 -		

	Wind	
	Pos Neg	
	37.53 -	
	32.65 -5.05	
	0.14 -9.95	
	2.56 -4.76	
	2.62 -2.34	
	2.41 -2.28	
	2.17 -2.49	
	2.09 -2.73	
	2.56 -2.81	
	3.96 -2.34	
	6.06 -0.94	
	/./1 -	
	0.83 -	
	1.95 -	
	11.55	
	10.23	
o di oligiti o i	TUSud	
	Wind Pos Neg	
	Wind <u>Pos Neg</u> 912.70 -	
	Wind Pos Neg 912.70 - -315.31 -	
	Wind Pos Neg 912.70 - -315.31 - -52.44 -	
	Wind Pos Neg 912.70 - -315.31 - -52.44 - 28.59 -	
	Wind Pos Neg 912.70 - -315.31 - -52.44 - 28.59 - 23.34 -	
	Wind Pos Neg 912.70 - -315.31 - -52.44 - 28.59 - 23.34 - 17.46 -	
	Wind Pos Neg 912.70 - -315.31 - -52.44 - 28.59 - 23.34 - 17.46 - 19.17 -	
	Wind Pos Neg 912.70 - -315.31 - -52.44 - 28.59 - 23.34 - 17.46 - 19.17 - 27.92 -	
	Wind Pos Neg 912.70 - -315.31 - -52.44 - 28.59 - 23.34 - 17.46 - 19.17 - 27.92 - 38.02 -	
	Wind Pos Neg 912.70 - -315.31 - -52.44 - 28.59 - 23.34 - 17.46 - 19.17 - 27.92 - 38.02 - 41.68 -	
	Wind Pos Neg 912.70 - -315.31 - -52.44 - 28.59 - 23.34 - 17.46 - 19.17 - 27.92 - 38.02 - 41.68 -	
	Wind Pos Neg 912.70 - -315.31 - -52.44 - 28.59 - 23.34 - 17.46 - 19.17 - 27.92 - 38.02 - 41.68 - 22.15 -11.00	
	Wind Pos Neg 912.70 - -315.31 - -52.44 - 28.59 - 23.34 - 17.46 - 19.17 - 27.92 - 38.02 - 41.68 - 22.15 -11.00 - -104.22	
	Wind Pos Neg 912.70 - -315.31 - -52.44 - 28.59 - 23.34 - 17.46 - 19.17 - 27.92 - 38.02 - 41.68 - 22.15 -11.00 - -104.22 - -223.19	
	Wind Pos Neg 912.70 - -315.31 - -52.44 - 28.59 - 23.34 - 17.46 - 19.17 - 27.92 - 38.02 - 41.68 - 22.15 -11.00 - -104.22 - -223.19 - -297.60	
	Wind Pos Neg 912.70 - -315.31 - -52.44 - 28.59 - 23.34 - 17.46 - 19.17 - 27.92 - 38.02 - 41.68 - 22.15 -11.00 - -104.22 - -223.19 - -297.60 - -357.11	
	Wind Pos Neg 912.70 - -315.31 - -52.44 - 28.59 - 23.34 - 17.46 - 19.17 - 27.92 - 38.02 - 41.68 - 22.15 -11.00 - -104.22 - -297.60 - -357.11 - 125.20	
	Wind Pos Neg 912.70 - -315.31 - -52.44 - 28.59 - 23.34 - 17.46 - 19.17 - 27.92 - 38.02 - 41.68 - 22.15 -11.00 - -104.22 - -223.19 - -297.60 - -357.11 - 125.20	
	Wind Pos Neg 912.70 - -315.31 - -52.44 - 28.59 - 23.34 - 17.46 - 19.17 - 27.92 - 38.02 - 41.68 - 22.15 -11.00 - -104.22 - -223.19 - -297.60 - -357.11 - 125.20	

Service 1 Factored Shear Force (kip) Vs Pos Neg 151.08 - 79.16 - 30.08 -11.52 25.2 +42.19 26.41 +46.79 29.66 +55.4 37.56 +11.99 50.15 -34.38 66.13 -21.8 81.07 -5.85 80.53 - 0.01 -21.6 - -92.34 - -164.27 Service 1 Bending Moment (kip-ft) Mu Pos Neg - -4851.28 4.63 -826.49 47.014 - - -890.62 - -1045.67 0 - - -1045.67 - -549.45 - -549.45 - - - - - - - -	Service 1 Factored Shear Force (kip) V_s Pos 15108 - 79.16 - 30.08 -11.52 25.2 -42.19 2641 -46.79 29.96 -45.54 37.56 -41.99 50.15 -34.38 661.3 -21.8 81.07 -5.85 88.38 - 0.01 -21.6 0.01 -21.6 0.01 -21.6 0.01 -21.6 0.01 -21.6 0.16 -92.34 - -164.27			
Service 1 Factored Shear Force (kip) Vs Pos Neg 151.08 - 30.08 -11.52 252 -42.19 26.41 -46.79 29.96 -45.54 37.56 -41.99 50.15 -34.38 66.13 -21.8 88.38 - 80.53 - 50.48 - 0.01 -21.6 - -64.27 Service 1 Bending Moment (kip-ft) Service 1 Bending Moment (kip-ft) <th>Service 1 Factored Shear Force (kip) Vs Pas Neg 151.08 - 79.16 - 30.08 -11.52 25.2 +2.19 26.41 -46.79 29.96 -45.54 37.56 -41.99 50.15 -34.38 66.13 -21.8 81.07 -5.85 83.38 - 50.44 - 0.01 -21.6 - -92.34 - -164.27 Service 1 Bending Moment (kip-ft) Neg - -4851.28 4.63 +826.49 47.014 - - -1042.67 1.82 -555.75 - - - -101.29 - - - - - -1045.67 0.5 -549.45 507.16 - 2086.08<th></th><th></th><th></th></th>	Service 1 Factored Shear Force (kip) Vs Pas Neg 151.08 - 79.16 - 30.08 -11.52 25.2 +2.19 26.41 -46.79 29.96 -45.54 37.56 -41.99 50.15 -34.38 66.13 -21.8 81.07 -5.85 83.38 - 50.44 - 0.01 -21.6 - -92.34 - -164.27 Service 1 Bending Moment (kip-ft) Neg - -4851.28 4.63 +826.49 47.014 - - -1042.67 1.82 -555.75 - - - -101.29 - - - - - -1045.67 0.5 -549.45 507.16 - 2086.08 <th></th> <th></th> <th></th>			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Service 1	Factored Shear Force (kip)	_
Vs Neg 151.08 - 79.16 - 30.08 -11.52 25.2 -42.19 26.41 -46.79 29.96 -45.54 37.56 -41.99 50.13 -34.38 66.13 -21.8 81.07 -5.85 88.38 - 80.53 - 0.01 -21.6 - -92.34 - -164.27 Service 1 Bending Moment (kip-ft) Mu Mu - -4851.28 4.63 -826.49 47.014 - 6.51 -178.97 1.82 -555.75 - -1045.67 0.5 -494.45 507.16 - 2086.08 - - -1045.67 0.5 -549.45 507.16 - 2086.08 -	Va Neg 151.08 - 79.16 - 30.08 -11.52 25.2 +2.19 26.41 -46.79 29.96 +45.44 37.56 -41.99 50.15 -34.38 66.13 -21.8 81.07 -5.85 88.38 - 0.01 -21.6 0.01 -21.6 0.01 -21.6 - -164.27			
$ \begin{array}{c cccccccccccccccccccccccccccccccc$	Pos Neg 151.08 - 79.16 - 30.08 -11.52 25.2 -42.19 26.41 -46.79 29.96 -45.54 37.56 -11.99 50.15 -34.38 66.13 -21.8 81.07 -5.85 88.38 - 0.01 -21.6 - -001 -164.27 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -		Vu	
			151.08	
3008 -11.52 25.2 -42.19 26.4 -46.79 29.96 -45.54 37.56 -34.38 66.13 -21.8 81.07 -58.5 88.38 - 80.53 - 0.01 -21.6 - -92.34 - -164.27	30.08 -11.52 25.2 -42.19 26.41 -46.79 29.96 +45.4 37.56 -41.99 50.15 -34.38 66.13 -21.8 80.53 - 50.48 - 0.01 -21.6 0.01 -21.6 - - - -164.27		79.16 -	
$ \frac{252}{2641} - 42.19 \\ 2641 - 46.79 \\ 29.96 - 45.54 \\ 37.56 - 41.99 \\ 50.15 - 34.38 \\ 66.13 - 21.8 \\ 81.07 - 5.85 \\ 88.38 - \\ 50.48 - \\ 0.01 - 21.6 \\ - 92.34 \\164.27 $ Service 1 Bending Moment (kip-ft) $ \frac{M_u}{Pos \ Neg} \\ - 4851.28 \\ 4.6.51 - 178.97 \\ 1.82 - 555.75 \\ - 80.62 \\ - 1045.67 \\ 0.5 - 549.45 \\ 507.16 - \\ 2086.08 - \\ 3920.78 - \\ 5479.84 - \\ 5986 - \\ 4400.68 - \\ 0 - \\ $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		30.08 -11.52	
			25.2 -42.19	
$ \begin{array}{r} 3756 - 4199 \\ 50.15 - 3438 \\ 66.13 - 21.8 \\ 81.07 - 5.85 \\ 88.38 - \\ 50.53 - \\ 50.48 - \\ 0.01 - 21.6 \\ - 92.34 \\ 164.27 \\ \hline \hline $			26.41 -46.79	
			37.56 -41.99	
66.13 -21.8 81.07 -5.85 88.38 - 80.53 - 50.48 - 0.01 -21.6 - -92.34 - -164.27 Service 1 Bending Moment (kip-ft) Mu Pos Neg - - -4851.28 4.63 -826.49 47.014 - 6.51 -178.97 1.82 -555.75 - -890.62 - -1045.67 0.5 -549.45 507.16 - 2086.08 - 3920.78 - 5986 - 4490.68 - 0 -	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		50.15 -34.38	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			66.13 -21.8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			81.07 -5.85	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			80.53 -	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		50.48 -	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.01 -21.6	
$ \frac{P_{0}}{P_{0}} = \frac{N_{e}}{104.27} $ Service 1 Bending Moment (kip-ft) $ \frac{M_{u}}{P_{0}} = \frac{N_{e}}{104.28} $ $ \frac{4.63}{4.63} = 826.49 $ $ \frac{47.014}{47.014} = \frac{6.51}{1.178.97} $ $ 1.82 = -555.75 $ $ - = -890.62 $ $ - = -1101.29 $ $ - = -1045.67 $ $ 0.5 = -549.45 $ $ 3920.78 = \frac{5479.84}{5986} = \frac{5986}{6} = \frac{4490.68}{0} = \frac{104.27}{1.164} $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		92.34	
Service 1 Bending Moment (kip-ft) Mu Pos Neg - -4851.28 4.63 -826.49 47.014 - - - 6.51 -178.97 - - 1.82 -555.75 - - - - -890.62 - - - - -1045.67 0.5 -549.45 507.16 - 2086.08 - - 3920.78 - - 5986 - 4490.68 - - - -	Mu Pos Neg - -4851.28 -463 -826.49 47.014 - - - 6.51 -178.97 - - 1.82 -555.75 - - - - -101.29 - - - - - -1045.67 - - 0.5 -549.45 - - - 920.78 - - - - 5986 - - - - 0 - - - -		104.27	1
Mu Pos Neg - -4851.28 -4851.28 4.63 -826.49 -826.49 47.014 - -651 6.51 -178.97 -182 1.82 -555.75 - - - -890.62 - - -1101.29 - -1045.67 0.5 0.5 -549.45 507.16 - 2086.08 - 3920.78 - 5986 - 4490.68 - 0 -	Mu Pos Neg - -4851.28 -4851.28 4.63 -826.49 47.014 - 6.51 -178.97 1.82 -555.75 - -890.62 - -1101.29 - -1045.67 0.5 -549.45 507.16 - 2086.08 - 3920.78 - 598.6 - 4490.68 - 0 -			
Mu Pos Neg - -4851.28 4.63 -826.49 47.014 - 6.51 -178.97 1.82 -555.75 - -890.62 - - -1101.29 - - - -1045.67 0.5 -549.45 2086.08 - - - - 3920.78 - - - - - 5479.84 - - - 0 - - - - -	Ma Pos Neg - -4851.28 -463 -826.49 47.014 - -651 -178.97 1.82 -555.75 - -890.62 - -1045.67 - - 0.5 -549.45 - - 507.16 - - - 2086.08 - - - 3920.78 - - - 598.6 - - - 0 - - - -	Convine 1	Danding Moment (kin ft)	
$\begin{array}{ c c c c c c c } \hline M_u & \hline Pos & Neg \\ \hline & - & -4851.28 \\ 4.63 & -826.49 \\ 47.014 & - \\ 6.51 & -178.97 \\ 1.82 & -555.75 \\ - & -890.62 \\ - & -1101.29 \\ - & -1045.67 \\ 0.5 & -549.45 \\ 507.16 & - \\ 2086.08 & - \\ 3920.78 & - \\ 5479.84 & - \\ 5986 & - \\ 4490.68 & - \\ 0 & - \\ \hline \end{array}$	$\begin{array}{ c c c c c c } \hline M_u \\ \hline Pos & Neg \\ \hline - & -4851.28 \\ 4.63 & -826.49 \\ 47.014 & - \\ 6.51 & -178.97 \\ 1.82 & -555.75 \\ \hline - & -890.62 \\ \hline - & -1101.29 \\ \hline - & -1045.67 \\ 0.5 & -549.45 \\ 507.16 & - \\ 2086.08 & - \\ \hline & 2086.08 & - \\ 3920.78 & - \\ 5479.84 & - \\ 5986 & - \\ 4490.68 & - \\ 0 & - \\ \hline \end{array}$	Service I	Bending Moment (kip-it)	
Pos Neg - -4851.28 4.63 -826.49 47.014 - 6.51 -178.97 1.82 -555.75 - -890.62 - -1101.29 - -1045.67 0.5 -549.45 507.16 - 2086.08 - 3920.78 - 5986 - 4490.68 - 0 -	Pos Neg - -4851.28 4.63 -826.49 47.014 - 6.51 -178.97 1.82 -555.75 - -890.62 - -1101.29 - -1045.67 0.5 -549.45 507.16 - 2086.08 - 3920.78 - 5479.84 - 0 -		M-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Pos Neg	F
4.63 -826.49 47.014 - 6.51 -178.97 1.82 -555.75 - -890.62 - -1101.29 - -1045.67 0.5 -549.45 507.16 - 2086.08 - 3920.78 - 5986 - 4490.68 - 0 -	4.63 -826.49 47.014 - 6.51 -178.97 1.82 -555.75 - -890.62 - -1101.29 - -1045.67 0.5 -549.45 507.16 - 2086.08 - 3920.78 - 5479.84 - 5986 - 0 -		4851.28	
47.014 - 6.51 -178.97 1.82 -555.75 - -890.62 - -1101.29 - -1045.67 0.5 -549.45 507.16 - 2086.08 - 3920.78 - 5479.84 - 5986 - 4490.68 - 0 -	47.014 - 6.51 -178.97 1.82 -555.75 - -890.62 - -1101.29 - -1045.67 0.5 -549.45 507.16 - 2086.08 - 3920.78 - 5479.84 - 5986 - 4490.68 - 0 -		4.63 -826.49	
6.51 -178.97 1.82 -555.75 - -890.62 - -1101.29 - -1045.67 0.5 -549.45 507.16 - 2086.08 - 3920.78 - 5479.84 - 5986 - 0 -	6.51 -178.97 1.82 -555.75 - -890.62 - -1101.29 - -1045.67 0.5 -549.45 507.16 - 2086.08 - 3920.78 - 5479.84 - 5986 - 0 -		47.014 -	
1.82 -333.73 - -890.62 - -1101.29 - -1045.67 0.5 -549.45 507.16 - 2086.08 - 3920.78 - 5479.84 - 5986 - 0 -	1.82 -353.73 - -890.62 - -1101.29 - -1045.67 0.5 -549.45 507.16 - 2086.08 - 3920.78 - 5479.84 - 5986 - 0 -		6.51 -178.97	
1101.29 1045.67 0.5 -549.45 507.16 - 2086.08 - 3920.78 - 5479.84 - 5986 - 4490.68 - 0 -	1101.29 1045.67 0.5 -549.45 507.16 - 2086.08 - 3920.78 - 5479.84 - 5986 - 4490.68 - 0 -			┢
1045.67 0.5 -549.45 507.16 - 2086.08 - 3920.78 - 5479.84 - 5986 - 4490.68 - 0 -	1045.67 0.5 -549.45 507.16 - 2086.08 - 3920.78 - 5479.84 - 5986 - 4490.68 - 0 -		1101.29	
0.5 -549.45 507.16 - 2086.08 - 3920.78 - 5479.84 - 5986 - 4490.68 - 0 -	0.5 -549.45 507.16 - 2086.08 - 3920.78 - 5479.84 - 5986 - 4490.68 - 0 -		1045.67	
507.16 - 2086.08 - 3920.78 - 5479.84 - 5986 - 4490.68 - 0 -	507.16 - 2086.08 - 3920.78 - 5479.84 - 5986 - 4490.68 - 0 -		0.5 -549.45	
2086.08 - 3920.78 - 5479.84 - 5986 - 4490.68 - 0 -	2086.08 - 3920.78 - 5479.84 - 5986 - 4490.68 - 0 -		507.16 -	
5479.84 5986 4490.68 0 -	5920.78 - 5479.84 - 5986 - 4490.68 - 0 -		2086.08 -	-
5986 - 4490.68 - 0 -	5986 - 4490.68 - 0 -		3920.78 - 5470.84	
4490.68	4490.68 - 0 -		5086 -	
			4490.68 -	
			0 -	

Wind	
Pos Neg	
8.04 -	
7.00 -1.08	
0.03 -2.13	
0.55 -1.02	
0.56 -0.50	
0.52 -0.49	
0.47 -0.53	
0.45 -0.59	
0.55 -0.60	
0.85 -0.50	
1.30 -0.20	
1.65 -	
1.46 -	
0.41 -	
2.43	
3.48	
Wind	
Pos Neg	
195.58 -	
-07.57 -	
-11.24 -	
6.13 -	
5.00 -	
3.74	
5.74 -	
4.11 -	
4.11 - 5.98 -	
4.11 - 5.98 - 8.15 -	
4.11 - 5.98 - 8.15 - 8.93 -	
4.11 - 5.98 - 8.15 - 8.93 - 4.75 -2.36	
4.11 - 5.98 - 8.15 - 8.93 - 4.75 -2.36 - 22.33	
4.11 - 5.98 - 8.15 - 8.93 - 4.75 -2.36 - 22.33 - 47.83	
4.11 - 5.98 - 8.15 - 4.75 -2.36 - -22.33 - -47.83 - -63.77	
4.11 - 5.98 - 8.15 - 4.75 -2.36 - -22.33 - -47.83 - -63.77 - -76.52	
4.11 - 5.98 - 8.15 - 4.75 -2.36 - -22.33 - -47.83 - -63.77 - -76.52 - 26.83	
4.11 - 5.98 - 8.15 - 8.93 - 4.75 -22.33 - -47.83 - -63.77 - -76.52 - 26.83	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

Reaction Forces													
	Unfactored Reactions on the Tower												
	DC DCT LL-Ped												
	F _x 831.09 -1.98 296.23												
	F _z 1477.24 678.59 526.54												
	M _y -5778.14 -73.35 -2059.53												
	Strength 1 Factored Reactions on Tower												
	U												
	F _x 1554.79												
	F _z 3616.23												
	M _v -10918.54												
	Unfactored Reactions on the South Pier												
	DC DCT LL-Ped												
	F. 149.23 0.43 53.19												
	Strength 1 Factored Reaction on South Pier												
	E 280.16												
	r ₂ 200.10												
	Unfactored Reactions on the Back Stay Anchorage												
	officience reactions of the back stay riteriorage												
	DC DCT LL-Ped												
	F _x -831.09 1.98 -296.23												
	F ₂ -831.09 1.98 -296.23												
	Strongth I Eastared Deastions on the Back Stay Anchorage												
	STENGTT FACTORED REACTIONS ON THE BACK STAY ANCHORAGE												
	U												
	F _x -1554.79												
	-20.0	-15.0	-10.0	-5.0	0.0	5.0	10.0	15.0	20.0	25.0	30.0	35.0	
------------	-------	-------	--------	-------------------------------------	------------	---	-----------------------------	------------------------------	------------------	-------	-----------	---------------------	--------
0.0					13		. 4 2						
-5.0													-5.0
0													
ę													0.0
15.0													15.0
													- -
-20.0													-20.0
. <u>7</u>						6							· -
-25.0	-20.0	-15.0	-10.0	-5.0	0,0	5,0	10.0	15.0	20.0		30.0 Case	es: 1 (DL1) 35.0	25.0
			1 1 1		1 1			1 1 1	1 1			1 1 1	
			Unf	actored	She	ar Force	on Pie	er Car) (kip)				
			0.11	uotorou	ono		01111	or our	, (nap)				
				DC	6	LL	S	w					
				149.6	6	53.19	10).8					
					ndin			Pier (an (ki				
			Unfact	ored Ber	IGIT	g wome	ni on			p-II)			
			Unfact	ored Ber	IGIII	g mome	nt on			p-11)			
			Unfact	ored Ber		LL	nt on s	w		p-1()			
			Unfact	DC -748	.3	LL -265.95	nt on S -3.	W 2.4		p-I()			
			Unfact	DC -748	.3	LL -265.95	s -3:	W 2.4		p-it)			
			Unfact	DC -748	3	LL -265.95	nt on S -3: on Pie	w 2.4	(kip)	p-it)			
			Unfact	DC -748 ength I S	.3 Shea	LL -265.95 ar Force	S -32 on Pie	w 2.4 r Cap	(kip)	p-it)			
			Unfact	DC -748 ength I S	.3 Shea	LL -265.95 ar Force Vu 203.66	s 33	w 2.4	(kip)	p-it)			
			Unfact	DC -748 ength I S	<u>.3</u>	LL -265.95 ar Force V _u 293.66	s 33	w 2.4	(kip)	p-it)			
			Unfact	ored Ber DC -748 ength I S	3 Shea	LL -265.95 ar Force V _u 293.66	s 33 on Pie	W 2.4 r Cap Pier Ca	(kip) ap (kip	p-11)			

W	/ind loading was small	on pier ca	p and theref	ore neglecte	d	
	Unfactored axial	compressio	n on pier col	umn (kip)		
	DC	LL	SW			
	299.32	106.38	52.97			
	Strength I factored a	axial compr	ession on pi	er column (ki	p)	
		Pu				
		020.33				
	Bending moment ca	used by wir	nd on pier co	olumn (kip-ft)		
		Wind				
		-25.64				
	Strength 3 fac	tored loads	on pier colu	ımn		
		P 440	3625			
		M _u -35	.896			
	Service 1 facto	ored loads o	on pier colun	าท		
		P _n 45	8.67			
		M _u -7.	692			

Using the sa	me model as used for the girders	
5		
	Unfactored Axial Compression (kip)	
	DC DCT LL-Ped	
	Bottom 1367.25 676.7 487.34	
	Top 1367.25 -4.3 487.34	
	Unfortuned Danding Managet (line ft)	
	Unfactored Bending Moment (Kip-ft)	
	DC DCT LL-Ped	
	Bottom -2247.05 -11.75 -800.93	
	<u>Top 0 0 0</u>	
	Strength 1 Factored Axial Compression (kip)	
	Pu	
	3407.78	
	2556.53	
	Strength 1 Factored Bending Moment (kip-ft)	
	Mu	
	-4225.13	
	Unfactored Wind Loading	
	Top 335.63 1653.04 10.99	
	100 555.05 -1055.04 10.55	

		F	-20.25		
		F.	0		
		M _r	41.9		
		Fx	1.025		
Streng	th 3 Fac	ctored Resu	ults on Bea	m suppo	rting girders
		F ₂	-646.44		
		Fv	0		
		$\mathbf{M}_{\mathbf{v}}$	3799.08	Si	
		Fx	0.20		
Service	e 1 Facto	ored Resul	ts on Beam	support	ting girders
				1.1.2.	5.5
		F ₂	-150.38		
		Fv	0		
		M _v	838.63		
		Fx	0.042		
	Unfac	tored Resu	ults on each	n Columi	ו ו
		DC	LL	SW	Wind
	F,	2155.83	526.54	0	-1434.83
	Fv	829.11	296.23	234.27	0
	M _v	0	0	10.06	-1177.5
	F _x	0	0	0.82	-68.59
	M _x	-28652	-10205.9	0	0
S	Strength	1 Factore	d Results o	n each (Column
		Fz	3616.23	£7	
		$\mathbf{F}_{\mathbf{v}}$	1847.63	§	
			12.58		
		My	12.50		
		M _v F _x	1.03		

S	trength 3 Factored	Results on each Co	olumn	
	F _z F _v M _v F _x M _x	686.03 1329.23 -1635.93 -95.00 -35815.00		
S	ervice 1 Factored F	Results on each Colu	umn	
	Fz Fv Mv Fx Mz	2251.921 1359.61 -343.19 -19.757 -38857.9		

D. Cable Desig				
Design Assump	otions:			
[]	Number of cables	n	15	
1	Service Load (no combos)	w	2.482 KLF	
1	Height of tower above deck	н	150 ft	
	Span Length	L	525 ft	
1	Nominal tensile stress	f_{pu}	270 ksi	
	Allowable unit stress for cable steel	σa	121.5 ksi	
	Allowable stress under deadload effect	σ_d	108 ksi	
]	Horizontal distance between cables	d	35 ft	
]	Modulus of Elasticity of cables	Es	28000 ksi	
	Area of strand	As	0.217 in ²	
	Area of cable	A	4.123 in ²	
]	Number of strands per cable	ns	19	
1	Unit weight of strand	γ	491.06 lbf/ft3	
]	Distance from top of deck to ground	'n	27.5 ft	

Using a 0.6" diameter, 7-wire pre-stressing strand

Each cable is spaced equally in the horizontal direction from the next cable. The vertical load is determined via tributary width of each cable.

Angle is determined based on height of tower, and distance from tower. Total tension is then determined via the angle and calculated vertical load Sample Calculation below:

For cable 1:	w _t ≔ 35 ft	w≔2.48	2 klf	
T _v :=w _t •w	= 86.87 kip	H≔75 ft	n≔1 d≔35 ft	
$\theta_1 := \operatorname{atan}\left(\cdot \right)$	$\left(\frac{H}{n\cdotd}\right) = 64.98 deg$			
$T_1 := \frac{T_v}{\sin(\theta)}$	<u>1)</u> =95.86 kip	$T_{h} := \frac{T_{v}}{\tan(\theta_{1})}$	= 40.54 kip	
$L_{c1} \coloneqq \frac{H}{\sin(e)}$	$(\overline{\theta_1}) = 82.76 \text{ft}$			

Required area of the cable is:
$$A_{req} = \frac{\sigma_a}{T}$$

The allowable unit stress was approximated to be the 45% nominal tensile stress of the steel wire.

 σ_{a} :=121.5 ksi

$$A_1 := \frac{T_1}{\sigma_a} = 0.79 \text{ in}^2$$

Та	ble	of	Resu	ilts:	Cable	Design

	Tributary Width	Angle from	ı horizontal	Total Tension	Vertical Tension	Horizontal Tension	Length	Area of Cable	
Cable	w_t (ft)	θ (deg)	θ(rad)	T(kip)	T _v (kip)	T _k (kip)	L _c (ft)	A(in ²)	
1	35	76.87	1.34	89.20	86.87	20.27	154.0	0.734	
2	35	64.98	1.13	95.86	86.87	40.54	165.5	0.789	
3	35	55.01	0.96	106.04	86.87	60.81	183.1	0.873	
4	35	46.97	0.82	118.83	86.87	81.08	205.2	0.978	
5	35	40.60	0.71	133.48	86.87	101.35	230.5	1.099	
6	35	35.54	0.62	149.46	86.87	121.62	258.1	1.230	
7	35	31.48	0.55	166.37	86.87	141.89	287.3	1.369	
8	35	28.18	0.49	183.96	86.87	162.16	317.6	1.514	
9	35	25.46	0.44	202.05	86.87	182.43	348.9	1.663	
10	35	23.20	0.40	220.53	86.87	202.70	380.8	1.815	
11	35	21.29	0.37	239.29	86.87	222.97	413.2	1.969	
12	35	19.65	0.34	258.28	86.87	243.24	446.0	2.126	
13	35	18.25	0.32	277.46	86.87	263.51	479.1	2.284	
14	35	17.02	0.30	296.77	86.87	283.78	512.4	2.443	
15	18	15.95	0.28	158.11	43.435	152.02	546.0	1.301	
maximu	m require	ed area is	2.443 in ²						
This req standar	uired are d hexagoi	a determii nal configi	ned the stra uration.	and area,	using 19	strands fo	ra		
Backsta	y cable ar	ea was de	etermined i	n a similai	r way. Fo	r strength	, each		
backsta	y cable w	as assume	ed to take t	he total h	orizontal	load that	s acting	on	
the tow	er due to	the cables	s on the sp	an.					

	uble urea	Cabl Are:	er of nds	Numbe stranc	rea	ired A Cable	Req c	igth	Len	zontal ion	Hor Ten:	ical sion	Vert Tens	al sion	Tota Ten:	ontal	m horiz	ngle from	
	(in ²)	A(in	enso R	n)	(in ²)	A	c (ft)	L	(kip)	T	(kip)	T,	(kip)	T	ad)	θ (r	θ (deg)	
	.56	27.5	7	127		6.54		51.02	2	80.34	22	0.34	228	24.88	322	79	0.	45	L

C. Main Span Ap	olied Loadings
Girder Dead Load	<u>d Calculations</u>
w _{path} ≔10 ft	
W _g ≔853 plf	Weight of girder W36x853
$\gamma_{\rm conc} \coloneqq 0.145 \frac{\rm kir}{\rm ft}^3$	$\begin{array}{c} \begin{array}{c} \bullet \\ \bullet \\ \end{array} & \text{Specific weight of} \\ \text{(NW) concrete} \end{array} & \begin{array}{c} \gamma_{\text{rebar}} \coloneqq 0.005 & \frac{\text{kip}}{\text{ft}^3} & \text{Specific weight} \\ \hline \text{of rebar} \end{array} \end{array}$
t _s ≔8 in	$L_{xs} \coloneqq 12$ ft Length of cross section
q _{forms} ≔7 psf	weight of stay-in- place forms
W₁:=20 plf	weight of fence, and lighting throughout the bridge, on each side
n≔2 numl	per of girders
Design Calculation DC Compon Deck Slab Stay-in-pla Steel girde Fence and	nents:
Deck Slab: q _{deck} ≔t	$_{\rm s} \cdot (\gamma_{\rm conc} + \gamma_{\rm rebar}) = 0.1 {\rm ksf}$
W _{deck} := 0	$q_{\text{deck}} \cdot \frac{L_{\text{xs}}}{n} = 0.6 \text{ klf}$
Stay in place form	ns:
W _{forms} :=	$q_{forms} \cdot \frac{L_{xs}}{n} = 0.042 \text{ klf}$
Steel Girders:	$_{\rm er} := W_{\rm g} = 0.853 \rm klf$

Fence and lighting

$$W_{I} := W_{I} \cdot \frac{2}{n} = 0.02 \text{ klf}$$

 $w_{DC} := w_{girder} + w_{forms} + w_{deck} + w_I = 1.515 \text{ klf}$

Dead load applied per girder: $W_{DC} = 1.515 \text{ klf}$

Girder Live Load

q_{LL}:=90 **psf**

 $w_{LL} := q_{LL} \cdot \frac{L_{xs}}{n} = 0.54 \text{ klf}$

Live load applied per girder:

 $W_{LL} = 0.54$ klf

Note: this same load is applied per set of cables

Slab Dead Load

 $q_{slab} := t_s \cdot \gamma_{conc} = 96.667 \text{ psf}$

 $q_{ds} := \frac{W_I}{12 \text{ ft}} = 1.667 \text{ psf}$

 $q_{DL} := q_{slab} + q_{ds} = 98.333 \text{ psf}$

Dead load applied to slab

q_{DL} = 98.333 **psf**

Slab Live Load

 $q_{LL} = 90 \text{ psf}$

Wind Loadings		
Design wind pressure for transverse wind loading:		
Design wind pressure for it dristerse wind foldering.		
G := 0.85		
K ₋₊ :=1		
H:=27.5 ft	_	
$h = \frac{H}{-9.167}$ ft		
11g3 - 7.107 T		
z _{girder} :=25 ft		
$z_{\text{trunctor}} := 27.5 \text{ ft} + 150 \text{ ft} = 177.5 \text{ ft}$		
Dick: II _ T 1 5-1	_	
V = 108 mph - F 26.5-1D		
K 0.95		
Nd0.05		
surfaceRoughness := "B"		
ovposuro "P"		
exposule:= B		
K _e :=1		
enclosure := "enclosed"		
GC _{pi} := if enclosure = "enclosed"		
0.18		
else if enclosure = "partially enclosed"		
0.55		
else if enclosure = "partially open"		
else		
$GC_{pi} = 0.18$		

$$q_{15} := 0.00256 \frac{psf}{mph^2} \cdot K_{r15} \cdot K_{r4} \cdot K_{a} \cdot K_{e} \cdot V^2 = 14.587 psf$$

$$q_{20} := 0.00256 \frac{psf}{mph^2} \cdot K_{220} \cdot K_{24} \cdot K_{a} \cdot K_{e} \cdot V^2 = 15.837 psf$$

$$q_{25} := 0.00256 \frac{psf}{mph^2} \cdot K_{220} \cdot K_{24} \cdot K_{a} \cdot K_{e} \cdot V^2 = 15.837 psf$$

$$q_{30} := 0.00256 \frac{psf}{mph^2} \cdot K_{230} \cdot K_{24} \cdot K_{a} \cdot K_{e} \cdot V^2 = 17.767 psf$$

$$q_{30} := 0.00256 \frac{psf}{mph^2} \cdot K_{240} \cdot K_{24} \cdot K_{a} \cdot K_{e} \cdot V^2 = 19.289 psf$$

$$q_{30} := 0.00256 \frac{psf}{mph^2} \cdot K_{240} \cdot K_{24} \cdot K_{a} \cdot K_{e} \cdot V^2 = 20.558 psf$$

$$q_{30} := 0.00256 \frac{psf}{mph^2} \cdot K_{240} \cdot K_{24} \cdot K_{a} \cdot K_{e} \cdot V^2 = 21.574 psf$$

$$q_{30} := 0.00256 \frac{psf}{mph^2} \cdot K_{240} \cdot K_{24} \cdot K_{a} \cdot K_{e} \cdot V^2 = 22.589 psf$$

$$q_{30} := 0.00256 \frac{psf}{mph^2} \cdot K_{240} \cdot K_{24} \cdot K_{d} \cdot K_{e} \cdot V^2 = 22.589 psf$$

$$q_{30} := 0.00256 \frac{psf}{mph^2} \cdot K_{240} \cdot K_{24} \cdot K_{d} \cdot K_{e} \cdot V^2 = 22.127 psf$$

$$q_{10} := 0.00256 \frac{psf}{mph^2} \cdot K_{210} \cdot K_{24} \cdot K_{d} \cdot K_{e} \cdot V^2 = 25.127 psf$$

$$q_{140} := 0.00256 \frac{psf}{mph^2} \cdot K_{210} \cdot K_{24} \cdot K_{d} \cdot K_{e} \cdot V^2 = 27.665 psf$$

$$q_{160} := 0.00256 \frac{psf}{mph^2} \cdot K_{210} \cdot K_{24} \cdot K_{d} \cdot K_{e} \cdot V^2 = 27.665 psf$$

$$q_{160} := 0.00256 \frac{psf}{mph^2} \cdot K_{210} \cdot K_{24} \cdot K_{d} \cdot K_{e} \cdot V^2 = 28.68 psf$$

$$q_{160} := 0.00256 \frac{psf}{mph^2} \cdot K_{210} \cdot K_{24} \cdot K_{d} \cdot K_{e} \cdot V^2 = 29.696 psf$$

$$q_{160} := 0.00256 \frac{psf}{mph^2} \cdot K_{21} \cdot K_{4} \cdot K_{e} \cdot V^2 = 29.569 psf$$

$$q_{160} := 0.00256 \frac{psf}{mph^2} \cdot K_{21} \cdot K_{4} \cdot K_{e} \cdot V^2 = 29.569 psf$$

$C \rightarrow 0.8$			
C _{p_w} ≔0.o			
C _{p_l} := - 0.5			
$p_{15_w_p} := q_{15} \cdot G \cdot C_{p_w} = 9.919 \text{ psf}$			
$p_{20_w_p} := q_{20} \cdot G \cdot C_{p_w} = 10.769 \text{ psf}$			
$p_{25_w_p} := q_{25} \cdot G \cdot C_{p_w} = 11.478 \text{ psf}$			
$p_{cs} := q_{cs} \cdot G \cdot G \cdot G = 12.081 \text{ psf}$			
P30 - 930 - 9 - 9 - 12.001 P31			
$p_{40} := q_{40} \cdot G \cdot C_{p_w} = 13.117 \text{ psf}$			
$p_{50} := q_{50} \cdot G \cdot C_{p_w} = 13.98 \text{ psr}$			
$p_{60} := q_{60} \cdot G \cdot C_{p,w} = 14.67 \text{ psf}$			
$p_{70} := q_{70} \cdot G \cdot C_{p_w} = 15.36 \text{ psf}$			
$p_{80} := q_{80} \cdot G \cdot C_{p_w} = 16.051 \text{ psf}$			
$p_{90} := q_{90} \cdot G \cdot C_{p_w} = 16.569 \text{ psf}$			
$p_{100} := q_{100} \cdot G \cdot C_{p_w} = 17.086 \text{ psf}$			
$p_{120} := q_{120} \cdot G \cdot C_{p_w} = 17.949 \text{ psf}$			
$p_{140} := q_{140} \cdot G \cdot C_{p_w} = 18.812$ psi			
$p_{160} := q_{160} \cdot G \cdot C_{p_w} = 19.503 \text{ psf}$			
$p_{180} := q_{180} \cdot G \cdot C_{p_w} = 20.193 \text{ psf}$			
$p_{girder} := q_{girder} \cdot G \cdot C_{p_w} = 11.478 \text{ psf}$			
$p_{h} := q_{h} \cdot G \cdot C_{n} = 20,107 \text{ psf}$			
$p_{l_p} := q_h \cdot G \cdot C_{p_l} = -12.567 \text{ psf}$			

$p_{15_w_n} := q_{15} \cdot G \cdot C_{p_w} = 9.919 \text{ psf}$	
$p_{20_w_n} := q_{20} \cdot G \cdot C_{p_w} = 10.769 \text{ psf}$	
$p_{25_w_n} := q_{25} \cdot G \cdot C_{p_w} = 11.478 \text{ psf}$	
$p_{30_w_n} := q_{30} \cdot G \cdot C_{p_w} = 12.081 \text{ psf}$	
$p_{40 \text{ w } p} := q_{40} \cdot G \cdot C_{p \text{ w}} = 13.117 \text{ psf}$	
$p_{50,w,p} := q_{50} \cdot G \cdot C_{p,w} = 13.98 \text{ psf}$	
$p_{60, w, p} := q_{60} \cdot G \cdot C_{p, w} = 14.67 \text{ psf}$	
$p_{70, w, p} := q_{70} \cdot G \cdot C_{p, w} = 15.36 \text{ psf}$	
$p_{20} = p_{10} \cdot G \cdot C_{p_{10}} = 16.051 \text{ psf}$	
$p_{80} = q_{80} = 0$ $p_{10} = 16569$ psf	
$p_{90_w_n} = q_{90} + G + C_{p_w} = 10.307 \text{ ps}$	
$p_{100_w_n} := q_{100} \cdot G \cdot C_{p_w} = 17.086 \text{ psr}$	
$p_{120_w_n} := q_{120} \cdot G \cdot C_{p_w} = 17.949 \text{ psf}$	
$p_{140_w_n} := q_{140} \cdot G \cdot C_{p_w} = 18.812 \text{ psf}$	
$p_{160_w_n} := q_{160} \cdot G \cdot C_{p_w} = 19.503 \text{ psf}$	
$p_{180_w_n} := q_{180} \cdot G \cdot C_{p_w} = 20.193 \text{ psf}$	
$p_{\rm c} = q_{\rm c} G_{\rm c} C_{\rm c} = 20.107 \rm psf$	
$p_{n_w_n} = q_n \cdot c \cdot c_{p_w} = 20.107 \text{ psi}$	
$p_{g_w_n} \coloneqq q_{girder} \bullet G \bullet C_{p_w} = 11.478 \text{ psi}$	
$p_{l_n} := q_h \cdot G \cdot C_{p_l} = -12.567 \text{ psf}$	

$p_{15_n_{net}} := p_{15_w_n} - p_{l_n} = 22.486 \text{ psf}$	
$p_{20_n_nt} \coloneqq p_{20_w_n} - p_{l_n} = 23.336 \text{ psf}$	
$p_{25_n_nt} := p_{25_w_n} - p_{l_n} = 24.044 \text{ psf}$	
$p_{30_n_net} := p_{30_w_n} - p_{l_n} = 24.648 \text{ psf}$	
$p_{40_n_{net}} := p_{40_w_n} - p_{l_n} = 25.684 \text{ psf}$	
$p_{50, p, pet} := p_{50, w, p} - p_{1, p} = 26.546 \text{ psf}$	
$p_{40,p,pot} = p_{40,w,p} - p_{1,p} = 27.237 \text{ psf}$	
$p_{20} = p_{20} = p_{20} = 27.927 \text{ nsf}$	
$p_{0_n net} - p_{0_w n} - p_{1_n} - 27.727$ ps	
$p_{80_n_{net}} = p_{80_w_n} - p_{I_n} = 28.618$ psi	
$p_{90_n_{net}} = p_{90_w_n} - p_{l_n} = 29.135 \text{ psf}$	
$p_{100_n_{net}} := p_{100_w_n} - p_{l_n} = 29.653 \text{ psf}$	
$p_{120_n_net} := p_{120_w_n} - p_{I_n} = 30.516 \text{ psf}$	
$p_{140_n_{net}} \coloneqq p_{140_w_n} - p_{I_n} = 31.379 \text{ psf}$	
p _{160_n_net} ≔p _{160_w_n} - p _{I_n} = 32.069 psf	
$p_{180_n_nt} := p_{180_w_n} - p_{I_n} = 32.76 \text{ psf}$	
$p_{h_n} = p_{h_w} - p_{l_n} = 32.673 \text{ psf}$	$p_{g_n_net} := p_{g_w_n} - p_{I_n} = 24.044 \text{ psf}$

Tower is 5.5' in width $w_h := p_{h_n} + 5.5 \text{ ft} = 0.18 \text{ klf}$ To be conservative, a consistent loading of 0.18 klf will be applied to the tower above deck Wind loading applied to girder: $w_q := p_{q_n_et} \cdot 51.1$ in = 0.102 klf Wind loading applied to south pier: Pier Cap: $w_{pc}\!:=\!p_{g_n_net}\!\cdot\!48$ in·36 in = 0.289 kip Pier column: $w_{pcol} := p_{g_n_{ret}} \cdot 36 \text{ in} = 0.072 \text{ klf}$ Wind loading applied to tower below deck: $w_{ptower} \mathrel{\mathop:}= p_{g_n_{net}} \bullet 10 \text{ ft} = 0.24 \text{ klf}$

D. Tower Design

Concrete Properties: $f'_{c} := 4 \text{ ksi}$ $w_{c} := 145 \text{ pcf}$ $\nu := 0.2$ $E_{c} \coloneqq 1820 \cdot \sqrt{\frac{f'_{c}}{ksi}} \cdot ksi = 3640 \ ksi$ **Cross-Section Dimensions:** b:=5.5 ft h≔5.5 **ft** $A_{a} := b \cdot h = 30.25 \text{ ft}^{2}$ f_v≔60 **ksi** Steel properties: Using 16 #18 bars $n_{bars} \coloneqq 16$ $A_{bar} \coloneqq 2.257 \text{ in}^2$ $A_{st} \coloneqq n_{bars} \cdot A_{bar}$ P_u:=3407.8 **kip** M_u:=4225.13 kip•ft Required strength in Strength 1: $\rho_{\rm g} := \frac{A_{\rm st}}{A_{\rm g}} = 0.008$ $\frac{P_u}{A_a} = 0.782$ ksi Axial load capacity for tied columns $\phi P_{\rm n} := 0.8 \cdot 0.65 \cdot (0.85 \cdot f'_{\rm c} \cdot A_{\rm q} + (f_{\rm y} - 0.85 \cdot f'_{\rm c}) \cdot A_{\rm st})$ $P_r := \phi P_n = 8764.256$ kip $\frac{P_u}{P_u} \le 1 = 1$ Combined Axial and Flexure: Create P-M interaction diagram Point A $P_{rA} := \phi P_{n} = 8764.256 \text{ kip}$ $\phi M_{hA} \coloneqq 0$ kip·ft $M_{rA} \coloneqq \phi M_{hA}$

$$\begin{split} \varepsilon_{33} &:= \frac{(h - y_{x3})}{h} \cdot \varepsilon_{0} + \frac{y_{x3}}{h} \cdot \varepsilon_{cu} = 0.00142 \\ \varepsilon_{44} &:= \frac{(h - y_{x3})}{h} \cdot \varepsilon_{0} + \frac{y_{x4}}{h} \cdot \varepsilon_{cu} = 0.00213 \\ \varepsilon_{53} &:= \frac{(h - y_{x3})}{h} \cdot \varepsilon_{0} + \frac{y_{x4}}{h} \cdot \varepsilon_{cu} = 0.00284 \\ \end{split}$$
stresses
$$\varepsilon_{1y} = 0.00207 \\ f_{51} &:= 0 \text{ ksi strain was } 0 \\ F_{31} &:= A_{21} \cdot f_{31} = 0 \text{ kip} \\ \varepsilon_{32} &:= \varepsilon_{1y} = 1 \\ \text{elastic in compression} \\ f_{52} &:= E_{5} \cdot \varepsilon_{52} = 0.85 \cdot f_{c} = 17.188 \text{ ksi} \\ F_{52} &:= A_{52} \cdot f_{52} = 77.588 \text{ kip} \\ \varepsilon_{53} &:= C_{1y} = 1 \\ \text{elastic in compression} \\ f_{53} &:= E_{5} \cdot \varepsilon_{53} = 0.85 \cdot f_{c} = 37.777 \text{ ksi} \\ F_{53} &:= A_{53} \cdot f_{53} = 170.523 \text{ kip} \\ \varepsilon_{44} &:= \varepsilon_{1y} = 1 \\ \text{elastic in compression} \\ f_{54} &:= E_{y} \cdot \varepsilon_{53} = 0.85 \cdot f_{c} = 56.6 \text{ ksi} \\ F_{54} &:= A_{54} \cdot f_{54} = 255.492 \text{ kip} \\ \varepsilon_{55} &:= C_{1y} = 1 \\ \text{elastic in compression} \\ f_{54} &:= F_{y} - 0.85 \cdot f_{c} = 56.6 \text{ ksi} \\ F_{55} &:= A_{55} \cdot f_{55} = 638.731 \text{ kip} \\ \varepsilon_{55} &:= F_{1y} - 0.85 \cdot f_{c} = 56.6 \text{ ksi} \\ F_{55} &:= A_{55} \cdot f_{55} = 638.731 \text{ kip} \\ \phi_{c} &:= b \cdot a = 24.409 \text{ ft}^{2} \\ F_{c} &:= 0.85 \cdot f_{c} \cdot A_{c} = 11950.529 \text{ kip} \\ y_{c} &:= h - \frac{a}{2} = 3.281 \text{ ft} \\ P_{n} &:= F_{c} \cdot (y_{c} - y_{bar}) + F_{51} \cdot (y_{51} - y_{bar}) + F_{52} \cdot (y_{52} - y_{bar}) + F_{53} \cdot (y_{53} - y_{bar}) + F_{54} \cdot (y_{54} - y_{bar}) + F_{55} \cdot (y_{55} - y_{bar}) \\ M_{n} &= 8144.188 \text{ kip} \cdot \text{ ft} \\ \varepsilon_{1} &:= \varepsilon_{31} = 0 \\ \end{bmatrix}$$

φ:=0.65	
$P_{rB} \coloneqq \phi \cdot P_{n} = 8510.361 \text{ kip}$	
$M_{rB} := \phi \cdot M_n = 5293.722 \text{ kip} \cdot \text{ft}$	
Point C	
$\varepsilon_{s1} \coloneqq \frac{-f_y}{E_s} = -0.002$	$\varepsilon_0 \coloneqq \frac{\varepsilon_{s1} \cdot h - \varepsilon_{cu} \cdot y_{s1}}{h - y_{s1}} = -0.002$
$c := \frac{\varepsilon_{cu} \cdot h}{\varepsilon_{cu} - \varepsilon_{o}} = 37.081 \text{ in}$	
$a \coloneqq \beta_1 \cdot c = 2.627 \text{ ft}$	
$\varepsilon_{s2} := \frac{(h - y_{s2})}{h} \cdot \varepsilon_0 + \frac{y_{s2}}{h} \cdot \varepsilon_{cu} = -0$	0.00087
$\varepsilon_{s3} \coloneqq \frac{(h - y_{s3})}{h} \cdot \varepsilon_{0} + \frac{y_{s3}}{h} \cdot \varepsilon_{cu} = 0.0$ $\varepsilon_{s4} \coloneqq \frac{(h - y_{s4})}{h} \cdot \varepsilon_{0} + \frac{y_{s4}}{h} \cdot \varepsilon_{cu} = 0.0$ $\varepsilon_{s5} \coloneqq \frac{(h - y_{s5})}{h} \cdot \varepsilon_{0} + \frac{y_{s5}}{h} \cdot \varepsilon_{cu} = 0.0$	00033 00153 00273
stresses	$\varepsilon_{\rm ty} = 0.00207$
$ \varepsilon_{s1} \ge \varepsilon_{ty} = 1$ $\varepsilon_{s1} < 0 = 1$	yielded in tension
f _{s1} := - f _y = - 60 ksi	$F_{s1} := A_{s1} \cdot f_{s1} = -677.1 \text{ kip}$
$\left \varepsilon_{s2}\right < \varepsilon_{ty} = 1$ $\varepsilon_{s2} < 0 = 1$	elastic in tension
$f_{s2} := E_s \cdot e_{s2} = -25.213$ ksi	$F_{s2} := A_{s2} \cdot f_{s2} = -113.811 \text{ kip}$
$\varepsilon_{s3} < \varepsilon_{ty} = 1$ $\varepsilon_{s3} > 0 = 1$	elastic in compression
$f_{s3} := E_s \cdot \varepsilon_{s3} - 0.85 \cdot f_c = 6.174 $ k	si $F_{s3} := A_{s3} \cdot f_{s3} = 27870.149$ lbf

$$\begin{aligned} \varepsilon_{34} < \varepsilon_{1y} = 1 & \varepsilon_{34} > 0 = 1 & \text{elastic in compression} \\ f_{54} := E_5 \cdot \varepsilon_{54} - 0.85 \cdot f_c = 40.961 \text{ ksi} & F_{54} := A_{54} \cdot f_{54} = 184899.023 \text{ lbf} \\ \varepsilon_{55} > \varepsilon_{1y} = 1 & \varepsilon_{55} > 0 = 1 & \text{yielding in compression} \\ f_{55} := f_y - 0.85 \cdot f_c = 56.6 \text{ ksi} & F_{55} := A_{55} \cdot f_{55} = 638731 \text{ lbf} \\ A_c := b \cdot a = 14.446 \text{ ft}^2 \\ F_c := 0.85 \cdot f_c \cdot A_c = 7072761.819 \text{ lbf} \\ y_c := h - \frac{a}{2} = 4.187 \text{ ft} \\ P_n := F_c \cdot F_{51} + F_{52} + F_{55} + F_{54} + F_{55} = 7133.351 \text{ klp} \\ \\ M_n := F_c \cdot (y_c - y_{bar}) + F_{51} \cdot (y_{51} - y_{bar}) + F_{52} \cdot (y_{52} - y_{bar}) + F_{53} \cdot (y_{53} - y_{bar}) + F_{54} \cdot (y_{54} - y_{bar}) + F_{55} \cdot (y_{55} - y_{bar}) \\ \\ M_n := 13782.287 \text{ kip} \cdot \text{ft} \\ \varepsilon_{11} := |\varepsilon_{51}| = 0.002 \\ \phi := 0.65 \\ P_{rc} := \phi \cdot M_n = 8958.487 \text{ kip} \cdot \text{ft} \\ \\ Point D \\ \varepsilon_{51} := -0.005 \quad \varepsilon_0 := \frac{\varepsilon_{51} \cdot h - \varepsilon_{01} \cdot y_{51}}{h - y_{51}} = -0.005 \\ c_0 := \frac{\varepsilon_{01} \cdot h - \varepsilon_{01} \cdot y_{51}}{h - y_{51}} = -0.005 \\ c_0 := \frac{\varepsilon_{01} \cdot h - \varepsilon_{01} \cdot y_{51}}{h - y_{51}} = -0.005 \end{aligned}$$

$$\begin{split} \varepsilon_{s2} := \frac{(h - y_{s2})}{h} \cdot \varepsilon_{v} + \frac{y_{s2}}{h} \cdot \varepsilon_{cu} = -0.00311 \\ \varepsilon_{s3} := \frac{(h - y_{s3})}{h} \cdot \varepsilon_{v} + \frac{y_{s3}}{h} \cdot \varepsilon_{cu} = -0.00121 \\ \varepsilon_{s4} := \frac{(h - y_{s3})}{h} \cdot \varepsilon_{v} + \frac{y_{s4}}{h} \cdot \varepsilon_{cu} = 0.00068 \\ \varepsilon_{s5} := \frac{(h - y_{s3})}{h} \cdot \varepsilon_{v} + \frac{y_{s4}}{h} \cdot \varepsilon_{cu} = 0.00257 \\ stresses \\ \varepsilon_{1y} = 0.00207 \\ |\varepsilon_{s1}| \ge \varepsilon_{1y} = 1 \quad \varepsilon_{s1} < 0 = 1 \quad yielded in tension \\ f_{s1} := -f_{y} = -60 \text{ ksi} \\ F_{s1} := A_{s2} \cdot f_{s2} = -270.84 \text{ kip} \\ |\varepsilon_{s2}| \ge \varepsilon_{1y} = 1 \quad \varepsilon_{s3} < 0 = 1 \quad yielded in tension \\ f_{s2} := -f_{y} = -60 \text{ ksi} \\ F_{s2} := A_{s2} \cdot f_{s2} = -270.84 \text{ kip} \\ |\varepsilon_{s4}| < \varepsilon_{1y} = 1 \quad \varepsilon_{s3} < 0 = 1 \quad elastic in tension \\ f_{s4} := F_{s} \cdot \varepsilon_{s3} = -35.196 \text{ ksi} \\ F_{s2} := A_{s2} \cdot f_{s2} = -270.84 \text{ kip} \\ |\varepsilon_{s4}| < \varepsilon_{1y} = 1 \quad \varepsilon_{s4} > 0 = 1 \quad elastic in compression \\ f_{s4} := F_{s} \cdot \varepsilon_{s4} - 0.85 \cdot f_{c} = 16.306 \text{ ksi} \\ F_{s4} := A_{s5} \cdot f_{s4} = 73606.05 \text{ lbf} \\ \varepsilon_{s5} > \varepsilon_{1y} = 1 \quad \varepsilon_{s5} > 0 = 1 \quad yielding in compression \\ f_{s5} := f_{y} - 0.85 \cdot f_{c} = 56.6 \text{ ksi} \\ F_{a5} := A_{a5} \cdot f_{a5} = 638731 \text{ lbf} \\ A_{c} := b \cdot a = 9.153 \text{ ft}^{2} \\ F_{c} := 0.85 \cdot f_{c} \cdot A_{c} = 4481448.221 \text{ lbf} \\ y_{c} := h - \frac{a}{2} = 4.668 \text{ ft} \\ P_{n} := F_{c} \cdot (y_{c} - y_{tur}) + F_{s1} \cdot (y_{s1} - y_{tur}) + F_{s2} \cdot (y_{s2} - y_{tur}) + F_{s3} \cdot (y_{s3} - y_{tur}) + F_{s5} \cdot (y_{s5} - y_{tur}) \\ M_{n} := F_{c} \cdot (y_{c} - y_{tur}) + F_{s1} \cdot (y_{s1} - y_{tur}) + F_{s2} \cdot (y_{s2} - y_{tur}) + F_{s3} \cdot (y_{s3} - y_{tur}) + F_{s4} \cdot (y_{s4} - y_{tur}) + F_{s5} \cdot (y_{s5} - y_{tur}) \\ \end{bmatrix}$$

$$M_{n} = 12272.062 \text{ kip} \cdot \text{ft}$$

$$\varepsilon_{1} := |\varepsilon_{31}| = 0.005$$

$$\varepsilon_{1} > \varepsilon_{1y} = 1$$

$$\varepsilon_{1} < \varepsilon_{1y} + 0.003 = 1$$

$$\phi := 0.65 + 0.25 \cdot \left(\frac{\varepsilon_{1} - \varepsilon_{1y}}{0.003}\right) = 0.894$$

$$P_{rD} := \phi \cdot P_{n} = 3654.786 \text{ kip}$$

$$M_{rD} := \phi \cdot M_{n} = 10974.327 \text{ kip} \cdot \text{ft}$$
Point E
$$\varepsilon_{31} := -0.02 \qquad \varepsilon_{n} := \frac{\varepsilon_{31} \cdot h - \varepsilon_{04} \cdot y_{31}}{h - y_{31}} = -0.021$$

$$c_{12} = \frac{\varepsilon_{11} \cdot h}{\varepsilon_{10} - \varepsilon_{0}} = 8.172 \text{ in}$$

$$a := \beta_{1} \cdot c = 0.579 \text{ ft}$$

$$\varepsilon_{32} := \frac{(h - y_{32})}{h} \cdot \varepsilon_{0} + \frac{y_{32}}{h} \cdot \varepsilon_{00} = -0.01456$$

$$\varepsilon_{33} := \frac{(h - y_{33})}{h} \cdot \varepsilon_{0} + \frac{y_{34}}{h} \cdot \varepsilon_{00} = -0.00911$$

$$\varepsilon_{35} := \frac{(h - y_{33})}{h} \cdot \varepsilon_{0} + \frac{y_{34}}{h} \cdot \varepsilon_{00} = -0.00367$$

$$\varepsilon_{35} := \frac{(h - y_{33})}{h} \cdot \varepsilon_{0} + \frac{y_{34}}{h} \cdot \varepsilon_{00} = 0.00177$$

stresses			$arepsilon_{ ext{ty}} =$	= 0.00207		
$ \varepsilon_{s1} \ge \varepsilon_{ty} = 1$	$\varepsilon_{\rm s1}$ < 0 = 1	yielde	d in tension			
f _{s1} := - f _y = - 60 ksi		Fs ⁻	$:= A_{s1} \cdot f_{s1} = -$	- 677.1 kip		
$ \varepsilon_{s2} \ge \varepsilon_{ty} = 1$	$\varepsilon_{\rm s2}$ < 0 = 1	yielded in te	ension			
$f_{s2} := -f_y = -60$) ksi		F _{s2} :=A	$f_{s2} \cdot f_{s2} = -270$.84 kip	
$ \varepsilon_{s3} \ge \varepsilon_{ty} = 1$	$\varepsilon_{\rm s3}$ < 0 = 1	yielded in te	ension			
$f_{s3} := -f_y = -60$) ksi		F _{s3} ≔A	$f_{s3} \cdot f_{s3} = -2708$	840 lbf	
$ \varepsilon_{s4} \ge \varepsilon_{ty} = 1$	$\varepsilon_{\rm s4}$ < 0 = 1	yielded in te	ension			
$f_{s4} := -f_y = -60$) ksi		F _{s4} ≔A	$\mathbf{A}_{s4} \cdot \mathbf{f}_{s4} = -2703$	840 lbf	
$\left \varepsilon_{\rm s5}\right < \varepsilon_{\rm ty} = 1$	$\varepsilon_{\rm s5} > 0 = 1$	elastic in co	mpression			
$f_{s5} \coloneqq E_s \cdot \varepsilon_{s5} - 0$).85•f' _c = 47.974	1 ksi	F _{s5} ≔A	$f_{s5} \cdot f_{s5} = 541.3$	83 kip	
$A_c := b \cdot a = 3.16$	34 ft ²					
F _c ≔0.85•f' _c • <i>i</i>	A _c = 1558.765 k	ip				
$y_c := h - \frac{a}{2} = 5.2$	211 ft					
$P_n := F_c + F_{s1} + F_{s1}$	$F_{s2} + F_{s3} + F_{s4} +$	$F_{s5} = 610.527$	/ kip			
$M_{n} \coloneqq F_{c} \cdot (y_{c} - y_{bar}) + F_{s}$	$_{s1} \cdot (y_{s1} - y_{bar}) +$	$F_{s2} \boldsymbol{\cdot} (y_{s2} - y_{bar})$	$+ F_{s3} \cdot (y_{s3} -$	$(y_{bar}) + F_{s4} \cdot (y_{bar})$	y _{s4} - y _{bar}) +	$F_{s5} \cdot (y_{s5} - y_{bar})$
M _n = 6846.469	kip∙ft					
$\varepsilon_{t} := \varepsilon_{s1} = 0.02$	2					
$\varepsilon_{\rm t} := \left \varepsilon_{\rm s1} \right = 0.02$						
$\varepsilon_{t} > \varepsilon_{ty} = 1$						

Buckling Strength	h-55 ft	b-55 ft	
	11 = 3.3 1	0-5.5	
$A_{ct} = 0.251 \text{ ft}^2$	$A_a := h \cdot b =$	30.25 ft^2	
	,	00.20	
$A_{\rm q} = 30.25 \ {\rm ft}^2$			
9			
$A_c := A_a - A_{st} = 29.999$	ft ²		
$\phi P_{n} := 0.8 \cdot 0.65 \cdot (0.85 \cdot 10.000)$	$\cdot f'_c \cdot A_c + f_y \cdot A_{st} = 87$	64.256 kip	
, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,		
r≔0.288•h=1.584 ft			
L≔150 ft		k≔2.1	
π^2 · F			
$F_e := \frac{72}{2} = 0.908$	ksi		
(k•L) ²			
$P_{cr} := F_{e} \cdot A_{q} = 3957.117$	l kip		
5			
Buckling controls. This	force is greater than	Pu	
Reinforcement			
minimal horizontal clea	r spacing		
$s_{bc} := max (1 \text{ in }, d_{bar}) =$	1.693 in		
minimal vertical clear s	pacing		
s _{hc} ≔1 in			
		16•d _{bar} = 2.257 ft	
maximum vertical spac	ing		
between ties		b=5.5 ft	
		$48 \cdot d_{\text{ties}} = 2 \text{ ft}$	
s≔2 ft			

Win	d loading
Biax The dire	ial bending tower is symmetrical, therefore has the same flexural resistance in both the x and y ctions.
Che	ck Biaxial interaction
Stre Tow	ngth 3 er must support:
	P _u :=2554.9 kip
	M _{uy} :=2823.5 kip•ft
	M _{ux} :=2829.6 kip•ft
Fror ¢	The diagram. $P_{ny} := 8500 \text{ kip}$ $\phi P_{nx} := 8500 \text{ kip}$
¢	$P_{n0} := P_{rA} = 8764.256 \text{ kip}$
¢	$P_{\text{neq}} := \frac{1}{\left(\frac{1}{\phi P_{\text{ny}}} + \frac{1}{\phi P_{\text{nx}}} + \frac{1}{\phi P_{\text{n0}}}\right)} = 2862.099 \text{ kip}$
F	$P_u < \phi P_{neq} = 1$ Therefore OK in Strength 3
Serv	rice 1 P _u :=2531.29 kip
	M _{uy} :=606.34 kip •ft
	M _{ux} := 3059.73 kip•ft
Fror	n the diagram
¢	$P_{n0} := P_{rA} = 8764.256$ kip
¢	$P_{nx} := 8500 \text{ kip} \qquad \phi P_{ny} := 8850 \text{ kip}$
¢	$P_{\text{neq}} := \frac{1}{\left(\frac{1}{1} + \frac{1}{1} + \frac{1}{1}\right)} = 2900.727 \text{ kip}$
	$\left(\phi P_{ny} \phi P_{nx} \phi P_{n0}\right)$

Tower below girder concrete beam to support girders Pier Cap Design Critical case is Strength 3 f_v:=60 **ksi** $C_c = 2$ in b≔4 **ft** h≔4.5 **ft** d_{st} ≔ 0.625 in d_b:=1.693 in #14 rebar $\beta_1 = 0.85$ $cover := c_c + d_{st} + \frac{d_b}{2}$ $A_{h} = 2.25 \text{ in}^{2}$ d≔h-cover $d_t := d = 50.529$ in singly reinforced therefore upper limit for tension for tension controlled design $A_{\text{stension}} \coloneqq \frac{0.85 \cdot f'_{\text{c}} \cdot b \cdot \beta_1}{f_{\text{v}}} \cdot \left(\frac{3 \cdot d_{\text{t}}}{8}\right) = 43.808 \text{ in}^2$ $A_s := 8 \cdot A_b = 18 \text{ in}^2$ $A_s < A_{stension} = 1$ $A_{smin} := max \left(\frac{200}{\left(\frac{f_y}{f_y}\right)}, \frac{3 \cdot \sqrt{\frac{f_c}{psi}}}{\frac{f_y}{f_y}} \right) \cdot b \cdot d = 8.085 \text{ in}^2$ $A_s > A_{smin} = 1$ $a := \frac{A_s \cdot f_y}{0.85 \cdot f'_s \cdot b} = 6.618$ in $F_c := 0.85 \cdot f'_c \cdot b \cdot a = 1080 \text{ kip}$

Therefore OK in Service 1

This document was created by an application that isn't licensed to use <u>novaPDF</u>. Purchase a license to generate PDF files without this notice.

 $F_s := A_s \cdot f_y = 1080 \text{ kip}$

 $P_u < \phi P_{neg} = 1$

Design axial load capacity	y for tied columr	IS	
Cross-Section Dimensions:	b≔5.5 ft	h≔10 ft	
	$A_g := b \cdot h = 55$	ft ²	
P _u ≔3480.32 kip		n. :-	54 $\Delta = -4 \text{ in}^2$
f _y :=60 ksi A	$\mathbf{s}_{st} \coloneqq \mathbf{n}_{bars} \cdot \mathbf{A}_{bar}$	· · bars ·	o i j voar - i iii
$\frac{P_{u}}{A_{g}} = 0.439 \text{ ksi}$	$\rho_{g} := \frac{A_{st}}{A_{g}} = 0$	0.027	
$\phi P_{\rm n} := 0.8 \cdot 0.65 \cdot (0.85 \cdot f)$	$_{c} \cdot A_{g} + (f_{y} - 0.85)$	ō•f'c)•A _{st})	
$P_r := \phi P_n = 20359.872$ kip	p		
$\frac{P_u}{P_r} \le 1 = 1$		$\frac{P_u}{P_r} = 0.171$	
OK, now PM i	nteraction		
Point A			
$P_{rA} := \phi P_n = 20359.872 $ k	ip		
$\phi M_{hA} \coloneqq 0 \text{ kip} \cdot \text{ft}$ N	$\mathbf{I}_{rA} \coloneqq \phi M_{hA}$		
Point B	E _s ≔2	29000 <mark>ksi</mark>	#18 rebar
	d _{ties} :=	=0.5 in c	l _{bar} :=2.257 in
$\varepsilon_{\rm cu} \coloneqq 0.003$			
$\varepsilon_{cu} \coloneqq 0.003$ $c_c \coloneqq 2$ in	y _{ba}	$h_{\rm r} := \frac{\rm h}{2} = 5$ ft	

	A _{s4} :=2•A _{bar}	$A_{s5} := 2 \cdot A_{bar}$	$A_{s6} := 2 \cdot A_{bar}$
	$A_{s7} := 2 \cdot A_{bar}$	A _{s8} :=2•A _{bar}	$A_{s9} := 2 \cdot A_{bar}$
	A _{s10} :=2•A _{bar}	A _{s11} ≔2•A _{bar}	A _{s12} :=2·A _{bar}
	A _{s13} :=2•A _{bar}	$A_{s14} := 2 \cdot A_{bar}$	$A_{s15} := 14 \cdot A_{bar}$
ys	$_{1} := c_{c} + d_{ties} + \frac{d_{bar}}{2} =$	3.629 in	$y_{s15} := h - \left(c_c + d_{ties} + \frac{d_{bar}}{2}\right) = 9.698$ ft
	$s := \frac{y_{s15} - y_{s1}}{14} = 8.05$	53 in	
	$y_{s2} := y_{s1} + s = 11.68$	2 in	$y_{s3} := y_{s1} + 2 \cdot s = 19.735$ in
	$y_{s4} := y_{s1} + 3 \cdot s = 27$	788 in	$y_{s5} := y_{s1} + 4 \cdot s = 2.987$ ft
	$y_{s6} := y_{s1} + 5 \cdot s = 3.6$	58 ft	$y_{s7} := y_{s1} + 6 \cdot s = 4.329$ ft
	$y_{s8} := y_{s1} + 7 \cdot s = 5$ f	't	$y_{s9} := y_{s1} + 8 \cdot s = 5.671$ ft
	$y_{s10} := y_{s1} + 9 \cdot s = 6.$	342 ft	$y_{s11} := y_{s1} + 10 \cdot s = 7.013$ ft
	$y_{s12} := y_{s1} + 11 \cdot s = 7$	7.684 ft	$y_{s13} := y_{s1} + 12 \cdot s = 8.355 \text{ ft}$
	$y_{s14} := y_{s1} + 13 \cdot s = 9$	9.027 ft	
	$\varepsilon_{\rm ty} \coloneqq \frac{f_{\rm y}}{E_{\rm s}} = 0.002$		
	$\varepsilon_{s1} := 0$ $\varepsilon_{0} :=$	$\frac{\varepsilon_{s1} \cdot h - \varepsilon_{cu} \cdot y_{s1}}{h - y_{s1}} =$	- 9.354 • 10 ⁻⁵

$$c_{12} = \frac{\varepsilon_{c_{11}} \cdot h}{\varepsilon_{c_{11}} - \varepsilon_{c_{0}}} = 116.372 \text{ in}$$

$$\beta_{1} = 0.85$$

$$a := \beta_{1} \cdot c = 8.243 \text{ ft}$$

$$\varepsilon_{s_{2}} := \frac{(h - y_{s_{2}})}{h} \cdot \varepsilon_{0} + \frac{y_{s_{2}}}{h} \cdot \varepsilon_{c_{0}} = 0.00021$$

$$\varepsilon_{s_{3}} := \frac{(h - y_{s_{1}})}{h} \cdot \varepsilon_{0} + \frac{y_{s_{3}}}{h} \cdot \varepsilon_{c_{0}} = 0.00126$$

$$\varepsilon_{s_{3}} := \frac{(h - y_{s_{1}})}{h} \cdot \varepsilon_{0} + \frac{y_{s_{3}}}{h} \cdot \varepsilon_{c_{0}} = 0.00042$$

$$\varepsilon_{s_{10}} := \frac{(h - y_{s_{1}})}{h} \cdot \varepsilon_{0} + \frac{y_{s_{1}}}{h} \cdot \varepsilon_{c_{0}} = 0.00187$$

$$\varepsilon_{s_{4}} := \frac{(h - y_{s_{1}})}{h} \cdot \varepsilon_{0} + \frac{y_{s_{5}}}{h} \cdot \varepsilon_{c_{0}} = 0.00062$$

$$\varepsilon_{s_{5}} := \frac{(h - y_{s_{1}})}{h} \cdot \varepsilon_{0} + \frac{y_{s_{5}}}{h} \cdot \varepsilon_{c_{0}} = 0.00083$$

$$\varepsilon_{s_{1}} := \frac{(h - y_{s_{1}})}{h} \cdot \varepsilon_{0} + \frac{y_{s_{1}}}{h} \cdot \varepsilon_{c_{0}} = 0.0028$$

$$\varepsilon_{s_{1}} := \frac{(h - y_{s_{1}})}{h} \cdot \varepsilon_{0} + \frac{y_{s_{1}}}{h} \cdot \varepsilon_{c_{0}} = 0.0028$$

$$\varepsilon_{s_{1}} := \frac{(h - y_{s_{1}})}{h} \cdot \varepsilon_{0} + \frac{y_{s_{1}}}{h} \cdot \varepsilon_{c_{0}} = 0.00125$$

$$\varepsilon_{s_{1}} := \frac{(h - y_{s_{1}})}{h} \cdot \varepsilon_{0} + \frac{y_{s_{1}}}{h} \cdot \varepsilon_{c_{0}} = 0.00249$$

$$\varepsilon_{s_{1}} := \frac{(h - y_{s_{1}})}{h} \cdot \varepsilon_{0} + \frac{y_{s_{1}}}{h} \cdot \varepsilon_{c_{0}} = 0.00249$$

$$\varepsilon_{s_{1}} := \frac{(h - y_{s_{1}})}{h} \cdot \varepsilon_{0} + \frac{y_{s_{1}}}{h} \cdot \varepsilon_{c_{0}} = 0.00228$$

$$\varepsilon_{s_{1}} := \frac{(h - y_{s_{1}})}{h} \cdot \varepsilon_{0} + \frac{y_{s_{1}}}{h} \cdot \varepsilon_{c_{0}} = 0.00249$$

$$\varepsilon_{s_{1}} := \frac{(h - y_{s_{1}})}{h} \cdot \varepsilon_{0} + \frac{y_{s_{1}}}{h} \cdot \varepsilon_{c_{0}} = 0.00249$$

$$\varepsilon_{s_{1}} := \frac{(h - y_{s_{1}})}{h} \cdot \varepsilon_{0} + \frac{y_{s_{1}}}{h} \cdot \varepsilon_{c_{0}} = 0.00249$$

$$\varepsilon_{s_{1}} := \frac{(h - y_{s_{1}})}{h} \cdot \varepsilon_{0} + \frac{y_{s_{1}}}{h} \cdot \varepsilon_{c_{0}} = 0.0027$$

$$\varepsilon_{s_{1}} := \frac{(h - y_{s_{1}})}{h} \cdot \varepsilon_{0} + \frac{y_{s_{1}}}{h} \cdot \varepsilon_{c_{0}} = 0.00291$$

$$stresses$$

$$\varepsilon_{s_{2}} := 0.85 \cdot f_{c} = 2.621 \text{ ksi}$$

$$F_{s_{2}} := A_{s_{2}} \cdot f_{s_{2}} = 20.964 \text{ kip}$$

$$\varepsilon_{s_{3}} := \xi_{s_{5}} \cdot \varepsilon_{s_{2}} - 0.85 \cdot f_{c} = 2.621 \text{ ksi}$$

$$F_{s_{2}} := A_{s_{2}} \cdot f_{s_{2}} = 6.9128 \text{ kip}$$

ε _{s4} <	$\varepsilon_{\rm ty} = 1$	elastic in compression		
f _{s4} :=	= E _s • <i>ɛ</i> _{s4} - 0.85•	f' _c =14.662 ksi	$F_{s4} := A_{s4} \cdot f_{s4} = 117.293 \text{ kip}$	
	$< \varepsilon_{\rm ty} = 1$	elastic in compression		
f _{s5} :=	$= E_{s} \cdot \varepsilon_{s5} - 0.85 f$	^F _c = 20.682 ksi	$F_{s5} := A_{s5} \cdot f_{s5} = 165.457 \text{ kip}$	
ε _{s6} <	$< \varepsilon_{\rm ty} = 1$	elastic in compression		
f _{s6} :=	$= E_{s} \cdot \boldsymbol{\varepsilon}_{s6} - 0.85 f$	^r _c = 26.703 ksi	$F_{s6} := A_{s6} \cdot f_{s6} = 213.621 \text{ kip}$	
ε _{s7} <	$< \varepsilon_{\rm ty} = 1$	elastic in compression		
f _{s7} :=	$= E_{s} \boldsymbol{\cdot} \boldsymbol{\varepsilon}_{s7} - 0.85 f$	^r _c = 32.723 ksi	$F_{s7} := A_{s7} \cdot f_{s7} = 261.785 \text{ kip}$	
ε _{s8} <	$\varepsilon_{\rm ty} = 1$	elastic in compression		
f _{s8} :=	=E _s ∙ <i>ε</i> _{s8} - 0.85 f	^r _c = 38.744 ksi	$F_{s8} := A_{s8} \cdot f_{s8} = 309.949 \text{ kip}$	
ε _{s9} <	$\varepsilon \varepsilon_{\rm ty} = 1$	elastic in compression		
f _{s9} :=	=E _s ∙ <i>ε</i> _{s9} - 0.85 f	^r _c = 44.764 ksi	$F_{s9} := A_{s9} \cdot f_{s9} = 358.113 \text{ kip}$	
$\varepsilon_{\rm s10}$	$< \varepsilon_{\rm ty} = 1$	elastic in compression		
f _{s10}	$= E_{s} \cdot \varepsilon_{s10} - 0.85$	f' _c = 50.785 ksi	$F_{s10} := A_{s10} \cdot f_{s10} = 406.278$ ki	ip
$\varepsilon_{\rm s11}$	$\geq \varepsilon_{\rm ty} = 1$	yielded in compression		
f _{s11}	= f _y - 0.85 f' _c =	56.6 ksi	$F_{s11} := A_{s11} \cdot f_{s11} = 452.8 \text{ kip}$	
E _{s12}	$\geq \varepsilon_{\rm ty} = 1$	yielded in compression		
f _{s12}	≔ f _y - 0.85 f' _c =	56.6 ksi	$F_{s12} := A_{s12} \cdot f_{s12} = 452.8 \text{ kip}$	
$\varepsilon_{ m s13}$	$\geq \varepsilon_{\rm ty} = 1$	yielded in compression		
f _{s13}	≔ f _y - 0.85 f' _c =	56.6 ksi	$F_{s13} := A_{s13} \cdot f_{s13} = 452.8 \text{ kip}$	
ε_{s14}	$\geq \varepsilon_{\rm ty} = 1$	yielded in compression		
f _{s14}	≔ f _y - 0.85 f' _c =	56.6 ksi	$F_{s14} := A_{s14} \cdot f_{s14} = 452.8 \text{ kip}$	
$$\begin{split} \varepsilon_{515} \geq \varepsilon_{7y} = 1 & \text{yielded in compression} \\ f_{515} = f_y = 0.85 \ f_c = 56.6 \ \text{ksi} & F_{515} = A_{515} \cdot f_{515} = 3169.6 \ \text{kip} \\ A_c := b \cdot a = 45.336 \ \text{ft}^2 \\ F_c := 0.85 \cdot f_c \cdot A_c = 22196.7 \ \text{kip} \\ y_c := h - \frac{a}{2} = 5.879 \ \text{ft} \\ P_n := F_c + F_{51} + F_{52} + F_{53} + F_{54} + F_{55} + F_{56} + F_{57} + F_{58} + F_{50} + F_{510} + F_{511} + F_{512} + F_{513} \ d + F_{514} + F_{515} \\ P_n = 29100.088 \ \text{kip} \\ M_n := F_c \cdot (y_c - y_{bar}) + F_{51} \cdot (y_{51} - y_{bar}) + F_{52} \cdot (y_{52} - y_{bar}) + F_{53} \cdot (y_{53} - y_{bar}) \ d + F_{54} \cdot (y_{54} - y_{bar}) + F_{55} \cdot (y_{55} - y_{bar}) + F_{55} \cdot (y_{55} - y_{bar}) + F_{55} \cdot (y_{55} - y_{bar}) + F_{51} \cdot (y_{51} - y_{bar}) \ d + F_{512} \cdot (y_{52} - y_{bar}) + F_{53} \cdot (y_{53} - y_{bar}) \ d + F_{512} \cdot (y_{52} - y_{bar}) + F_{53} \cdot (y_{53} - y_{bar}) + F_{53} \cdot (y_{53} - y_{bar}) \ d + F_{512} \cdot (y_{52} - y_{bar}) + F_{53} \cdot (y_{53} - y_{bar}) \ d + F_{512} \cdot (y_{51} - y_{bar}) + F_{53} \cdot (y_{53} - y_{bar}) + F_{53} \cdot (y_{53} - y_{bar}) \ d + F_{512} \cdot (y_{51} - y_{bar}) + F_{53} \cdot (y_{51} - y_{bar}) \ d + F_{512} \cdot (y_{51} - y_{bar}) + F_{53} \cdot (y_{53} - y_{bar}) \ d + F_{512} \cdot (y_{51} - y_{bar}) + F_{51} \cdot (y_{515} - y_{bar}) \ M_n = 39218.139 \ \text{kip} \cdot \text{ft} \ e_{51} = 0 \ \phi := 0.65 \ P_{78} := \phi \cdot P_n = 18915.057 \ \text{kip} \ M_{78} := \phi \cdot M_n = 25491.79 \ \text{kip} \cdot \text{ft} \ e_{51} = 0 \ e_{51} := 0 \$$

$\varepsilon_{s2} \coloneqq \frac{(h - y_{s2})}{h} \cdot \varepsilon_{o} +$	$\frac{y_{s2}}{h} \cdot \varepsilon_{cu} = -0.0017$	$2 \qquad \varepsilon_{s9} \coloneqq \frac{(h - h)}{h}$	$(y_{s9}) \cdot \varepsilon_0 + b$	$\frac{y_{s9}}{h} \cdot \varepsilon_{cu} = 0.00074$
$\varepsilon_{s3} \coloneqq \frac{(h - y_{s3})}{h} \cdot \varepsilon_0 +$	$\frac{y_{s3}}{h} \cdot \varepsilon_{cu} = -0.0013$	7 $\varepsilon_{s10} \coloneqq \frac{(h \cdot e_{s10})}{(h \cdot e_{s10})}$	$\frac{-y_{s10}}{h} \cdot \varepsilon_0$	$+\frac{y_{s10}}{h} \cdot \varepsilon_{cu} = 0.00109$
$\varepsilon_{s4} \coloneqq \frac{(h - y_{s4})}{h} \cdot \varepsilon_{o} +$	$\frac{y_{s4}}{h} \cdot \varepsilon_{cu} = -0.0010$	2 $\varepsilon_{s11} \coloneqq \frac{(h \cdot e_{s11})}{(h \cdot e_{s11})}$	- y _{s11}) h	$+\frac{y_{s11}}{h} \cdot \varepsilon_{cu} = 0.00144$
$\varepsilon_{s5} := \frac{(h - y_{s5})}{h} \cdot \varepsilon_{o} +$	$\frac{y_{s5}}{h} \cdot \varepsilon_{cu} = -0.0006$	7 $\varepsilon_{s12} := \frac{(h \cdot e_{s12})}{(h \cdot e_{s12})}$	$\frac{-y_{s12}}{h} \cdot \varepsilon_0$	$+\frac{y_{s12}}{h} \cdot \varepsilon_{cu} = 0.00179$
$\varepsilon_{s6} \coloneqq \frac{(h - y_{s6})}{h} \cdot \varepsilon_{o} +$	$\frac{y_{s6}}{h} \cdot \varepsilon_{cu} = -0.0003$	2 $\varepsilon_{s13} \coloneqq \frac{(h \cdot h)}{h}$	$\frac{-y_{s13}}{h} \cdot \varepsilon_0$	$+\frac{y_{s13}}{h} \cdot \varepsilon_{cu} = 0.00214$
$\varepsilon_{s7} \coloneqq \frac{(h - y_{s7})}{h} \cdot \varepsilon_{o} +$	$\frac{y_{s7}}{h} \cdot \varepsilon_{cu} = 0.00004$	$\varepsilon_{s14} := \frac{(h \cdot h)}{(h \cdot h)}$	$\frac{-y_{s14}}{h} \cdot \varepsilon_{o}$	$+\frac{y_{s14}}{h} \cdot \varepsilon_{cu} = 0.00249$
$\varepsilon_{s8} \coloneqq \frac{(h - y_{s8})}{h} \cdot \varepsilon_{o} +$	$\frac{y_{s8}}{h} \cdot \varepsilon_{cu} = 0.00039$	$\varepsilon_{s15} := \frac{(h \cdot h)}{h}$	$\frac{-y_{s15}}{h} \cdot \varepsilon_{o}$	$+\frac{y_{s15}}{h} \cdot \varepsilon_{cu} = 0.00284$
stresses			$\varepsilon_{\mathrm{ty}} = 0$	0.00207
$ \varepsilon_{s1} \ge \varepsilon_{ty} = 1$	$\varepsilon_{\rm s1}$ < 0 = 1	yielded in	tension	
$f_{s1} := -f_y = -6$	0 ksi		F _{s1} ≔A _s	₁•f _{s1} = - 3360 kip
$\left \varepsilon_{s2}\right < \varepsilon_{ty} = 1$	$\varepsilon_{s2} < 0 = 1$	elastic in tensio	n	
$f_{s2} \coloneqq E_s \cdot \varepsilon_{s2} \equiv$	- 49.827 ksi		$F_{s2} \coloneqq A_{s2}$	₂ •f _{s2} = - 398.619 kip
$\left \varepsilon_{s3}\right < \varepsilon_{ty} = 1$	$\varepsilon_{\rm s3}$ < 0 = 1	elastic in tensio	'n	
$f_{s3} \coloneqq E_s \cdot \varepsilon_{s3} =$	- 39.655 ksi		$F_{s3} \coloneqq A_{s3}$	₃•f _{s3} = - 317.238 kip
$\left \varepsilon_{s4}\right < \varepsilon_{ty} = 1$	$\varepsilon_{s4} < 0 = 1$	elastic in tensio	n	
$f_{s4} := E_s \cdot \varepsilon_{s4} =$	- 29.482 ksi		$F_{s4} \coloneqq A_{s}$	₄•f _{s4} = - 235.857 kip
$\left \varepsilon_{s5}\right < \varepsilon_{ty} = 1$	$\varepsilon_{s5} < 0 = 1$	elastic in tensio	'n	

$f_{s5} := E_s \cdot \varepsilon_{s5} = -19.31 \text{ ksi}$		$F_{s5} := A_{s5} \cdot f_{s5} = -154.477 \text{ kip}$
$\left \varepsilon_{s6}\right < \varepsilon_{ty} = 1$ $\varepsilon_{s6} < 0 = 1$	elastic in tension	
$f_{s6} \coloneqq E_s \cdot \varepsilon_{s6} = -9.137$ ksi		$F_{s6} := A_{s6} \cdot f_{s6} = -73.096 \text{ kip}$
$ \varepsilon_{s7} < \varepsilon_{ty} = 1$ $\varepsilon_{s7} > 0 = 1$	elastic in compre	ssion
$f_{s7} := E_s \cdot \varepsilon_{s7} - 0.85 \cdot f_c = -2.364$	ksi	$F_{s7} := A_{s7} \cdot f_{s7} = -18.915 \text{ kip}$
$ \varepsilon_{s8} < \varepsilon_{ty} = 1$ $\varepsilon_{s8} > 0 = 1$	elastic in compre	ssion
$f_{s8} := E_s \cdot \varepsilon_{s8} - 0.85 f'_c = 7.808 ks$	si	$F_{s8} := A_{s8} \cdot f_{s8} = 62.466 \text{ kip}$
$ \varepsilon_{s9} < \varepsilon_{ty} = 1$ $\varepsilon_{s9} > 0 = 1$	elastic in compre	ssion
$f_{s9} := E_s \cdot \varepsilon_{s9} - 0.85 f'_c = 17.981$	ksi	$F_{s9} := A_{s9} \cdot f_{s9} = 143.847$ kip
$\left \varepsilon_{s10}\right < \varepsilon_{ty} = 1$ $\varepsilon_{s10} > 0 = 1$	elastic in compre	ssion
$f_{s10} := E_s \cdot \varepsilon_{s10} - 0.85 f'_c = 28.153$	3 ksi	$F_{s10} := A_{s10} \cdot f_{s10} = 225.228 \text{ kip}$
$ \varepsilon_{s11} < \varepsilon_{ty} = 1$ $\varepsilon_{s11} > 0 = 1$	elastic in com	pression
$f_{s11} := E_s \cdot \varepsilon_{s11} - 0.85 f'_c = 38.326$	5 ksi	$F_{s11} := A_{s11} \cdot f_{s11} = 306.609 \text{ kip}$
$\left \varepsilon_{s12}\right < \varepsilon_{ty} = 1$ $\varepsilon_{s12} > 0 = 1$	elastic in com	pression
$f_{s12} := E_s \cdot \varepsilon_{s12} - 0.85 f'_c = 48.499$	9 ksi	$F_{s12} := A_{s12} \cdot f_{s12} = 387.989 \text{ kip}$
$ \varepsilon_{s13} \ge \varepsilon_{ty} = 1$ $\varepsilon_{s13} > 0 = 1$	yielded in com	npression
$f_{s13} := f_y - 0.85 f'_c = 56.6$ ksi		$F_{s13} := A_{s13} \cdot f_{s13} = 452.8 \text{ kip}$
$ \varepsilon_{s14} \ge \varepsilon_{ty} = 1$ $\varepsilon_{s14} > 0 = 1$	yielded in com	npression
$f_{s14} := f_y - 0.85 f'_c = 56.6$ ksi		$F_{s14} := A_{s14} \cdot f_{s14} = 452.8 \text{ kip}$
$ \varepsilon_{s15} \ge \varepsilon_{ty} = 1$ $\varepsilon_{s15} > 0 = 1$	yielded in com	npression
$f_{s15} := f_y - 0.85 f'_c = 56.6$ ksi		$F_{s15} := A_{s15} \cdot f_{s15} = 3169.6 \text{ kip}$

$$\begin{aligned} A_{c} := b \cdot a = 26.832 \text{ ft}^{2} \\ F_{c} := 0.85 \cdot f_{c} \cdot A_{c} = 13136822.396 \text{ lbf} \\ y_{c} := h - \frac{a}{2} = 7.561 \text{ ft} \\ P_{n} := F_{c} + F_{s1} + F_{s2} + F_{s3} + F_{s4} + F_{s5} + F_{s6} + F_{s7} + F_{s8} + F_{s9} + F_{s10} + F_{s11} + F_{s12} + F_{s13} \ J \\ + F_{s14} + F_{s15} \\ P_{n} = 13779.959 \text{ kip} \\ M_{n} := F_{c} \cdot (y_{c} - y_{0ar}) + F_{s1} \cdot (y_{s1} - y_{0ar}) + F_{s2} \cdot (y_{s2} - y_{0ar}) + F_{s3} \cdot (y_{s3} - y_{0ar}) \ J \\ + F_{s4} \cdot (y_{s4} - y_{0ar}) + F_{s5} \cdot (y_{s5} - y_{0ar}) + F_{s3} \cdot (y_{s5} - y_{0ar}) + F_{s1} \cdot (y_{s1} - y_{0ar}) \ J \\ + F_{s4} \cdot (y_{s4} - y_{0ar}) + F_{s5} \cdot (y_{s5} - y_{0ar}) + F_{s3} \cdot (y_{s1} - y_{0ar}) + F_{s1} \cdot (y_{s1} - y_{0ar}) \ J \\ + F_{s4} \cdot (y_{s4} - y_{0ar}) + F_{s1} \cdot (y_{s1} - y_{0ar}) + F_{s1} \cdot (y_{s1} - y_{0ar}) \ J \\ + F_{s12} \cdot (y_{s12} - y_{0ar}) + F_{s1} \cdot (y_{s13} - y_{0ar}) + F_{s1} \cdot (y_{s14} - y_{0ar}) + F_{s1} \cdot (y_{s15} - y_{0ar}) \ J \\ + F_{s12} \cdot (y_{s12} - y_{0ar}) + F_{s1} \cdot (y_{s13} - y_{0ar}) + F_{s1} \cdot (y_{s14} - y_{0ar}) + F_{s1} \cdot (y_{s15} - y_{0ar}) \ J \\ + F_{s12} \cdot (y_{s12} - y_{0ar}) + F_{s1} \cdot (y_{s14} - y_{0ar}) + F_{s1} \cdot (y_{s15} - y_{0ar}) \ J \\ + F_{s12} \cdot (y_{s12} - y_{0ar}) + F_{s1} \cdot (y_{s14} - y_{0ar}) + F_{s1} \cdot (y_{s15} - y_{0ar}) \ J \\ + F_{s12} \cdot (y_{s12} - y_{0ar}) + F_{s1} \cdot (y_{s14} - y_{0ar}) + F_{s1} \cdot (y_{s15} - y_{0ar}) \ J \\ + F_{s1} \cdot (y_{s14} - y_{0ar}) + F_{s1} \cdot (y_{s15} - y_{0ar}) \ J \\ + F_{s1} \cdot (y_{s14} - y_{bar}) + F_{s1} \cdot (y_{s15} - y_{bar}) \ J \\ + F_{s1} \cdot (y_{s14} - y_{bar}) + F_{s1} \cdot (y_{s15} - y_{bar}) \ J \\ + F_{s1} \cdot (y_{s14} - y_{bar}) + F_{s1} \cdot (y_{s15} - y_{bar}) \ J \\ + F_{s1} \cdot (y_{s14} - y_{bar}) + F_{s1} \cdot (y_{s15} - y_{s1}) \ J \\ + F_{s1} \cdot (y_{s14} - y_{s1}) \ J \\ + F_{s1} \cdot (y_{s1} - y_{s1}) + F_{s1} \cdot (y_{s1} - y_{s1}) \ J \\ + F_{s1} \cdot (y_{s1} - y_{s1}) \ J \\ + F_{s1} \cdot (y_{s1} - y_{s1}) \ J \\ + F_{s1} \cdot (y_{s1} - y_{s1}) \ J \\ + F_{s1} \cdot (y_{s1} - y_{s1}) \ J \\ + F_{s1} \cdot (y_{s1} - y_{s1}) \ J \\ + F_{s1} \cdot (y_{s1} - y_{s1}) \ J \\ + F_{s1} \cdot (y_{s1} - y_{s1}) \$$

€ _{\$4} := <u>(</u> †	$\frac{(h-y_{s4})}{h} \cdot \varepsilon_0 + \frac{y_{s4}}{h} \cdot$	$\varepsilon_{\rm cu}$ = - 0.00334	$\varepsilon_{s11} \coloneqq \frac{(h - y_{s11})}{h} \cdot \varepsilon_0$	$+\frac{y_{s11}}{h} \cdot \varepsilon_{cu} = 0.00054$
$\varepsilon_{s5} := \frac{(1)}{2}$	$(h - y_{s5}) \cdot \varepsilon_0 + \frac{y_{s5}}{h} \cdot \varepsilon_0$	$\varepsilon_{\rm cu}$ = - 0.00279	$\varepsilon_{s12} \coloneqq \frac{(h - y_{s12})}{h} \cdot \varepsilon_0$	$+\frac{y_{s12}}{h} \cdot \varepsilon_{cu} = 0.00109$
$\varepsilon_{s6} := \frac{(t)}{2}$	$\frac{(h-y_{s6})}{h} \cdot \varepsilon_0 + \frac{y_{s6}}{h} \cdot \varepsilon_0$	$\varepsilon_{\rm cu}$ = - 0.00223	$\varepsilon_{s13} \coloneqq \frac{(h - y_{s13})}{h} \cdot \varepsilon_0$	$+\frac{y_{s13}}{h} \cdot \varepsilon_{cu} = 0.00164$
$\varepsilon_{s7} := \frac{(1)}{2}$	$(h - y_{s7}) \cdot \varepsilon_0 + \frac{y_{s7}}{h} \cdot \varepsilon_0$	$\varepsilon_{\rm cu} = -0.00168$	$\varepsilon_{s14} := \frac{(h - y_{s14})}{h} \cdot \varepsilon_0$	$+\frac{\mathbf{y}_{\mathrm{s}14}}{\mathbf{h}} \cdot \boldsymbol{\varepsilon}_{\mathrm{cu}} = 0.0022$
$\varepsilon_{s8} := \frac{(1)}{2}$	$(\mathbf{r} - \mathbf{y}_{s8}) \cdot \mathbf{\varepsilon}_0 + \frac{\mathbf{y}_{s8}}{\mathbf{h}} \cdot \mathbf{\varepsilon}_0$	$\varepsilon_{\rm cu}$ = - 0.00112	$\varepsilon_{s15} := \frac{(h - y_{s15})}{h} \cdot \varepsilon_0$	$+\frac{\mathbf{y}_{s15}}{\mathbf{h}}\cdot\boldsymbol{\varepsilon}_{cu}=0.00275$
S	tresses		ε _{ty}	= 0.00207
	$ \varepsilon_{s1} \ge \varepsilon_{ty} = 1$	$\varepsilon_{s1} < 0 = 1$	yielded in tension	
	$f_{s1} := -f_y = -60$	ksi	$F_{s1} := A_{s1} \cdot f_{s1} =$	- 3360 kip
	$ \varepsilon_{s2} \ge \varepsilon_{ty} = 1$	$\varepsilon_{s2} < 0 = 1$	yielded in tension	
	$f_{s2} := -f_y = -60$	ksi	$F_{s2} := A_{s2} \cdot f_{s2} =$	- 480 kip
	$ \varepsilon_{\rm s3} \ge \varepsilon_{\rm ty} = 1$	$\varepsilon_{\rm s3}$ < 0 = 1	yielded in tension	
	$f_{s3} := -f_y = -60$	ksi	$F_{s3} := A_{s3} \cdot f_{s3} =$	- 480 kip
	$ \varepsilon_{s4} \ge \varepsilon_{ty} = 1$	$\varepsilon_{s4} < 0 = 1$	yielded in tension	
	$f_{s4} := -f_y = -60$	ksi	$F_{s4} \coloneqq A_{s4} \bullet f_{s4} =$	- 480 kip
	$ \varepsilon_{\rm s5} \ge \varepsilon_{\rm ty} = 1$	$\varepsilon_{\rm s5}$ < 0 = 1	yielded in tension	
	$f_{s5} := -f_y = -60$	ksi	$F_{\mathrm{s5}} \coloneqq A_{\mathrm{s5}} \cdot f_{\mathrm{s5}} =$	- 480 kip
	$ \varepsilon_{\rm s6} \ge \varepsilon_{\rm ty} = 1$	$\varepsilon_{\rm s6}$ < 0 = 1	yielded in tension	
	$f_{s6} := -f_y = -60$	ksi	$F_{s6} := A_{s6} \cdot f_{s6} =$	- 480 kip

$\left \varepsilon_{\rm s7}\right < \varepsilon_{\rm ty} = 1$	$\varepsilon_{s7} < 0 = 1$	elastic in tension
$f_{s7} := E_s \cdot \varepsilon_{s7} = -48$	3.672 ksi	$F_{s7} := A_{s7} \cdot f_{s7} = -389.373 \text{ kip}$
$\left \varepsilon_{\rm s8}\right < \varepsilon_{\rm ty} = 1$	$\varepsilon_{s8} < 0 = 1$	elastic in tension
$f_{s8} \coloneqq E_s \cdot \varepsilon_{s8} = -32$	2.617 ksi	$F_{s8} := A_{s8} \cdot f_{s8} = -260.935 \text{ kip}$
$\left \varepsilon_{s9}\right < \varepsilon_{ty} = 1$	$\varepsilon_{s9} < 0 = 1$	elastic in tension
$f_{s9} \coloneqq E_s \cdot \varepsilon_{s9} = -10$	6.562 ksi	$F_{s9} := A_{s9} \cdot f_{s9} = -132.498 \text{ kip}$
$\left \varepsilon_{\rm s10}\right < \varepsilon_{\rm ty} = 1$	$\varepsilon_{\rm s10}$ < 0 = 1	elastic in tension
$f_{s10} \coloneqq E_s \cdot \varepsilon_{s10} = -$	0.507 ksi	$F_{s10} := A_{s10} \cdot f_{s10} = -4.06 \text{ kip}$
$\left \varepsilon_{s11}\right < \varepsilon_{ty} = 1$	$\varepsilon_{s11} > 0 = 1$	elastic in compression
$\mathbf{f}_{\mathrm{s11}} \coloneqq \mathbf{E}_{\mathrm{s}} \boldsymbol{\cdot} \boldsymbol{\varepsilon}_{\mathrm{s11}} - 0.$.85 f' _c = 12.147	ksi $F_{s11} := A_{s11} \cdot f_{s11} = 97.178$ kip
$\left \varepsilon_{\rm s12}\right < \varepsilon_{\rm ty} = 1$	$\varepsilon_{s12} > 0 = 1$	elastic in compression
$\mathbf{f}_{\mathrm{s12}} \coloneqq \mathbf{E}_{\mathrm{s}} \boldsymbol{\cdot} \boldsymbol{\varepsilon}_{\mathrm{s12}} - 0.$.85 f' _c = 28.202	ksi $F_{s12} := A_{s12} \cdot f_{s12} = 225.616$ kip
$\left \varepsilon_{\rm s13}\right < \varepsilon_{\rm ty} = 1$	$\varepsilon_{s13} > 0 = 1$	elastic in compression
$\mathbf{f}_{\mathrm{s13}} \coloneqq \mathbf{E}_{\mathrm{s}} \boldsymbol{\cdot} \boldsymbol{\varepsilon}_{\mathrm{s13}} - 0.$.85 f' _c = 44.257	ksi $F_{s13} := A_{s13} \cdot f_{s13} = 354.054$ kip
$ \varepsilon_{s14} \ge \varepsilon_{ty} = 1$	$\varepsilon_{s14} > 0 = 1$	yielded in compression
f _{s14} ≔ f _y - 0.85 f'	_c = 56.6 ksi	$F_{s14} := A_{s14} \cdot f_{s14} = 452.8 \text{ kip}$
$\left \varepsilon_{s15}\right \ge \varepsilon_{ty} = 1$	$\varepsilon_{\rm s15} > 0 = 1$	yielded in compression
f _{s15} ≔ f _y - 0.85 f'	_c = 56.6 ksi	$F_{s15} := A_{s15} \cdot f_{s15} = 3169.6 \text{ kip}$
$A_c := b \cdot a = 17.00^{\circ}$	l ft ²	
$F_c \coloneqq 0.85 \cdot f'_c \cdot A_c$	= 8323762.466	lbf
$y_c := h - \frac{a}{2} = 8.454$	4 ft	

$$\begin{split} & \mathsf{P}_{n} \coloneqq \mathsf{F}_{c} + \mathsf{F}_{s1} + \mathsf{F}_{s2} + \mathsf{F}_{s3} + \mathsf{F}_{s4} + \mathsf{F}_{s5} + \mathsf{F}_{s7} + \mathsf{F}_{s9} + \mathsf{F}_{s10} + \mathsf{F}_{s11} + \mathsf{F}_{s12} + \mathsf{F}_{s13} \quad d \\ & + \mathsf{F}_{s14} + \mathsf{F}_{s15} \\ & \mathsf{P}_{n} = 6076.144 \; \mathbf{kip} \\ & \mathsf{M}_{n} \coloneqq \mathsf{F}_{c} \cdot (y_{c} - y_{uar}) + \mathsf{F}_{s1} \cdot (y_{s1} - y_{bar}) + \mathsf{F}_{s2} \cdot (y_{s2} - y_{uar}) + \mathsf{F}_{s3} \cdot (y_{s3} - y_{uar}) - d \\ & + \mathsf{F}_{s4} \cdot (y_{s4} - y_{uar}) + \mathsf{F}_{s5} \cdot (y_{s7} - y_{bar}) + \mathsf{F}_{s1} \cdot (y_{s10} - y_{bar}) + \mathsf{F}_{s1} \cdot (y_{s1} - y_{bar}) - d \\ & + \mathsf{F}_{s3} \cdot (y_{s3} - y_{uar}) + \mathsf{F}_{s5} \cdot (y_{s7} - y_{bar}) + \mathsf{F}_{s10} \cdot (y_{s10} - y_{bar}) + \mathsf{F}_{s1} \cdot (y_{s17} - y_{bar}) - d \\ & + \mathsf{F}_{s12} \cdot (y_{s12} - y_{bar}) + \mathsf{F}_{s3} \cdot (y_{s13} - y_{bar}) + \mathsf{F}_{s10} \cdot (y_{s10} - y_{bar}) + \mathsf{F}_{s15} \cdot (y_{s15} - y_{bar}) - d \\ & + \mathsf{F}_{s12} \cdot (y_{s12} - y_{bar}) + \mathsf{F}_{s3} \cdot (y_{s13} - y_{bar}) + \mathsf{F}_{s10} \cdot (y_{s14} - y_{bar}) + \mathsf{F}_{s15} \cdot (y_{s15} - y_{bar}) - d \\ & + \mathsf{F}_{s12} \cdot (y_{s12} - y_{bar}) + \mathsf{F}_{s3} \cdot (y_{s13} - y_{bar}) + \mathsf{F}_{s10} \cdot (y_{s14} - y_{bar}) + \mathsf{F}_{s15} \cdot (y_{s15} - y_{bar}) - d \\ & + \mathsf{F}_{s12} \cdot (y_{s12} - y_{bar}) + \mathsf{F}_{s3} \cdot (y_{s13} - y_{bar}) + \mathsf{F}_{s10} \cdot (y_{s14} - y_{bar}) + \mathsf{F}_{s15} \cdot (y_{s15} - y_{bar}) - d \\ & = \mathsf{e}_{s1} \coloneqq \mathsf{e}_{s1} (\mathsf{e}_{s1}) = 0.005 \\ & \varepsilon_{1} \simeq \varepsilon_{1} = \mathsf{e}_{s1} = 0.005 \\ & \varepsilon_{1} \simeq \varepsilon_{1} = \mathsf{e}_{s1} = \mathsf{e}_{s1} = \mathsf{e}_{s1} + \mathsf{e}_{s1$$

ε _{s5} ≔	(h -	$\frac{y_{s5}}{h} \cdot \varepsilon$	$_{o} + \frac{y_{s5}}{h} \cdot s$	$\varepsilon_{\rm cu} = -0.01363$	$\varepsilon_{s12} \coloneqq \frac{(h - y_{s1})}{h}$	$\varepsilon_0 + \frac{y_{s12}}{h} \cdot \varepsilon_{cu} = -0.00249$
€ _{s6} :=	(h -	$\frac{\mathbf{y}_{s6}}{\mathbf{h}} \cdot \varepsilon$	$_{0} + \frac{y_{s6}}{h} \cdot s$	$\varepsilon_{\rm cu} = -0.01204$	$\varepsilon_{s13} \coloneqq \frac{(h - y_{s1})}{h}$	$\frac{3}{h} \cdot \varepsilon_0 + \frac{y_{s13}}{h} \cdot \varepsilon_{cu} = -0.0009$
€ _{s7} :=	(h -	· y₅ ₇) h	$_{0} + \frac{y_{s7}}{h} \cdot \xi$	$\varepsilon_{\rm cu} = -0.01045$	$\varepsilon_{s14} := \frac{(h - y_{s1})}{h}$	$(4) \cdot \varepsilon_0 + \frac{y_{s14}}{h} \cdot \varepsilon_{cu} = 0.00069$
€ _{s8} :=	(h -	$\frac{y_{s8}}{h} \cdot \varepsilon$	$_{0} + \frac{y_{s8}}{h} \cdot \xi$	$\varepsilon_{\rm cu} = -0.00886$	$\varepsilon_{s15} \coloneqq \frac{(h - y_{s1})}{h}$	$\cdot \varepsilon_{o} + \frac{y_{s15}}{h} \cdot \varepsilon_{cu} = 0.00228$
		stresses				$\varepsilon_{\rm ty} = 0.00207$
		$ \varepsilon_{s1} $	$\geq \varepsilon_{\rm ty} = 1$	$\varepsilon_{s1} < 0 = 1$	yielded	in tension
		f _{s1} ≔	- f _y = - 6	o0 ksi		$F_{s1} := A_{s1} \cdot f_{s1} = -3360 \text{ kip}$
		$ \varepsilon_{s2} \ge$	$\geq \varepsilon_{\rm ty} = 1$	$\varepsilon_{s2} < 0 = 1$	yielded in ten	sion
		f _{s2} ≔	- f _y = - 6	o0 ksi		$F_{s2} := A_{s2} \cdot f_{s2} = -480 \text{ kip}$
		$ \varepsilon_{s3} \ge$	$\geq \varepsilon_{\rm ty} = 1$	$\varepsilon_{s3} < 0 = 1$	yielded in ten	sion
		f _{s3} ≔	- f _y = - 6	o0 ksi		$F_{s3} := A_{s3} \cdot f_{s3} = -480 \text{ kip}$
		$ \varepsilon_{s4} ^2$	$\geq \varepsilon_{\rm ty} = 1$	$\varepsilon_{s4} < 0 = 1$	yielded in ten	sion
		f _{s4} ≔	- f _y = - 6	o0 ksi		$F_{s4} := A_{s4} \cdot f_{s4} = -480 \text{ kip}$
		$ \varepsilon_{s5} \ge$	$\geq \varepsilon_{ty} = 1$	$\varepsilon_{\rm s5}$ < 0 = 1	yielded in ten	sion
		f _{s5} ≔	- f _y = - 6	o0 ksi		$F_{s5} := A_{s5} \cdot f_{s5} = -480 \text{ kip}$
		$ \varepsilon_{\rm s6} $	$\geq \varepsilon_{ty} = 1$	$\varepsilon_{s6} < 0 = 1$	yielded in ten	sion
		f _{s6} ≔	- f _y = - 6	o0 ksi		$F_{s6} := A_{s6} \cdot f_{s6} = -480 \text{ kip}$
		$ \varepsilon_{s7} \ge$	$\geq \varepsilon_{ty} = 1$	$\varepsilon_{s7} < 0 = 1$	yielded in ten	sion
		f _{s7} ≔	- f _y = - 6	0 ksi		$F_{s7} := A_{s7} \cdot f_{s7} = -480 \text{ kip}$

	$ \varepsilon_{s8} \ge \varepsilon_{ty} = 1$	$\varepsilon_{s8} < 0 = 1$	yielded in tension	n
	$f_{s8} := -f_y = -60$	ksi		$F_{s8} := A_{s8} \cdot f_{s8} = -480 \text{ kip}$
	$ \varepsilon_{s9} \ge \varepsilon_{ty} = 1$	$\varepsilon_{\rm s9}$ < 0 = 1	yielded in tension	٦
	$f_{s9} := -f_y = -60$	ksi		$F_{s9} := A_{s9} \cdot f_{s9} = -480 \text{ kip}$
	$ \varepsilon_{s10} \ge \varepsilon_{ty} = 1$	$\varepsilon_{\rm s10}$ < 0 = 1	yielded in tension	1
	$f_{s10} := -f_y = -60$	ksi		$F_{s10} := A_{s10} \cdot f_{s10} = -480 \text{ kip}$
	$ \varepsilon_{s11} \ge \varepsilon_{ty} = 1$	$\varepsilon_{\rm s11}$ < 0 = 1	yielded in ten	sion
	$f_{s11} := -f_y = -60$	ksi		$F_{s11} := A_{s11} \cdot f_{s11} = -480 \text{ kip}$
	$ \varepsilon_{s12} \ge \varepsilon_{ty} = 1$	$\varepsilon_{s12} < 0 = 1$	yielded in ten	sion
	$f_{s12} = -f_y = -60$	ksi		$F_{s12} := A_{s12} \cdot f_{s12} = -480 \text{ kip}$
	$\left \varepsilon_{s13}\right < \varepsilon_{ty} = 1$	$\varepsilon_{s13} < 0 = 1$	elastic in tens	ion
	$f_{s13} \coloneqq E_s \cdot \varepsilon_{s13} = -$	- 26.112 ksi		$F_{s13} := A_{s13} \cdot f_{s13} = -208.896 \text{ kip}$
	$\left \varepsilon_{s14}\right < \varepsilon_{ty} = 1$	$\varepsilon_{s14} > 0 = 1$	elastic in com	pression
	$f_{s14} \coloneqq E_s \cdot \varepsilon_{s14} - 0$).85 f' _c = 16.645	5 ksi	$F_{s14} := A_{s14} \cdot f_{s14} = 133.163 \text{ kip}$
	$ \varepsilon_{s15} \ge \varepsilon_{ty} = 1$	$\varepsilon_{s15} > 0 = 1$	yielded in con	npression
	f _{s15} ≔f _y - 0.85 f	" _c = 56.6 ksi		$F_{s15} := A_{s15} \cdot f_{s15} = 3169.6 \text{ kip}$
	$A_c \coloneqq b \cdot a = 5.913$	ft ²		
	$F_c \coloneqq 0.85 \cdot f'_c \cdot A_c$,= 2895221.727	lbf	
	$y_c := h - \frac{a}{2} = 9.46$	o2 ft		
P _n ≔F _c + F	+ F _{s1} + F _{s2} + F _{s3} + F _{s14} + F _{s15}	$F_{s4} + F_{s5} + F_{s6}$	+ F _{s7} + F _{s8} + F _{s9} +	$F_{s10} + F_{s11} + F_{s12} + F_{s13}$

P _n = - 2650.911 kip	
$ \begin{split} M_{n} &\coloneqq F_{c} \cdot \left(y_{c} - y_{bar} \right) + F_{s1} \cdot \left(y_{s4} - y_{bar} \right) + F_{s5} \\ &+ F_{s4} \cdot \left(y_{s4} - y_{bar} \right) + F_{s5} \\ &+ F_{s8} \cdot \left(y_{s8} - y_{bar} \right) + F_{s9} \\ &+ F_{s12} \cdot \left(y_{s12} - y_{bar} \right) + F \end{split} $	
M _n = 46971.891 kip•ft	
$\varepsilon_{\mathrm{t}} \coloneqq \varepsilon_{\mathrm{s1}} = 0.02$	
$\varepsilon_{\rm t} \coloneqq \varepsilon_{\rm s1} = 0.02$	
$\varepsilon_{\rm t} > \varepsilon_{\rm ty} = 1$	
$\varepsilon_{\rm t} > \varepsilon_{\rm ty} + 0.003 = 1$	
$\phi := 0.9$	
$P_{rE} \coloneqq \phi \cdot P_{n} = -238!$	5.82 kip
$M_{rE} := \phi \cdot M_n = 4227$	74.702 kip•ft
Summary:	
P _{rA} = 20359.872 kip	$M_{rA} = 0$ kip·ft
P _{rB} = 18915.057 kip	M _{rB} = 25491.79 kip•ft
P _{rC} = 8956.973 kip	M _{rC} = 47734.943 kip•ft
P _{rD} = 5433.61 kip	M _{rD} = 62463.077 kip•ft
P _{rE} = - 2385.82 kip	M _{rE} = 42274.702 kip•ft

$F_{e} := \frac{\pi \cdot L_{c}}{\left(\frac{k \cdot L}{r}\right)^{2}} = 932.597 \text{ ksi}$		
$P_{cr} := F_e \cdot A_g = 7386168.062 \text{ kip}$		
Axial load capacity based on elastic bu Strength controls.	ckling is much larger than that b	based on streng
Reinforcement		
minimal horizontal clear spacing		
$s_{bc} := max (1 \text{ in }, d_{bar}) = 2.257 \text{ in}$		
minimal vertical clear spacing		
s _{hc} := 1 in		
maximum vertical spacing	16•d _{bar} = 3.009 ft	
between ties	$b = 5.5 \text{ ft}$ $48 \cdot d_{\text{ties}} = 2 \text{ ft}$	
$s \le \min(16 \cdot d_{bar}, 48 \cdot d_{ties}, b) = 1$	s:=2 ft	
Wind Loading Biaxial interaction check		
Create P-M diagram for the other directio	n of moment	
Cross-Section Dimensions: b = 10 f	: h≔5.5 ft	
$A_g := b \cdot h = b$	55 ft ²	
f _y :=60 ksi A _{st} :=n _{bars} •A _{ba}	n _{bars} ≔54 A _b	$ar := 4 in^2$
Pu A		
$\rho_{g} = 0.457$ ksi $\rho_{g} = \frac{1.51}{A}$	= 0.027	

$$\phi I_{1}^{n} = 0.8 \cdot 0.65 \cdot (0.85 \cdot f_{c} \cdot A_{g} + (f_{y} - 0.85 \cdot f_{c}) \cdot A_{st})$$

$$P_{r} := \phi I_{n}^{n} = 20359.872 \text{ kip}$$
Point A
$$P_{r,A} := \phi I_{n}^{n} = 20359.872 \text{ kip}$$

$$\phi M_{h,A} := 0 \text{ kip} \cdot \text{ft} \qquad M_{r,A} := \phi M_{h,A}$$
Point B
$$E_{s} := 29000 \text{ ksi} \qquad \# 18 \text{ rebar}$$

$$c_{ru} := 0.003 \qquad d_{ties} := 0.5 \text{ in} \qquad d_{bar} := 2.257 \text{ in}$$

$$c_{c} := 2 \text{ in} \qquad y_{bar} := \frac{h}{2} = 2.75 \text{ ft}$$

$$A_{c1} := 15 \cdot A_{bar} \qquad A_{s2} := 2 \cdot A_{bar} \qquad A_{c3} := 2 \cdot A_{bar}$$

$$A_{c1} := 15 \cdot A_{bar} \qquad A_{s2} := 2 \cdot A_{bar} \qquad A_{c3} := 2 \cdot A_{bar}$$

$$A_{c1} := 2 \cdot A_{bar} \qquad A_{s5} := 2 \cdot A_{bar} \qquad A_{c3} := 2 \cdot A_{bar}$$

$$A_{c1} := 2 \cdot A_{bar} \qquad A_{s5} := 2 \cdot A_{bar} \qquad A_{c1} := 2 \cdot A_{bar}$$

$$A_{c1} := 2 \cdot A_{bar} \qquad A_{s1} := 2 \cdot A_{bar} \qquad A_{s1} := 2 \cdot A_{bar}$$

$$A_{c1} := 2 \cdot A_{bar} \qquad A_{s1} := 2 \cdot A_{bar} \qquad A_{s1} := 2 \cdot A_{bar}$$

$$A_{c1} := 2 \cdot A_{bar} \qquad A_{s1} := 2 \cdot A_{bar} \qquad A_{s1} := 2 \cdot A_{bar}$$

$$A_{c1} := 2 \cdot A_{bar} \qquad A_{s1} := 2 \cdot A_{bar} \qquad A_{s1} := 2 \cdot A_{bar}$$

$$A_{c1} := 2 \cdot A_{bar} \qquad A_{s1} := 2 \cdot A_{bar} \qquad A_{s1} := 2 \cdot A_{bar}$$

$$A_{c1} := 2 \cdot A_{bar} \qquad A_{s1} := 2 \cdot A_{bar} \qquad A_{s1} := 2 \cdot A_{bar}$$

$$A_{c1} := 2 \cdot A_{bar} \qquad A_{s1} := 2 \cdot A_{bar} \qquad A_{s1} := 2 \cdot A_{bar}$$

$$A_{c1} := 2 \cdot A_{bar} \qquad A_{c1} := 2 \cdot A_{bar} \qquad A_{c1} := 2 \cdot A_{bar}$$

$$A_{c1} := 2 \cdot A_{bar} \qquad A_{c1} := 2 \cdot A_{bar} \qquad A_{c1} := 2 \cdot A_{bar}$$

$$A_{c1} := 2 \cdot A_{bar} \qquad A_{c1} := 2 \cdot A_{bar} \qquad A_{c1} := 2 \cdot A_{bar}$$

$$A_{c1} := 2 \cdot A_{bar} \qquad A_{c1} := 2 \cdot A_{bar} \qquad A_{c1} := 2 \cdot A_{bar}$$

$$A_{c1} := 2 \cdot A_{bar} \qquad A_{c1} := 2 \cdot A_{c1} := 2 \cdot A_{c1} \qquad A_{c1} := 2 \cdot A_{c1} := 2 \cdot A_{c1} \qquad A_{c1} := 2 \cdot A_{c1} := 2 \cdot A_{c1} \qquad A_{c1} := 2 \cdot A_{c1} :=$$

$$y_{s4} := y_{s1} + 3 \cdot s = 17.185 \text{ in } y_{s5} := y_{s1} + 4 \cdot s = 1.809 \text{ ft}$$

$$y_{s6} := y_{s1} + 5 \cdot s = 2.185 \text{ ft } y_{s7} := y_{s1} + 6 \cdot s = 2.562 \text{ ft}$$

$$y_{s6} := y_{s1} + 7 \cdot s = 2.938 \text{ ft } y_{s7} := y_{s1} + 8 \cdot s = 3.315 \text{ ft}$$

$$y_{s10} := y_{s1} + 9 \cdot s = 3.691 \text{ ft } y_{s11} := y_{s1} + 10 \cdot s = 4.068 \text{ ft}$$

$$y_{s12} := y_{s1} + 11 \cdot s = 4.445 \text{ ft } y_{s13} := y_{s1} + 12 \cdot s = 4.821 \text{ ft}$$

$$\varepsilon_{s1} := 0 \qquad \varepsilon_{0} := \frac{\varepsilon_{s1} \cdot h - \varepsilon_{cu} \cdot y_{s1}}{h - y_{s1}} = -1.745 \cdot 10^{-4}$$

$$c_{12} = \frac{\varepsilon_{00} \cdot h}{\varepsilon_{0}} = 62.372 \text{ in }$$

$$\beta_{1} := 0.85$$

$$a := \beta_{1} \cdot c = 4.418 \text{ ft}$$

$$\varepsilon_{s3} := \frac{(h - y_{s2})}{h} \cdot \varepsilon_{0} + \frac{y_{s3}}{h} \cdot \varepsilon_{cu} = 0.00043 \qquad \varepsilon_{s10} := \frac{(h - y_{s10})}{h} \cdot \varepsilon_{0} + \frac{y_{s10}}{h} \cdot \varepsilon_{cu} = 0.00174$$

$$\varepsilon_{s4} := \frac{(h - y_{s1})}{h} \cdot \varepsilon_{0} + \frac{y_{s3}}{h} \cdot \varepsilon_{cu} = 0.00065$$

$$\varepsilon_{s11} := \frac{(h - y_{s1})}{h} \cdot \varepsilon_{0} + \frac{y_{s3}}{h} \cdot \varepsilon_{cu} = 0.00087$$

$$\varepsilon_{s11} := \frac{(h - y_{s1})}{h} \cdot \varepsilon_{0} + \frac{y_{s10}}{h} \cdot \varepsilon_{cu} = 0.00217$$

$$\begin{split} \varepsilon_{s7} &:= \frac{(h - y_{s7})}{h} \cdot \varepsilon_0 + \frac{y_{s7}}{h} \cdot \varepsilon_{cu} = 0.0013 \qquad \varepsilon_{s13} := \frac{(h - y_{s13})}{h} \cdot \varepsilon_0 + \frac{y_{s13}}{h} \cdot \varepsilon_{cu} = 0.00261 \\ \varepsilon_{s40} := \frac{(h - y_{s3})}{h} \cdot \varepsilon_0 + \frac{y_{s6}}{h} \cdot \varepsilon_{cu} = 0.00152 \qquad \varepsilon_{s14} := \frac{(h - y_{s14})}{h} \cdot \varepsilon_0 + \frac{y_{s14}}{h} \cdot \varepsilon_{cu} = 0.00283 \\ \text{stresses} \qquad \varepsilon_{ty} = 0.00207 \\ f_{s1} := 0 \text{ ksi strain was } 0 \qquad F_{s1} := A_{s1} \cdot f_{s1} = 0 \text{ lbf} \\ \varepsilon_{s2} < \varepsilon_{ty} = 1 \qquad \text{elastic in compression} \\ f_{s2} := E_s \cdot \varepsilon_{s2} - 0.85 \cdot f_c = 2.903 \text{ ksi} \qquad F_{s2} := A_{s2} \cdot f_{s2} = 23.224 \text{ kip} \\ \varepsilon_{s3} < \varepsilon_{ty} = 1 \qquad \text{elastic in compression} \\ f_{s3} := E_s \cdot \varepsilon_{s3} - 0.85 \cdot f_c = 9.206 \text{ ksi} \qquad F_{s3} := A_{s3} \cdot f_{s3} = 73.648 \text{ kip} \\ \varepsilon_{s4} < \varepsilon_{ty} = 1 \qquad \text{elastic in compression} \\ f_{s4} := E_s \cdot \varepsilon_{s4} - 0.85 \cdot f_c = 15.509 \text{ ksi} \qquad F_{s4} := A_{s4} \cdot f_{s4} = 124.071 \text{ kip} \\ \varepsilon_{s5} < \varepsilon_{ty} = 1 \qquad \text{elastic in compression} \\ f_{s5} := E_s \cdot \varepsilon_{s5} - 0.85 \cdot f_c = 21.812 \text{ ksi} \qquad F_{s5} := A_{s5} \cdot f_{s6} = 174.495 \text{ kip} \\ \varepsilon_{56} < \varepsilon_{ty} = 1 \qquad \text{elastic in compression} \\ f_{s6} := E_s \cdot \varepsilon_{s5} - 0.85 \cdot f_c = 21.812 \text{ ksi} \qquad F_{s6} := A_{s6} \cdot f_{s6} = 224.919 \text{ kip} \\ \varepsilon_{s7} < \varepsilon_{ty} = 1 \qquad \text{elastic in compression} \\ f_{s6} := E_s \cdot \varepsilon_{s5} - 0.85 \cdot f_c = 28.115 \text{ ksi} \qquad F_{s6} := A_{s6} \cdot f_{s6} = 224.919 \text{ kip} \\ \varepsilon_{s7} < \varepsilon_{ty} = 1 \qquad \text{elastic in compression} \\ f_{s7} := E_s \cdot \varepsilon_{s5} - 0.85 \cdot f_c = 21.812 \text{ ksi} \qquad F_{s7} := A_{s7} \cdot f_{s7} = 275.343 \text{ kip} \\ \varepsilon_{s8} < \varepsilon_{ty} = 1 \qquad \text{elastic in compression} \\ f_{s7} := E_s \cdot \varepsilon_{s9} - 0.85 \cdot f_c = 40.721 \text{ ksi} \qquad F_{s9} := A_{s9} \cdot f_{s9} = 376.191 \text{ kip} \\ \varepsilon_{s9} < \varepsilon_{ty} = 1 \qquad \text{elastic in compression} \\ f_{s9} := E_s \cdot \varepsilon_{s9} - 0.85 \cdot f_c = 47.024 \text{ ksi} \qquad F_{s9} := A_{s9} \cdot f_{s9} = 376.191 \text{ kip} \\ \varepsilon_{s9} < \varepsilon_{ty} = 1 \qquad \text{elastic in compression} \\ f_{s9} := E_s \cdot \varepsilon_{s9} - 0.85 \cdot f_c = 47.024 \text{ ksi} \qquad F_{s9} := A_{s9} \cdot f_{s9} = 376.191 \text{ kip} \\ \varepsilon_{s9} < \varepsilon_{ty} = 1 \qquad \text{elastic in compression} \\ \varepsilon_{s9} < \varepsilon_{s9} < 0.85 \cdot f_c = 47.024 \text{ ksi} \qquad F_{s9} := A_{s9} \cdot f_{s9} = 376.191 \text{$$

$$\begin{split} \varepsilon_{s10} < \varepsilon_{ty} = 1 & \text{elastic in compression} \\ f_{s10} = E_s \cdot \varepsilon_{s10} - 0.85 \ f_c = 53.327 \ \text{ksi} & F_{s10} = A_{310} \cdot f_{s10} = 426.614 \ \text{kip} \\ \varepsilon_{s11} \ge \varepsilon_{ty} = 1 & \text{yielded in compression} \\ f_{s11} = f_y - 0.85 \ f_c = 56.6 \ \text{ksi} & F_{s11} = A_{311} \cdot f_{s11} = 452.8 \ \text{kip} \\ \varepsilon_{s12} \ge \varepsilon_{ty} = 1 & \text{yielded in compression} \\ f_{s12} = f_y - 0.85 \ f_c = 56.6 \ \text{ksi} & F_{s12} = A_{312} \cdot f_{s12} = 452.8 \ \text{kip} \\ \varepsilon_{s13} \ge \varepsilon_{ty} = 1 & \text{yielded in compression} \\ f_{s12} = f_y - 0.85 \ f_c = 56.6 \ \text{ksi} & F_{s12} = A_{313} \cdot f_{513} = 452.8 \ \text{kip} \\ \varepsilon_{s14} \ge \varepsilon_{ty} = 1 & \text{yielded in compression} \\ f_{s13} = f_y - 0.85 \ f_c = 56.6 \ \text{ksi} & F_{s13} = A_{313} \cdot f_{513} = 452.8 \ \text{kip} \\ \varepsilon_{s14} \ge \varepsilon_{ty} = 1 & \text{yielded in compression} \\ f_{s14} = f_y - 0.85 \ f_c = 56.6 \ \text{ksi} & F_{s14} = A_{314} \cdot f_{514} = 3396 \ \text{kip} \\ \varepsilon_{s14} \ge \varepsilon_{ty} = 1 & \text{yielded in compression} \\ f_{s14} = f_y - 0.85 \ f_c = 56.6 \ \text{ksi} & F_{s14} = A_{514} \cdot f_{514} = 3396 \ \text{kip} \\ c_{s14} \ge \varepsilon_{ty} = 1 & \text{yielded in compression} \\ f_{s14} = f_y - 0.85 \ f_c = 56.6 \ \text{ksi} & F_{s14} = A_{514} \cdot f_{514} = 3396 \ \text{kip} \\ c_{s14} \ge \varepsilon_{ty} = 1 & \text{yielded in compression} \\ f_{s14} = f_y - 0.85 \ f_c = 56.6 \ \text{ksi} & F_{s14} = A_{514} \cdot f_{514} = 3396 \ \text{kip} \\ c_{s14} \ge c_{s14} = f_y - 0.85 \ f_c = 21630.436 \ \text{kip} \\ y_{c1} = h - \frac{a}{2} = 3.291 \ \text{ft} \\ P_n = 28409.109 \ \text{kip} \\ M_n := F_c \cdot (y_c - y_{bar}) + F_{s1} \cdot (y_{s1} - y_{bar}) + F_{s2} \cdot (y_{s2} - y_{bar}) + F_{s3} \cdot (y_{s3} - y_{bar}) - d \\ + F_{s3} \cdot (y_{s3} - y_{bar}) + F_{s3} \cdot (y_{s3} - y_{bar}) + F_{s3} \cdot (y_{s3} - y_{bar}) - d \\ + F_{s3} \cdot (y_{s3} - y_{bar}) + F_{s3} \cdot (y_{s3} - y_{bar}) + F_{s3} \cdot (y_{s3} - y_{bar}) + f_{s3} \cdot (y_{s1} - y_{bar}) - d \\ + F_{s3} \cdot (y_{s3} - y_{bar}) + F_{s13} \cdot (y_{s13} - y_{bar}) + F_{s14} \cdot (y_{s14} - y_{bar}) \\ M_n = 22312.091 \ \text{kip} \cdot \text{ft} \\ \varepsilon_1 := \varepsilon_{s1} = 0 \\ \phi := 0.65 \\ \end{array}$$

M _{rB} :	$=\phi \cdot M_n = 145$	602.859 kip•ft							
Point	С								
	$\varepsilon_{s1} \coloneqq \frac{-f_y}{r} = -$	- 0.002	ε_{0}	$= \frac{\varepsilon_{s1}}{\varepsilon_{s1}}$	•h-	ε _{cu} ∙y _{s1}	(0.002	
	E _s				n –	y _{s1}			
C:	$=\frac{\varepsilon_{\rm cu}\cdot n}{\varepsilon_{\rm cu}-\varepsilon_{\rm o}}=36$	5.914 in							
	$a := \beta_1 \cdot c = 2.$	615 ft							
€ _{s2} :=	$\frac{(h - y_{s2})}{h} \cdot \varepsilon_0$	$+\frac{y_{s2}}{h} \cdot \varepsilon_{cu} = -0.0$	017	€ _{\$9} :=	(h -	y _{s9}) h	$\varepsilon_0 + \frac{y}{1}$	$\frac{s9}{r} \cdot \varepsilon_{cu} = 0$	0.00087
€ _{s3} ≔	$\frac{(h - y_{s3})}{h} \cdot \varepsilon_0$	$+\frac{y_{s3}}{h} \cdot \varepsilon_{cu} = -0.0$	0133	€ _{s10} :=	_ (h	- y _{s10}) h	• <i>ɛ</i> ₀+	$\frac{y_{s10}}{h} \cdot \varepsilon_{cu}$	= 0.0012
€ _{s4} :=	$\frac{(h - y_{s4})}{h} \cdot \varepsilon_0$	$+\frac{y_{s4}}{h} \cdot \varepsilon_{cu} = -0.0$	0097	€ _{s11} ::	_ (h	- y _{s11}) h	• <i>E</i> ₀ +	$\frac{y_{s11}}{h} \cdot \varepsilon_{cu}$	= 0.0016
€ _{s5} :=	$\frac{(h - y_{s5})}{h} \cdot \varepsilon_0$	$+\frac{y_{s5}}{h}\cdot\varepsilon_{cu}=-0.0$	006	€ _{s12} ∷	_ (h	- y _{s12}) h	• <i>ɛ</i> ₀ +	$\frac{y_{s12}}{h} \cdot \varepsilon_{cu}$	= 0.0019
ε _{s6} ≔	$\frac{(h - y_{s6})}{h} \cdot \varepsilon_0$	$+\frac{y_{s6}}{h} \cdot \varepsilon_{cu} = -0.0$	0023	€ _{\$13} ∷	_ (h	- y _{s13}) h	• <i>ɛ</i> ₀+	$\frac{y_{s13}}{h} \cdot \varepsilon_{cu}$	= 0.0023
€ _{s7} :=	$\frac{(h - y_{s7})}{h} \cdot \varepsilon_0$	$+\frac{y_{s7}}{h} \cdot \varepsilon_{cu} = 0.000$	013	€ _{\$14} ∷	_ (h	- y _{s14}) h	• <i>ɛ</i> ₀+	$\frac{y_{s14}}{h} \cdot \varepsilon_{cu}$	= 0.0027
€ _{s8} ≔	$\frac{(h - y_{s8})}{h} \cdot \varepsilon_0$	$+\frac{y_{s8}}{h} \cdot \varepsilon_{cu} = 0.000$	05						
st	resses					$\varepsilon_{\mathfrak{t}}$	y = 0.	00207	
	$ \varepsilon_{c1} > \varepsilon_{ty} = 1$	$\varepsilon_{c1} < 0 =$	1	vield	ed ir	i tensio	n		

$ \varepsilon_{s2} < \varepsilon_{ty} = 1$ $\varepsilon_{s2} < 0$	= 1 elastic in tensio	on
$f_{s2} := E_s \cdot \varepsilon_{s2} = -49.35$ ks	i	$F_{s2} := A_{s2} \cdot f_{s2} = -394.801 \text{ kip}$
$ \varepsilon_{s3} < \varepsilon_{ty} = 1$ $\varepsilon_{s3} < 0$	= 1 elastic in tensio	on
$f_{s3} := E_s \cdot \varepsilon_{s3} = -38.7$ ksi		$F_{s3} := A_{s3} \cdot f_{s3} = -309.602 \text{ kip}$
$ \varepsilon_{s4} < \varepsilon_{ty} = 1$ $\varepsilon_{s4} < 0$	= 1 elastic in tensio	on
$f_{s4} := E_s \cdot \varepsilon_{s4} = -28.05 \text{ ks}$;i	$F_{s4} := A_{s4} \cdot f_{s4} = -224.403 \text{ kip}$
$\left \varepsilon_{s5}\right < \varepsilon_{ty} = 1$ $\varepsilon_{s5} < 0$	= 1 elastic in tensio	on
$f_{s5} := E_s \cdot \varepsilon_{s5} = -17.401$	csi	$F_{s5} := A_{s5} \cdot f_{s5} = -139.204 \text{ kip}$
$\left \varepsilon_{s6}\right < \varepsilon_{ty} = 1$ $\varepsilon_{s6} < 0$	= 1 elastic in tensio	on
$f_{s6} := E_s \cdot \varepsilon_{s6} = -6.751$ ks	;i	$F_{s6} := A_{s6} \cdot f_{s6} = -54.006 \text{ kip}$
$ \varepsilon_{s7} < \varepsilon_{ty} = 1$ $\varepsilon_{s7} > 0$	= 1 elastic in comp	pression
$\mathbf{f}_{s7} \coloneqq \mathbf{E}_{s} \cdot \boldsymbol{\varepsilon}_{s7} - 0.85 \cdot \mathbf{f'}_{c} =$	0.499 ksi	$F_{s7} := A_{s7} \cdot f_{s7} = 3.993 \text{ kip}$
$ \varepsilon_{s8} < \varepsilon_{ty} = 1$ $\varepsilon_{s8} > 0$	= 1 elastic in comp	pression
$f_{s8} := E_s \cdot \varepsilon_{s8} - 0.85 f'_c = 1$	11.149 ksi	$F_{s8} := A_{s8} \cdot f_{s8} = 89.192 \text{ kip}$
$ \varepsilon_{s9} < \varepsilon_{ty} = 1$ $\varepsilon_{s9} > 0$	= 1 elastic in comp	pression
$f_{s9} := E_s \cdot \varepsilon_{s9} - 0.85 f'_c = 2$	21.799 ksi	$F_{s9} := A_{s9} \cdot f_{s9} = 174.391$ kip
$\left \varepsilon_{s10}\right < \varepsilon_{ty} = 1$ $\varepsilon_{s10} > 0$	0 = 1 elastic in comp	pression
$f_{s10} \coloneqq E_s \cdot \varepsilon_{s10} - 0.85 f'_c =$	= 32.449 ksi	$F_{s10} := A_{s10} \cdot f_{s10} = 259.59 \text{ kip}$
$ \varepsilon_{s11} < \varepsilon_{ty} = 1$ $\varepsilon_{s11} > 0$	D = 1 elastic in co	ompression
$\mathbf{f}_{s11} \coloneqq \mathbf{E}_{s} \cdot \boldsymbol{\varepsilon}_{s11} - 0.85 \mathbf{f}_{c} =$	= 43.099 ksi	$F_{s11} := A_{s11} \cdot f_{s11} = 344.789 \text{ kip}$
$ \varepsilon_{s12} < \varepsilon_{ty} = 1$ $\varepsilon_{s12} > 0$	D = 1 elastic in co	ompression
$f_{s12} := E_s \cdot \varepsilon_{s12} - 0.85 f_c =$	= 53.748 ksi	$F_{s12} := A_{s12} \cdot f_{s12} = 429.988 \text{ kip}$

$ \varepsilon_{s13} \ge \varepsilon_{ty} = 1$ $\varepsilon_{s13} > 0 = 1$	yielded in compression
$f_{s13} := f_y - 0.85 f'_c = 56.6$ ksi	$F_{s13} := A_{s13} \cdot f_{s13} = 452.8 \text{ kip}$
$ \varepsilon_{s14} \ge \varepsilon_{ty} = 1$ $\varepsilon_{s14} > 0 = 1$	yielded in compression
f _{s14} :=f _y - 0.85 f' _c = 56.6 ksi	$F_{s14} := A_{s14} \cdot f_{s14} = 3396 \text{ kip}$
$A_c := b \cdot a = 26.147 \text{ ft}^2$	
$F_c = 0.85 \cdot f'_c \cdot A_c = 12801686.731$	lbf
$y_c := h - \frac{a}{2} = 4.193$ ft	
$P_{n} := F_{c} + F_{s1} + F_{s2} + F_{s3} + F_{s4} + F_{s5} + F_{s14} + F_{s14}$	$F_{s6} + F_{s7} + F_{s8} + F_{s9} + F_{s10} + F_{s11} + F_{s12} + F_{s13}$
P _n = 13230.413 kip	
$\begin{split} M_{n} &\coloneqq F_{c} \cdot \big(y_{c} - y_{bar} \big) + F_{s1} \cdot \big(y_{s1} - y_{bar} \big) + \\ &+ F_{s4} \cdot \big(y_{s4} - y_{bar} \big) + F_{s5} \cdot \big(y_{s5} - y_{bar} \big) \\ &+ F_{s8} \cdot \big(y_{s8} - y_{bar} \big) + F_{s9} \cdot \big(y_{s9} - y_{bar} \big) \\ &+ F_{s12} \cdot \big(y_{s12} - y_{bar} \big) + F_{s13} \cdot \big(y_{s13} - y_{s13} \big) \\ &+ F_{s13} \cdot \big(y_{s13} - y_{s13} \big) + F_{s13} \cdot \big(y_{s13} - y_{s13} \big) \\ &+ F_{s13} \cdot \big(y_{s13} - y_{s13} \big) + F_{s13} \cdot \big(y_{s13} - y_{s13} \big) \\ &+ F_{s13} \cdot \big(y_{s13} - y_{s13} \big) + F_{s13} \cdot \big(y_{s13} - y_{s13} \big) \\ &+ F_{s13} \cdot \big(y_{s13} - y_{s13} \big) + F_{s13} \cdot \big(y_{s13} - y_{s13} \big) \\ &+ F_{s13} \cdot \big(y_{s13} - y_{s13} \big) + F_{s13} \cdot \big(y_{s13} - y_{s13} \big) \\ &+ F_{s13} \cdot \big(y_{s13} - y_{s13} \big) + F_{s13} \cdot \big(y_{s13} - y_{s13} \big) \\ &+ F_{s13} \cdot \big(y_{s13} - y_{s13} \big) + F_{s13} \cdot \big(y_{s13} - y_{s13} \big) \\ &+ F_{s13} \cdot \big(y_{s13} - y_{s13} \big) + F_{s13} \cdot \big(y_{s13} - y_{s13} \big) \\ &+ F_{s13} \cdot \big(y_{s13} - y_{s13} \big) + F_{s13} \cdot \big(y_{s13} - y_{s13} \big) \\ &+ F_{s13} \cdot \big(y_{s13} - y_{s13} \big) + F_{s13} \cdot \big(y_{s13} - y_{s13} \big) \\ &+ F_{s13} \cdot \big(y_{s13} - y_{s13} \big) + F_{s13} \cdot \big(y_{s13} - y_{s13} \big) \\ &+ F_{s13} \cdot \big(y_{s13} - y_{s13} \big) + F_{s13} \cdot \big) + F_{s13} \cdot \big(y_{s13} - y_{$	$ \begin{array}{c} F_{s2} \cdot (y_{s2} - y_{bar}) + F_{s3} \cdot (y_{s3} - y_{bar}) & \downarrow \\ r) + F_{s6} \cdot (y_{s6} - y_{bar}) + F_{s7} \cdot (y_{s7} - y_{bar}) & \downarrow \\ r) + F_{s10} \cdot (y_{s10} - y_{bar}) + F_{s11} \cdot (y_{s11} - y_{bar}) & \downarrow \\ y_{bar}) + F_{s14} \cdot (y_{s14} - y_{bar}) \end{array} $
M _n = 39871.107 kip•ft	
$\varepsilon_{t} \coloneqq \varepsilon_{s1} = 0.002$ $\phi \coloneqq 0.65$	
$P_{rC} := \phi \cdot P_n = 8599.768 \text{ kip}$	
$M_{rC} \coloneqq \phi \cdot M_n = 25916.219 \text{ kip} \cdot \text{ft}$	
Point D	
ε _{s1} ≔ - 0.005	$\varepsilon_0 \coloneqq \frac{\varepsilon_{s1} \cdot h - \varepsilon_{cu} \cdot y_{s1}}{h - y_{s1}} = -0.005$
$c := \frac{\varepsilon_{cu} \cdot h}{\varepsilon_{cu} - \varepsilon_{o}} = 23.389 \text{ in}$	

	a≔ <i>β</i> 1•c	=1.657 ft		
€ _{s2} :=	$=\frac{(h-y_{s2})}{h}\cdot\varepsilon_{c}$	$h^{+} \frac{y_{s2}}{h} \cdot \varepsilon_{cu} =$	- 0.00442	$\varepsilon_{s9} \coloneqq \frac{(h - y_{s9})}{h} \cdot \varepsilon_0 + \frac{y_{s9}}{h} \cdot \varepsilon_{cu} = -0.00036$
€ _{s3} :=	$=\frac{(h-y_{s3})}{h}\cdot\varepsilon_{c}$	$_{0} + \frac{y_{s3}}{h} \cdot \varepsilon_{cu} =$	- 0.00384	$\varepsilon_{s10} \coloneqq \frac{(h - y_{s10})}{h} \cdot \varepsilon_0 + \frac{y_{s10}}{h} \cdot \varepsilon_{cu} = 0.00023$
€ _{s4} :=	$=\frac{(h-y_{s4})}{h}\cdot\varepsilon_{c}$	$b_{0} + \frac{y_{s4}}{h} \cdot \varepsilon_{cu} =$	- 0.00326	$\varepsilon_{s11} \coloneqq \frac{(h - y_{s11})}{h} \cdot \varepsilon_0 + \frac{y_{s11}}{h} \cdot \varepsilon_{cu} = 0.0008$
€ _{s5} :=	$=\frac{(h-y_{s5})}{h}\cdot\varepsilon_{c}$	$_{0} + \frac{y_{s5}}{h} \cdot \varepsilon_{cu} =$	- 0.00268	$\varepsilon_{s12} := \frac{(h - y_{s12})}{h} \cdot \varepsilon_0 + \frac{y_{s12}}{h} \cdot \varepsilon_{cu} = 0.0013$
€ _{s6} :=	$=\frac{(h - y_{s6})}{h} \cdot \varepsilon_{c}$	$b_{\rm p} + \frac{{\rm y}_{\rm s6}}{{\rm h}} \cdot \varepsilon_{\rm cu} =$	- 0.0021	$\varepsilon_{s13} \coloneqq \frac{(h - y_{s13})}{h} \cdot \varepsilon_0 + \frac{y_{s13}}{h} \cdot \varepsilon_{cu} = 0.0019$
€ _{s7} :=	$=\frac{(h-y_{s7})}{h}\cdot\varepsilon_{c}$	$b_{\rm p} + \frac{{\rm y}_{\rm s7}}{\rm h} \cdot \varepsilon_{\rm cu} =$	- 0.00152	$\varepsilon_{s14} := \frac{(h - y_{s14})}{h} \cdot \varepsilon_0 + \frac{y_{s14}}{h} \cdot \varepsilon_{cu} = 0.0025$
€ _{s8} :=	$\frac{(h - y_{s8})}{h} \cdot \varepsilon_{c}$	$b_{0} + \frac{y_{s8}}{h} \cdot \varepsilon_{cu} =$	- 0.00094	
	stresses			$\varepsilon_{\mathrm{ty}} = 0.00207$
	$ \varepsilon_{s1} \ge \varepsilon_{ty}$	_y = 1	$\varepsilon_{\rm s1}$ < 0 = 1	yielded in tension
	f _{s1} := - f _y	, = - 60 ksi		$F_{s1} := A_{s1} \cdot f_{s1} = -3600 \text{ kip}$
	$ \varepsilon_{s2} \ge \varepsilon_{ty}$	$y=1$ ε_{s2}	< 0 = 1	yielded in tension
	$f_{s2} \coloneqq - f_y$, = - 60 ksi		$F_{s2} := A_{s2} \cdot f_{s2} = -480 \text{ kip}$
	$ \varepsilon_{s3} \ge \varepsilon_{ty}$	$y = 1$ ε_{s3}	< 0 = 1	yielded in tension
	$f_{s3} \coloneqq -f_{y}$, = - 60 ksi		$F_{s3} := A_{s3} \cdot f_{s3} = -480 \text{ kip}$
	$ \varepsilon_{s4} \ge \varepsilon_{ty}$	$y = 1$ ε_{s4}	< 0 = 1	yielded in tension
	$f_{s4} \coloneqq - f_{s4}$, = - 60 ksi		$F_{s4} := A_{s4} \cdot f_{s4} = -480 \text{ kip}$

$ \varepsilon_{s5} \ge \varepsilon_{ty} = 1$ $\varepsilon_{s5} < 0 = 1$ y	vielded in tension
f _{s5} := - f _y = - 60 ksi	$F_{s5} := A_{s5} \cdot f_{s5} = -480 \text{ kip}$
$ \varepsilon_{s6} \ge \varepsilon_{ty} = 1$ $\varepsilon_{s6} < 0 = 1$	yielded in tension
$f_{s6} := -f_y = -60$ ksi	$F_{s6} := A_{s6} \cdot f_{s6} = -480 \text{ kip}$
$ \varepsilon_{s7} < \varepsilon_{ty} = 1$ $\varepsilon_{s7} < 0 = 1$	elastic in tension
$f_{s7} := E_s \cdot \varepsilon_{s7} = -44.152$ ksi	$F_{s7} := A_{s7} \cdot f_{s7} = -353.219 \text{ kip}$
$ \varepsilon_{s8} < \varepsilon_{ty} = 1$ $\varepsilon_{s8} < 0 = 1$	elastic in tension
$f_{s8} := E_s \cdot \varepsilon_{s8} = -27.344$ ksi	F _{s8} :=A _{s8} •f _{s8} = -218.755 kip
$ \varepsilon_{s9} < \varepsilon_{ty} = 1$ $\varepsilon_{s9} < 0 = 1$	elastic in tension
$f_{s9} := E_s \cdot \varepsilon_{s9} = -10.536$ ksi	$F_{s9} := A_{s9} \cdot f_{s9} = -84.292 \text{ kip}$
$ \varepsilon_{s10} < \varepsilon_{ty} = 1$ $\varepsilon_{s10} < 0 = 0$	elastic in tension
$f_{s10} := E_s \cdot \varepsilon_{s10} = 6.271$ ksi	$F_{s10} := A_{s10} \cdot f_{s10} = 50.172 \text{ kip}$
$ \varepsilon_{s11} < \varepsilon_{ty} = 1$ $\varepsilon_{s11} > 0 = 1$	elastic in compression
$f_{s11} \coloneqq E_s \cdot \varepsilon_{s11} - 0.85 f_c = 19.679$	ksi F _{s11} ≔A _{s11} •f _{s11} = 157.435 kip
$ \varepsilon_{s12} < \varepsilon_{ty} = 1$ $\varepsilon_{s12} > 0 = 1$	elastic in compression
$f_{s12} \coloneqq E_s \cdot \varepsilon_{s12} - 0.85 f_c = 36.487$	ksi $F_{s12} := A_{s12} \cdot f_{s12} = 291.899$ kip
$ \varepsilon_{s13} < \varepsilon_{ty} = 1$ $\varepsilon_{s13} > 0 = 1$	elastic in compression
$f_{s13} \coloneqq E_s \cdot \varepsilon_{s13} - 0.85 f_c = 53.295$	ksi $F_{s13} := A_{s13} \cdot f_{s13} = 426.363$ kip
$ \varepsilon_{s14} \ge \varepsilon_{ty} = 1$ $\varepsilon_{s14} > 0 = 1$	yielded in compression
$f_{s14} := f_y - 0.85 f'_c = 56.6 ksi$	F _{s14} := A _{s14} • f _{s14} = 3396 kip

$$\begin{aligned} A_{c} := b \cdot a = 16.567 \text{ ft}^{2} \\ F_{c} := 0.85 \cdot \Gamma_{c} \cdot A_{c} = 8111413.575 \text{ lbf} \\ y_{c} := h - \frac{a}{2} = 4.672 \text{ ft} \\ P_{n} := F_{c} + F_{s1} + F_{s2} + F_{s3} + F_{s4} + F_{s5} + F_{s6} + F_{s7} + F_{s8} + F_{s9} + F_{s10} + F_{s11} + F_{s12} + F_{s13} \quad J \\ + F_{514} \\ P_{n} = 5777.017 \text{ kip} \\ M_{n} := F_{c} \cdot (y_{c} - y_{bor}) + F_{s1} \cdot (y_{s7} - y_{bor}) + F_{s2} \cdot (y_{s2} - y_{bor}) + F_{s3} \cdot (y_{s7} - y_{bor}) \quad J \\ + F_{s4} \cdot (y_{s4} - y_{bor}) + F_{s5} \cdot (y_{s5} - y_{bor}) + F_{s10} \cdot (y_{s10} - y_{bor}) + F_{s1} \cdot (y_{s11} - y_{bor}) \quad J \\ + F_{s6} \cdot (y_{s2} - y_{bor}) + F_{s3} \cdot (y_{s32} - y_{bor}) + F_{s10} \cdot (y_{s10} - y_{bor}) + F_{s11} \cdot (y_{s11} - y_{bor}) \quad J \\ + F_{s12} \cdot (y_{12} - y_{bor}) + F_{s13} \cdot (y_{s12} - y_{bor}) + F_{s14} \cdot (y_{s14} - y_{bor}) \\ M_{n} = 37483.873 \text{ kip \cdot ft} \\ \mathcal{E}_{t1} := \left| \mathcal{E}_{s1} \right| = 0.005 \\ \mathcal{E}_{t1} := \mathcal{E}_{ty} = 1 \\ \mathcal{E}_{t} < \mathcal{E}_{ty} = 1 \\ \mathcal{E}_{t1} := \phi \cdot M_{n} = 33520.061 \text{ kip \cdot ft} \\ Point E \\ \mathcal{E}_{s1} := -0.02 \\ \mathcal{E}_{0} := \frac{\mathcal{E}_{s1} \cdot h - \mathcal{E}_{cu} \cdot y_{s1}}{h - y_{s1}} = -0.021 \\ \mathcal{E}_{t1} := \frac{\mathcal{E}_{cu} \cdot h}{h - y_{s1}} = -0.021 \\ \mathcal{E}_{t2} := \frac{(h - y_{s2})}{h} \cdot \mathcal{E}_{t1} + \frac{y_{s2}}{h} \cdot \mathcal{E}_{cu} = -0.01833 \\ \mathcal{E}_{s9} := \frac{(h - y_{s9})}{h} \cdot \mathcal{E}_{t1} + \frac{y_{s9}}{h} \cdot \mathcal{E}_{cu} = -0.00667 \\ \end{array}$$

$$\begin{split} \varepsilon_{33} &:= \frac{(h - y_{33})}{h} \cdot \varepsilon_{0} + \frac{y_{33}}{h} \cdot \varepsilon_{0u} = -0.01667 \qquad \varepsilon_{310} := \frac{(h - y_{310})}{h} \cdot \varepsilon_{0} + \frac{y_{310}}{h} \cdot \varepsilon_{cu} = -0.005 \\ \varepsilon_{34} &:= \frac{(h - y_{34})}{h} \cdot \varepsilon_{0} + \frac{y_{34}}{h} \cdot \varepsilon_{cu} = -0.015 \qquad \varepsilon_{311} := \frac{(h - y_{311})}{h} \cdot \varepsilon_{0} + \frac{y_{311}}{h} \cdot \varepsilon_{cu} = -0.00334 \\ \varepsilon_{35} &:= \frac{(h - y_{35})}{h} \cdot \varepsilon_{0} + \frac{y_{35}}{h} \cdot \varepsilon_{cu} = -0.01333 \qquad \varepsilon_{312} := \frac{(h - y_{312})}{h} \cdot \varepsilon_{0} + \frac{y_{312}}{h} \cdot \varepsilon_{cu} = -0.00167 \\ \varepsilon_{36} &:= \frac{(h - y_{32})}{h} \cdot \varepsilon_{0} + \frac{y_{35}}{h} \cdot \varepsilon_{cu} = -0.01167 \qquad \varepsilon_{313} := \frac{(h - y_{312})}{h} \cdot \varepsilon_{0} + \frac{y_{312}}{h} \cdot \varepsilon_{cu} = -4.3437 \cdot 10^{-6} \\ \varepsilon_{57} &:= \frac{(h - y_{37})}{h} \cdot \varepsilon_{0} + \frac{y_{57}}{h} \cdot \varepsilon_{cu} = -0.01167 \qquad \varepsilon_{514} := \frac{(h - y_{314})}{h} \cdot \varepsilon_{0} + \frac{y_{514}}{h} \cdot \varepsilon_{cu} = -0.00166 \\ \varepsilon_{58} &:= \frac{(h - y_{32})}{h} \cdot \varepsilon_{0} + \frac{y_{58}}{h} \cdot \varepsilon_{cu} = -0.00834 \\ &: \text{stresses} \qquad \varepsilon_{1y} = 0.00207 \\ & \left| \varepsilon_{31} \right| \ge \varepsilon_{1y} = 1 \qquad \varepsilon_{31} < 0 = 1 \qquad \text{yielded in tension} \\ & f_{31} := -f_{y} = -60 \text{ ksi} \qquad F_{31} := A_{31} \cdot f_{31} = -3600 \text{ kip} \\ & \left| \varepsilon_{33} \right| \ge \varepsilon_{1y} = 1 \qquad \varepsilon_{32} < 0 = 1 \qquad \text{yielded in tension} \\ & f_{32} := -f_{y} = -60 \text{ ksi} \qquad F_{32} := A_{32} \cdot f_{32} = -480 \text{ kip} \\ & \left| \varepsilon_{33} \right| \ge \varepsilon_{1y} = 1 \qquad \varepsilon_{33} < 0 = 1 \qquad \text{yielded in tension} \\ & f_{32} := -f_{y} = -60 \text{ ksi} \qquad F_{32} := A_{32} \cdot f_{32} = -480 \text{ kip} \\ & \left| \varepsilon_{33} \right| \ge \varepsilon_{1y} = 1 \qquad \varepsilon_{33} < 0 = 1 \qquad \text{yielded in tension} \\ & f_{33} := -f_{y} = -60 \text{ ksi} \qquad F_{32} := A_{33} \cdot f_{33} = -480 \text{ kip} \\ & \left| \varepsilon_{34} \right| \ge \varepsilon_{1y} = 1 \qquad \varepsilon_{34} < 0 = 1 \qquad \text{yielded in tension} \\ & f_{34} := -f_{y} = -60 \text{ ksi} \qquad F_{35} := A_{35} \cdot f_{55} = -480 \text{ kip} \\ & \left| \varepsilon_{55} \right| \ge \varepsilon_{1y} = 1 \qquad \varepsilon_{55} < 0 = 1 \qquad \text{yielded in tension} \\ & f_{55} := -f_{y} = -60 \text{ ksi} \qquad F_{55} := A_{55} \cdot f_{55} = -480 \text{ kip} \\ & \left| \varepsilon_{55} \right| \ge \varepsilon_{1y} = 1 \qquad \varepsilon_{55} < 0 = 1 \qquad \text{yielded in tension} \\ & f_{55} := -f_{y} = -60 \text{ ksi} \qquad F_{55} := A_{55} \cdot f_{55} = -480 \text{ kip} \\ & \left| \varepsilon_{55} \right| \le \varepsilon_{11} = 1 \qquad \varepsilon_{55} < 0 = 1 \qquad \text{yielded in tension} \end{aligned}$$

$f_{s6} := -f_y = -60$ ksi	$F_{s6} := A_{s6} \cdot f_{s6} = -480 \text{ kip}$
$ \varepsilon_{s7} \ge \varepsilon_{ty} = 1$ $\varepsilon_{s7} < 0 = 1$	yielded in tension
f _{s7} := - f _y = - 60 ksi	$F_{s7} := A_{s7} \cdot f_{s7} = -480 \text{ kip}$
$ \varepsilon_{s8} \ge \varepsilon_{ty} = 1$ $\varepsilon_{s8} < 0 = 1$	yielded in tension
f _{s8} := - f _y = - 60 ksi	F _{s8} ≔ A _{s8} • f _{s8} = - 480 kip
$ \varepsilon_{s9} \ge \varepsilon_{ty} = 1$ $\varepsilon_{s9} < 0 = 1$	yielded in tension
f _{s9} := - f _y = - 60 ksi	$F_{s9} := A_{s9} \cdot f_{s9} = -480 \text{ kip}$
$ \varepsilon_{s10} \ge \varepsilon_{ty} = 1$ $\varepsilon_{s10} < 0 = 1$	yielded in tension
$f_{s10} = -f_y = -60$ ksi	F _{s10} :=A _{s10} •f _{s10} =-480 kip
$ \varepsilon_{s11} \ge \varepsilon_{ty} = 1$ $\varepsilon_{s11} < 0 = 1$	yielded in tension
$f_{s11} = -f_y = -60$ ksi	F _{s11} :=A _{s11} •f _{s11} = - 480 kip
$ \varepsilon_{s12} < \varepsilon_{ty} = 1$ $\varepsilon_{s12} < 0 = 1$	yielded in tension
$f_{s12} := E_s \cdot \varepsilon_{s12} = -48.449$ ksi	F _{s12} :=A _{s12} •f _{s12} = - 387.59 kip
$ \varepsilon_{s13} < \varepsilon_{ty} = 1$ $\varepsilon_{s13} < 0 = 1$	elastic in tension
$f_{s13} := E_s \cdot \varepsilon_{s13} = -0.126$ ksi	F _{s13} :=A _{s13} •f _{s13} = − 1.008 kip
$ \varepsilon_{s14} < \varepsilon_{ty} = 1$ $\varepsilon_{s14} > 0 = 1$	elastic in compression
$f_{s14} := E_s \cdot \varepsilon_{s14} - 0.85 f'_c = 44.7$	97 ksi $F_{s14} := A_{s14} \cdot f_{s14} = 2687.812$ kip
$A_c := b \cdot a = 5.763 \text{ ft}^2$	
$F_c := 0.85 \cdot f'_c \cdot A_c = 2821361.2$	43 lbf
$y_c := h - \frac{a}{2} = 5.212$ ft	
2	

$$\begin{split} & \mathsf{P}_{\mathsf{n}} := \mathsf{F}_{\mathsf{c}} + \mathsf{F}_{\mathsf{s}1} + \mathsf{F}_{\mathsf{s}2} + \mathsf{F}_{\mathsf{s}5} + \mathsf{F}_{\mathsf{s}6} + \mathsf{F}_{\mathsf{s}9} + \mathsf{F}_{\mathsf{s}10} + \mathsf{F}_{\mathsf{s}11} + \mathsf{F}_{\mathsf{s}12} + \mathsf{F}_{\mathsf{s}13} \quad J \\ & + \mathsf{F}_{\mathsf{s}14} \\ & \mathsf{P}_{\mathsf{n}} = -3279.425 \ \mathsf{kip} \\ \\ & \mathsf{M}_{\mathsf{n}} := \mathsf{F}_{\mathsf{c}} \cdot (\mathsf{y}_{\mathsf{c}} - \mathsf{y}_{\mathsf{bar}}) + \mathsf{F}_{\mathsf{s}1} \cdot (\mathsf{y}_{\mathsf{s}1} - \mathsf{y}_{\mathsf{bar}}) + \mathsf{F}_{\mathsf{s}3} \cdot (\mathsf{y}_{\mathsf{s}2} - \mathsf{y}_{\mathsf{bar}}) + \mathsf{F}_{\mathsf{s}3} \cdot (\mathsf{y}_{\mathsf{s}7} - \mathsf{y}_{\mathsf{bar}}) \\ & + \mathsf{F}_{\mathsf{s}4} \cdot (\mathsf{y}_{\mathsf{s}4} - \mathsf{y}_{\mathsf{bar}}) + \mathsf{F}_{\mathsf{s}3} \cdot (\mathsf{y}_{\mathsf{s}6} - \mathsf{y}_{\mathsf{bar}}) + \mathsf{F}_{\mathsf{s}3} \cdot (\mathsf{y}_{\mathsf{s}7} - \mathsf{y}_{\mathsf{bar}}) \\ & + \mathsf{F}_{\mathsf{s}9} \cdot (\mathsf{y}_{\mathsf{s}0} - \mathsf{y}_{\mathsf{bar}}) + \mathsf{F}_{\mathsf{s}9} \cdot (\mathsf{y}_{\mathsf{s}0} - \mathsf{y}_{\mathsf{bar}}) + \mathsf{F}_{\mathsf{s}11} \cdot (\mathsf{y}_{\mathsf{s}11} - \mathsf{y}_{\mathsf{bar}}) \\ & + \mathsf{F}_{\mathsf{s}9} \cdot (\mathsf{y}_{\mathsf{s}2} - \mathsf{y}_{\mathsf{bar}}) + \mathsf{F}_{\mathsf{s}9} \cdot (\mathsf{y}_{\mathsf{s}0} - \mathsf{y}_{\mathsf{bar}}) + \mathsf{F}_{\mathsf{s}11} \cdot (\mathsf{y}_{\mathsf{s}11} - \mathsf{y}_{\mathsf{bar}}) \\ & + \mathsf{F}_{\mathsf{s}9} \cdot (\mathsf{y}_{\mathsf{s}2} - \mathsf{y}_{\mathsf{bar}}) + \mathsf{F}_{\mathsf{s}9} \cdot (\mathsf{y}_{\mathsf{s}0} - \mathsf{y}_{\mathsf{bar}}) + \mathsf{F}_{\mathsf{s}11} \cdot (\mathsf{y}_{\mathsf{s}11} - \mathsf{y}_{\mathsf{bar}}) \\ & + \mathsf{F}_{\mathsf{s}12} \cdot (\mathsf{y}_{\mathsf{s}12} - \mathsf{y}_{\mathsf{bar}}) + \mathsf{F}_{\mathsf{s}11} \cdot (\mathsf{y}_{\mathsf{s}13} - \mathsf{y}_{\mathsf{bar}}) + \mathsf{F}_{\mathsf{s}11} \cdot (\mathsf{y}_{\mathsf{s}14} - \mathsf{y}_{\mathsf{bar}}) \\ & \mathsf{M}_{\mathsf{n}} = 23484.647 \ \mathsf{k}\mathbf{i}\mathbf{p} \cdot \mathbf{f} \\ & \mathsf{c}_{\mathsf{t}:=} |\mathsf{e}_{\mathsf{s}_{\mathsf{s}}}| = 0.02 \\ & \mathsf{e}_{\mathsf{t}} := |\mathsf{e}_{\mathsf{s}_{\mathsf{s}}}| = 0.02 \\ & \mathsf{e}_{\mathsf{t}} > \mathsf{e}_{\mathsf{t}_{\mathsf{y}}} + 0.003 = 1 \\ & \mathsf{o}: = \mathsf{o}: \mathsf{o}: \mathsf{p}: \mathsf{p} = - 2951.482 \ \mathsf{k}\mathbf{i}\mathbf{p} \\ & \mathsf{M}_{\mathsf{r}} = : \mathsf{o}: \mathsf{o}: \mathsf{m} = 21136.182 \ \mathsf{k}\mathbf{i}\mathbf{p} \\ & \mathsf{M}_{\mathsf{r}} = : \mathsf{o}: \mathsf{o}: \mathsf{m} = 21136.182 \ \mathsf{k}\mathbf{i}\mathbf{p} \\ & \mathsf{M}_{\mathsf{r}} = : \mathsf{e}: \mathsf{e}:$$

Fro	om the d	liagran	n									
	$\phi P_{n0} \coloneqq$	P _{rA} = 2	20359.87	72 kip								
	$\phi P_{nx} \coloneqq$	12500	kip	$\phi P_{\sf ny}$	= 2000	00 <mark>kip</mark>						
	$\phi P_{neq} \coloneqq$	$\frac{1}{\phi P_{n}}$	$\frac{1}{\frac{1}{y} + \frac{1}{\phi P_{r}}}$	$\frac{1}{1_{\text{IX}}} + \frac{1}{\phi I}$	$\left(\frac{1}{2}\right) = 5$	582.9	67 ki	p				
	Ρ _u < φ <i>Ι</i>	P _{neq} = 1	Ţ	herefor	e OK ir	n Serv	ice 1					

E. Girder Design				
Define Variables:				
Properties of the	W36x853 girder			
I _x :=70000 in ⁴	A:=251 in ²	d:=43.1 in	I _y :=4600 in ⁴	
t _f ≔4.53 in	S _x := 3250 in ³	J≔1240 in ⁴	C _w :=1710000 in ⁶	
b _f ≔18.2 in	t _w ≔2.52 in	λ _f ≔2.01	$\lambda_{\rm w} \coloneqq 12.9$	
E _s ≔29000 ksi	G≔11200 ksi			
F _{yt} :=50 ksi	F _{yc} ≔50 ksi I	= _{yw} ≔50 ksi		
Concrete propert	ies:			
E _c ≔3600 ksi	t _s :=8 in			
Strength I factor	ed values:			
V _u ≔226.89 kip				
M _{up} ≔8267.47 k	ip∙ft			
M _{un} ≔6693.4 ki	٥٠ft			
P 1582 95 kir				
1 u ¹ 1302.75 kip				

a) Compressive Resis	stance	6.9.2.1	
Recall:			
C _w = 1710000 in ⁶	G = 11200 ksi	I _x = 70000 in ⁴	$I_y = 4600 \text{ in}^4$
J = 1240 in ⁴	F _y :=50 ksi		
sing elastic torsional b $\phi_{\rm c} \coloneqq 0.9$	uckling and flexural t 6.5	torsional buckling re 5.4.2	esistance
Q:=1	6.9	9.4.1.1	
$P_o \coloneqq Q \cdot F_y \cdot A = 1255$	0 kip		
K _z I _z ≔15 ft Assun effect	ning a torsional braci ive length for torsion	ng so that this is th al buckling	e
$P_{e} \coloneqq \left(\frac{\pi^2 \cdot E_{s} \cdot C_{w}}{\left(K_{z}I_{z}\right)^2} + G \right)$	$\left(\mathbf{G} \cdot \mathbf{J}\right) \cdot \frac{\mathbf{A}}{\mathbf{I}_{x} + \mathbf{I}_{y}} = 97553$	3.464 kip	
$\frac{P_{e}}{P_{o}} = 7.773$			
$P_{n} \coloneqq \left(0.658^{\left(\frac{P_{o}}{P_{e}}\right)} \right) I$	P _o =11892.111 kip	6.9.4.1.1-1	
$P_{r} \coloneqq \phi_{c} \cdot P_{n} = 10702.9$	9 kip		

b) Flexural St	rength	6.10		
Recall:				
$\lambda_{\rm f}$ = 2.01	E _s = 29000 ksi		F _{yt} = 50 ksi	F _{yc} =50 ksi
$M_{up} = 8267.47$	∕ kip∙ft	M _{un} = 6693.4 ki	ip∙ft	
Check positive fle	exure			
$\lambda_{pf} \coloneqq 0.38 \cdot \sqrt{\frac{E_s}{E_s}}$	$-= 9.152 \phi_{f}$:=1		
Y Fyt		6.10.3.	2	
$f_{bu} := \frac{M_{up}}{S_x} = 30.5$	26 ksi	bendin	ting flange latera g stress	
$F_{nc} := F_{yc} = 50$ ks	ji			
$f_{bu} \leq \phi_f \cdot F_{nc}$				
Negative flexure				
F _{yt} = 50 ksi	$\lambda_{\rm pf} \coloneqq 0.3$	$8 \cdot \sqrt{\frac{E_{s}}{F_{yc}}} = 9.152$	2	
$f_{bu} := \frac{M_{un}}{S_x} = 2$	4.714 ksi			
$f_{bu} \leq \phi_f \cdot F_{nc}$				
Lateral Torsional	Buckling	6.10.8.	2.3	
Recall:				
b _f = 18.2 in	t _w =2.52 in	t _s =0.667 ft	D = 34.04 i	n
r	$\coloneqq \mathbf{b}_{\mathbf{f}} \cdot \left(12 \cdot \left(1 + \frac{1}{3} \right)^{-1} \right)$	$\frac{\mathbf{D} \cdot \mathbf{t}_{w}}{\mathbf{b}_{f} \cdot \mathbf{t}_{f}} \right)^{-0.5} = 4.52$	27 in	
	E_s	004 6		
L _k	$F_{\rm vc} = 1 \cdot \Gamma_{\rm t} \cdot \sqrt{F_{\rm vc}} = 9$			

$$F_{yr} := 0.7 \cdot F_{yc} = 35 \text{ ksi}$$

$$L_r := \pi \cdot r_1 \cdot \sqrt{\frac{E_s}{F_{yr}}} = 34.116 \text{ ft}$$

$$L_b := 20 \text{ ft} \qquad \text{Assuming a bracing so this is true}$$

$$L_p < L_b \leq L_r = 1 \qquad \text{therefore section is noncompact}$$

$$C_b := 1.0$$

$$a_{wc} := \frac{2 \cdot D \cdot t_w}{b_r \cdot t_r} = 2.081$$

$$\lambda_{rw} := 0.56 \cdot \sqrt{\frac{E_s}{F_{yw}}} = 13.487$$

$$R_b := 1 - \frac{a_{wc}}{1200 + 300 \cdot a_{wc}} \cdot \left(2 \cdot \frac{D}{t_w} - \lambda_{rw}\right) = 0.985$$

$$R_h := 1 \qquad \text{assuming hybrid factor is 1}$$

$$F_{ncLTB} := C_b \cdot \left(1 - \left(1 - \frac{F_{yT}}{R_h \cdot F_{yc}}\right) \cdot \frac{(L_b - L_p)}{L_r - L_p}\right) \cdot R_b \cdot R_h \cdot F_{yc} = 42.789 \text{ ksi}$$
Flange Local Buckling
$$6.10.8.2.2$$

$$\lambda_r \leq \lambda_{pr}$$

$$F_{ncTLB} := R_b \cdot R_h \cdot F_{yc} = 49.228 \text{ ksi}$$

$$F_{nc} := if F_{ncLTB} < F_{nc} :E_B = 42.789 \text{ ksi}$$

$$\begin{bmatrix}F_{nc} := if F_{ncLTB} < F_{nc} :F_{LB}} \\ = 42.789 \text{ ksi}$$

$$\begin{bmatrix}F_{nc} := if F_{ncLTB} < F_{nc} :F_{LB}} \\ \\ \end{bmatrix}$$
Bottom Flange: Discretely Braced in Compression

$$f_{bu} := \frac{M_{up}}{S_x} = 30.526 \text{ ksi}$$

$$\phi_r := 1$$

Wind creates moment in the y-direction	
φ _f = 1	
$\lambda_{\rm f} = 2.01 \qquad \lambda_{\rm pf} \coloneqq 0.38 \cdot \sqrt{\frac{{\sf E}_{\rm s}}{{\sf F}_{\rm y}}} = 9.15$	$S_{y} = 505 \text{ in}^{3}$
$M_p \coloneqq F_y \cdot S_y = 2104.167 \text{ kip} \cdot \text{ft}$	
M _{ny} ≔M _p =2104.167 kip∙ft	$M_{ry} \coloneqq \phi_f \cdot M_{ny} = 2104.167 \text{ kip} \cdot ft$
In Strength 3	
M _{ux} :=5520 kip∙ft	
M _{uy} ≔37.5 kip∙ft	
V _u ≔151 kip	
$\frac{P_u}{P_r} = 0.148 \qquad \frac{P_u}{P_r} < 0.2$	therefore:
P_u (M_{ux}, M_{uy}) $= 0.568$	$P_u = M_{ux} = 1$
$\frac{1}{2 \cdot P_r} + \left(\frac{1}{M_{rx}} + \frac{1}{M_{ry}} \right)^{-0.500}$	$\overline{2 \cdot P_r} + \overline{M_{rx}} \ge 1$
n Service 1	
√:=5986 kip∙ft	
Vl _{uy} ≔8.043 kip∙ft	
/ _u ≔164.27 kip	

F. Span Design

Designed Span:

Span Alternative:

G. Slab Design
Concrete Properties:

$$t_{s:=8}$$
 in $w_{c}:=145$ pcf $\beta_{1}:=0.85$ f'_{c}:=4000 psi
Girder Properties:
 $f_{y}:=60$ ksi $b_{f}:=18.2$ in
considering the middle strip of concrete, in between the two W sections
 $L_{n}:=10$ ft $L_{1}:=35$ ft
 $35 = 2.917$ this is greater than 2, consider one-way slab
The main tension reinforcement will be #4 bars, with 3/4 in clear cover. Use #4 for S&T
 $c_{c}:=0.75$ in $d_{b}:=0.5$ in
 $d:=t_{s}-c_{c}-\frac{d_{b}}{2}=7$ in
From Main Span Applied Loadings Appendix.
 $q_{LL}:=90$ psf $q_{slab}:=96.7$ psf $q_{ds}:=1.7$ psf
Consider a 12° strip in the direction of one-way loading in strength 1
 $w_{u}:=1$ ft $\cdot (1.25 \cdot (q_{slab}+q_{ds})+1.75 \cdot q_{LL})=0.281$ klf
consider the slab to be a 12' long simply supported beam with 1' overhands on either end
 $L=12^{1}$

$$s_{max} = min(5 \cdot t_s, 18 in) = 18 in$$

Provide #4 bars at 12 in on center for S&T

Flexural reinforcement

$$s_{max} := \min\left(3 \cdot t_{s}, 18 \text{ in}, 15 \cdot \frac{(40000 \text{ psi})}{\left(\frac{2}{3} f_{y}\right)} \text{ in} - 2.5 \cdot c_{c}, 12 \text{ in} \cdot \frac{(40000 \text{ psi})}{\left(\frac{2}{3} f_{y}\right)}\right) = 12 \text{ in}$$

2

b=12 **in**

$$A_{\text{stensioncontrolled}} := \frac{0.85 \cdot f'_c \cdot b \cdot \beta_1}{f_v} \cdot 3 \cdot \frac{d}{8} = 1.517 \text{ in}$$

 $\phi \coloneqq 0.9$

	x (fi	t)	Maximun	n deflectio	ı per span	
Beam	Beginning	End	DC	DCT	LL-Ped	
1	0	35	0.249	0.004	0.089	
2	35	70	0.016	-0.001	0.006	
3	70	105	-0.184	-0.001	-0.007	
4	105	140	0.011	-0.001	0.004	
5	140	175	0.044	0	0.016	
6	175	210	0.070	0	0.025	
7	210	245	0.078	0	0.028	
8	245	280	0.052	0	0.018	
9	280	315	-0.025	0	-0.009	
10	315	350	-0.150	-0.001	-0.054	
11	350	385	-0.313	-0.001	-0.112	
12	385	420	-0.476	-0.001	-0.170	
13	420	455	-0.575	-0.002	-0.205	
14	455	490	-0.528	-0.001	-0.188	
15	490	525	-0.245	-0.001	-0.087	
	Total deflec	tion du	e to dead a	Ind live lo	ad	
	Total deflec	ction due Tot	e to dead a	nd live lo	ad	
	Total deflec	tion due Tot m	e to dead a	nd live lo	ad	
	Total deflect	tion due Tot m	e to dead a cal deflection (in) 0.341	nd live lo	ad	
	Total deflect	tion due Tot m	e to dead a al deflection (in) 0.341 0.021 0.102	nd live lo	ad	
	Total deflect	tion due Tot m	e to dead a al deflection (in) 0.341 0.021 -0.192 0.015	nd live lo	ad	
	Total deflect	tion due Tot m	e to dead a al deflection (in) 0.341 0.021 -0.192 0.015 0.05	nd live lo	ad	
	Total deflect	tion due Tot m	e to dead a cal deflection (in) 0.341 0.021 -0.192 0.015 0.060 0.006	nd live lo	ad	
	Total deflect	tion due Tot	e to dead a al deflection (in) 0.341 0.021 -0.192 0.015 0.060 0.096 0.106	nd live lo	ad	
	Total deflect	tion due Tot m	e to dead a (in) 0.341 0.021 -0.192 0.015 0.060 0.096 0.106 0.070	nd live lo	ad	
	Total deflect Bea 1 2 3 4 5 6 7 8 1	tion due Tot m	e to dead a cal deflection (in) 0.341 0.021 -0.192 0.015 0.060 0.096 0.106 0.070 0.021	nd live lo	ad	
	Total deflect Bea 1 2 3 4 5 6 7 8 9 10	tion due Tot	e to dead a al deflection (in) 0.341 0.021 -0.192 0.015 0.060 0.096 0.106 0.070 -0.034 0.205	nd live lo	ad	
	Total deflect Bea 1 2 3 4 5 6 7 8 9 10	tion due Tot m	e to dead a cal deflection (in) 0.341 0.021 -0.192 0.015 0.060 0.096 0.106 0.070 -0.034 -0.205 0.426	nd live lo	ad	
	Total deflect Beau 1 2 3 4 5 6 7 8 9 10 11 12 12 12 12 12 13 14 15 16 10 10 10 10 10 10 10 10 10 10	tion due Tot	e to dead a tal deflection (in) 0.341 0.021 -0.192 0.015 0.060 0.096 0.106 0.070 -0.034 -0.205 -0.426 0.647	nd live lo	ad	
	Total deflect Bea 1 2 3 4 5 6 7 8 9 10 11 12 13	tion due Tot	e to dead a cal deflection (in) 0.341 0.021 -0.192 0.015 0.060 0.096 0.106 0.070 -0.034 -0.205 -0.426 -0.647 0.782	nd live lo	ad	
	Total deflect Bea 1 2 3 4 5 6 7 8 9 10 11 12 13 14	tion due Tot m	e to dead a cal deflection (in) 0.341 0.021 -0.192 0.015 0.060 0.096 0.106 0.070 -0.034 -0.205 -0.426 -0.647 -0.782 0.717	nd live lo	ad	
	Total deflect	tion due Tot	e to dead a tal deflection (in) 0.341 0.021 -0.192 0.015 0.060 0.096 0.106 0.070 -0.034 -0.205 -0.426 -0.647 -0.782 -0.717 0.333	nd live lo	ad	

Design slab:

Design slab:

$$\frac{L}{20} = 11,203 \ in$$

$$t_{z} = 11.25 \ in$$

$$d_{1} = t_{s} - 0.75 \ in - \frac{d_{s}}{2} = 10.25 \ in$$

$$E := 10 \ in + 5 \cdot \sqrt[3]{L} \cdot \frac{W}{ft^{2}} \cdot in = 84.843 \ in$$

$$w_{s} := 145 \ \frac{lb}{ft^{2}} \cdot E \cdot t_{s} = 961.112 \ \frac{lb}{ft}$$

$$w_{sd} := (4 + 4 + 2.08 + 2.3) \cdot \frac{lb}{ft^{2}} \cdot W = 148.56 \ \frac{lb}{ft}$$

$$w_{u} := 1.25 \cdot (w_{s} + w_{ud}) + 1.75 \cdot 90 \cdot \frac{lb}{ft^{2}} \cdot W = (3.277 \cdot 10^{3}) \ \frac{lb}{ft}$$

$$M_{pos} \ end := \frac{w_{u} \cdot t_{u}^{2}}{14} = (8.161 \cdot 10^{4}) \ lb \cdot ft$$

$$M_{mg,int1} := \frac{w_{u} \cdot t_{u}^{2}}{10} = (1.142 \cdot 10^{5}) \ lb \cdot ft$$

$$M_{u} := if M_{pos,end} < M_{mg,int1} = (1.142 \cdot 10^{5}) \ lb \cdot ft$$

$$M_{u} := if M_{pos,end} < M_{mg,int1} = (1.142 \cdot 10^{5}) \ lb \cdot ft$$

$$M_{pos} \ end$$

$$V_{u} := 1.15 \cdot w_{u} \cdot \frac{t_{u}}{2} = (3.518 \cdot 10^{4}) \ lb$$
-moment and shear equations above from ACI 318 Table 6.5.2 and 6.5.4

Design beams:

Non-Commercial Use Only

$$checkV \coloneqq \text{if } 4 \cdot \sqrt[2]{\frac{f_c'}{lb}} \cdot \frac{b}{in} \cdot \frac{d}{in} \cdot lb > V_u = \text{``use d/4 and 12 in below''}$$
$$= \text{``use d/4 and 12 in below''}$$
$$= \text{``use d/4 and 12 in below''}$$
$$= \text{``use d/4 and 12 in below''}$$
$$Smax = \min^*:$$
$$\frac{A_v \cdot f_y}{0.75 \cdot \sqrt[2]{\frac{f_c'}{lb}} \cdot \frac{b}{in} \cdot lb} \cdot in = 13.828 in \frac{A_v \cdot f_y}{50 \cdot \frac{b}{in} \cdot lb} \cdot in = 14.667 in \frac{d}{4} = 4.391 in 12 \text{ in}$$

```
*but not less than 3 in
```

 $s_{max} \coloneqq \frac{d}{4} = 4.391 \text{ in}$ $s_{max} \coloneqq 4.375 \text{ in}$ round down to be conservative $V_{s_max} \coloneqq A_v \cdot f_y \cdot \frac{d}{s_{max}} = (5.299 \cdot 10^4) \text{ lb}$

V_{i}	ı —	$\left(\frac{D_{i}}{2}\right)$	^{spira} 2	<u>ıl</u>	-W).	1.2	$ullet w_l$	ь — '	w_u	$\cdot \Big(x$	v —	$\left(\frac{D_s}{}\right)$	piral	- V	$V \bigg) \bigg)$	=0	lb											
x_h	:=-	$\frac{D_{sp}}{2}$	oiral 2	1	W·	V +	⁷ u -	- V _h	n —	$\left(\frac{D_{i}}{2}\right)$	$rac{2}{w}$	u	$W \Big)$	•1.2	2 • w	b —=	23.	537	7 ft	<u>,</u>									
V_i	:=	0.5	• ϕ	$\cdot V_{a}$,=	(1.	677	~• 1	0^4) lb																			
x_i	-==	V _u -	-V	<i>i</i> —	$\left(\frac{L}{L}\right)$	spin 2 U	v _u	- W	⁷).	1.2	•w	b — +	$\frac{D_{sp}}{2}$	niral2	- W	⁷ =;	29.6	351	ft										
n_h	, : =-	$rac{x_h}{s}$	=1	41.	.22	3			n_h	:=]	<mark>.42</mark>				ro	unc	l up	o to	be	cor	iser	vati	ve						
n_i	:=-	x_i –	$- \langle n \\ s_r \rangle$	h^{h}	1)	• \$	=1	5.9	57			n _i :	<mark>= 16</mark>	; ;															
n_t	:=]	1+	n_h -	+n	$_i =$	159	9																						
n_h	•s	=2	3.6	67	ft								S	spac cento	e #: erlin	3 st ne c	tirru of co	ıps olur	at 2 nn	2" c	.C. I	unti	1 23	3'-8	" fr	om)		
n_h n_h	•s	=2 =2	3.6 3.6	67 67	ft ft								S	spac cent	e #: erlin	3 st ne c	tirru of co	ıps olur	at 2 nn	2" c).C. (unti	1 23	8'-8	" fr	om)		
$egin{array}{c} n_h \ n_h \ n_h \end{array}$	•s	=2 =2 +n	3.6 3.6 _i •s	67 67 ^{max}	ft ft	29.	5 f	°t					9	spac cento spac	e #: erlin e #:	3 st ne c 3 st	tirru of co tirru	ips blur ips il 2'	at 2 nn at 4 9'-6	2" c 4 3/ 5" fr	0.C. 1 8" (unti D.C.	l 23 froi	8'-8 m e line	" fr end	of	hig	h In	
$egin{array}{c} n_h \ n_h \ n_h \ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	• \$ • \$ • \$ spir	=2 =2 +n	3.6 3.6 $i \cdot s$ $\cdot (n$	67 67 max	ft ft ft	29. $n_ioldsymbol{\cdot}$	5 f	t	= 2	3.5	77	in		spac cento spac shea	e #: erlin e #: r zo	3 si ne c 3 si one	tirru of co tirru unt	ips plur ips il 2'	at 2 nn at 4 9'-6	2" c 4 3/ 5" fr	9.C. 1 8" (om	unti D.C. cen	fronter	8'-8 m e line	" fr end	of co	hig lum	lh In	
$egin{array}{c} n_h \ n_h \ n_h \ \hline \end{array}$	• s • s • s spir 2	= 2 $= 2$ $+ n$	3.6 3.6 $i \cdot s$ $\cdot (n$	67 67 max	ft ft g = 3+	29.	5 f	<i>it</i> _{ax}) :	= 2	3.5	77	in		spac spac	e # erlin e #	3 si ne c 3 si one	tirru of cc tirru unt	ips blur ips il 2'	at 2 nn at 4 9'-6	2" o 4 3/ 5" fr	8" (om	unti D.C. cen	fronter	3'-8 m e line	" fr end	of	ı hiç lum	lh ìn	
n_h n_h n_h	• s • s • s spir 2	= 2 $= 2$ $+ n$	3.6 3.6	67 67 max	ft ft g = 3 + 3	29.	5 f	it ax) =	= 2	3.5	77	in	5 (5 5 5	spac cento spac	e #/	3 si ne c 3 si one	tirru of cc tirru unt	ips blur ips il 2'	at 2 nn at 4 9'-6	2" o 4 3/ 5" fr	8" (om	unti D.C. cen	fronter	3'-8 m e line	" fr end e of	of	ı hiç lum	h In	
n_h n_h n_h	• s	= 2 = 2 + n	3.6 3.6 _i •s	67 67 max	ft ft s = s +	29.	5 f	it _{ax}) :	= 2	3.5	77	in	5 () 5 5 5	spac cento spac shea	e ## erlin e ##	3 si ne c 3 si nne	tirru of cc tirru unt	ips blur ips il 2	at : nn at 4 9'-6	2" c 4 3/ 5" fr	8" (om	unti	fro ter	3'-8 m e line	" fr end	of	ı hi <u>ç</u> lum	h In	
n_h n_h D	• <i>s</i> • <i>s</i> • <i>s</i> <i>spir</i> 2	=2 =2 +n	3.6 3.6 _i •s	67 67 maa	ft ft s = 3 + 3	29.	5 f	[t] ax) =	= 2	3.5	77	in	5 () 5 5 5	spac spac	e ##	3 si ne c 3 si one	tirru of cc tirru unt	ips blur ips il 2'	at 2 nn at 4 9'-6	2" c 4 3/ 5" fr	8" (om	o.c.	fronter	3'-8 m e line	" fr end	of	ı hig lum	lh in	
n_h n_h D_h	• s	= 2 = 2 + n	3.6 3.6 $i \cdot s$ $\cdot (n$	67 max	ft ft ,=	29.	5 f	<i>it</i> ax) =	=2	3.5	77	in	5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	spac spac shea	e #. e #. r zo	3 si ne c 3 si ne	tirru tirru unt	ips ips il 2	at 2 nn at 4 9'-6	2" c 4 3/ 5" fr	8" (8" (o.c.	froi ter	3'-8 m e line	" fr end e of	of	hig	lh in	
n_h n_h D_h	• s	=2 =2 +n	3.6 3.6	67 67 max	ft ft ;=	29.	5 f	<i>it</i> ax) =	= 2	3.5	77	in		spac	e #. e #. r zo	3 si ne c 3 si ne	tirru of cc tirru unt	ips blur ips il 2'	at 2 nn at 4 9'-6	2" c 4 3/ 5" fr	8" (om	unti	fro ter	3'-8 m e line	" fr end e of	of	hig lum	lh in	
n_h n_h n_h	• s • s • s spir 2	=2 =2 +n	3.6 3.6 $i \cdot s$ $\cdot (n$	67 67 <i>max</i>	ft ft ;=	29.	5 f	<i>it</i> <i>ax</i>) =	= 2	3.5	77	in		spac	e #: erlin e #: r zo	3 si a c 3 si ane	tirru of cc	ips ips il 2'	at 2 nn at 4 9'-6	2" o 4 3/ 5" fr	8" (om	o.c. cen	fronter	3'-8 m e line	" fr	of	hig	h in	
n_h n_h D	• <i>s</i> • <i>s</i> • <i>s</i>	= 2 = 2 + n	3.6 3.6 . (n	67 67 h•\$	ft ft ;=	29.	5 f	<i>it</i> <i>ax</i>) =	= 2	3.5	77	in		spac	e #. e #. r zo	3 si a c 3 si one	tirru tirru unt	ips olur ips il 2'	at 2 nn 9'-6	2" o 4 3/ 5" fr	8" (om	D.C. Cen	fronter	3'-8 m e line	" fr end e of	of	hig	in In	

Design column:

Quantities:

Calculate wind load:

Calculate wind load:							
$h_g := \frac{h}{4} = 10.25 \ ft$							
$G \coloneqq 0.85$							
$K_{zt} \coloneqq 1$							
$z_{b1} := h_g = 10.25 \ ft$	check al Pn_net,	l levels aı W/R	e included	in Kz, q,	Pp, Pp	_net, Pn,	
$z_{b2} = 2 \cdot h_g = 20.5 \ ft$							
$z_{b3} = 3 \cdot h_g = 30.75 \ ft$							
$z_{roof} \coloneqq h = 41 \ ft$							
$L \coloneqq W = 6.667 ft$							
Risk: II - T 1.5-1							
<i>V</i> ≔ 108 <i>mph</i> - F 26.5-1D							
$K_d := 0.85$							
$surfaceRoughness \coloneqq "B"$							
ernosure :- "B"							
<i>K</i> - 1							
$R_e - 1$							
CC := if on a location = "ion a location"							
$\operatorname{GC}_{pi} = \operatorname{II} \operatorname{enclosare} = \operatorname{enclosed}$							
else if $enclosure =$ "partia" $\ 0.55 \ $	lly enclos	sed"					
else if <i>enclosure</i> = "partia	lly open"						
0.18 else							
0							
$GC_{pi} = 0.18$							

Design roof+wind beam:

Design wind+glass beam:

$$\begin{split} & \text{Design wind+glass beam:} \\ & w_{gi} = 8 \frac{1b}{ft^2}, h_g = 82 \frac{1b}{ft} \\ & W_{roof} = p_{roof-g-uct}, \frac{h_g}{2}, \frac{s^2}{m} = (1.08 \cdot 10^3) \frac{1b}{ft} \\ & W_{b4} := W_{roof}, \frac{B}{2 \cdot L} = 681.569 \frac{1b}{ft} \\ & W_{b4} := W_{b4}, \frac{L}{2} = (2.272 \cdot 10^3) \frac{1b}{ft} \\ & W_{b4} := \left(p_{roof-g-met}, \frac{h_g}{2} + p_{b2-g-met}, \frac{h_g}{2} \right), \frac{B}{2 \cdot L}, \frac{s^2}{m} = (1.339 \cdot 10^3) \frac{1b}{ft} \\ & R_{n3} := W_{n3}, \frac{L}{2} = (4.463 \cdot 10^3) \frac{1b}{10} \\ & W_{b2} := \left(p_{b3,g-met}, \frac{h_g}{2} + p_{b2,g-met}, \frac{h_g}{2} \right), \frac{B}{2 \cdot L}, \frac{s^2}{m} = (1.283 \cdot 10^3) \frac{1b}{ft} \\ & R_{n2} := W_{n2}, \frac{L}{2} = (4.278 \cdot 10^3) \frac{1b}{10} \\ & W_{b1} := \left(p_{b2,g-met}, \frac{h_g}{2} - (15 ft - h_g) \right) + p_{15,g-met}, (15 ft - h_g) \frac{1}{2 \cdot L}, \frac{B}{m} = (1.211 \cdot 10^3) \frac{1b}{ft} \\ & R_{n1} := W_{n1}, \frac{L}{2} = (4.036 \cdot 10^3) \frac{1b}{10} \\ & M_{u1} : (W_{n3} + w_g), \frac{L^2}{8} = (7.893 \cdot 10^3) \frac{1b}{10} \frac{1}{10} \\ & M_{u2} : (W_{n3} + w_g), \frac{L^2}{8} = (7.893 \cdot 10^3) \frac{1b}{10} \frac{1}{10} \\ & M_{u2} : (W_{n3} + w_g), \frac{L^2}{8} = (7.893 \cdot 10^3) \frac{1b}{10} \frac{1}{10} \\ & M_{u2} : (W_{n3} + w_g), \frac{L^2}{8} = (7.893 \cdot 10^3) \frac{1b}{10} \frac{1}{10} \\ & M_{u2} : (W_{u3} + W_{u3}) = 0 \\ & M_{u3} : M$$

Design glass beam:

Design glass beam: $d_{W8x10} \coloneqq 7.89 \ in$ $w_{glass} \coloneqq w_g = 82 \ \frac{lb}{ft}$ $R_{glass} \coloneqq w_{glass} \cdot \frac{B}{2} = 345.083 \ lb$ $M_u \coloneqq w_{glass} \cdot \frac{B^2}{8} = 726.113 \ lb \cdot ft$

W8x10 - chosen from AISC Table 3-2 and confirmed adequate as this moment is less than that applied to the W8x10 roof beams authorized above

Design corner column:

$$\begin{split} e_{g} &:= \frac{b_{f}}{2} = 2.03 \ in \\ \\ M_{z,w} &:= (R_{b3} + R_{b2} + R_{b1} + 3 \cdot R_{glass} + W \cdot 4 \cdot L) \cdot e_{w} = (2.454 \cdot 10^{\frac{3}{2}}) \ lb \cdot ft \\ \\ M_{y,g} &:= (R_{vor}, g + 3 \cdot R_{glass} + W \cdot 4 \cdot B) \cdot c_{g} = 998.873 \ lb \cdot ft \\ \\ \lambda_{f} &:= \text{if} \quad \frac{b_{f}}{2 \cdot t_{f}} < 0.38 \cdot \sqrt{\frac{F}{F_{y}}} = \text{"compact"} \quad \text{FLB does not apply (F6.2)} \\ & \parallel \text{"compact"} \\ & \text{else if } 0.38 \cdot \sqrt{\frac{F}{F_{y}}} < \frac{b_{f}}{2 \cdot t_{f}} < \sqrt{\frac{F}{F_{y}}} \\ & \parallel \text{"noncompact"} \\ & \text{else if } 0.38 \cdot \sqrt{\frac{F}{F_{y}}} < \frac{b_{f}}{2 \cdot t_{f}} < \sqrt{\frac{F}{F_{y}}} \\ & \parallel \text{"noncompact"} \\ & \text{else if } F_{y} \cdot Z_{y} < 1.6 \cdot F_{y} \cdot S_{y} = (7.285 \cdot 10^{3}) \ lb \cdot ft \\ & \parallel \frac{F_{y} \cdot Z_{y}}{1.67} \\ & \text{else} \\ & \parallel \frac{1.6 \cdot F_{y} \cdot S_{y}}{1.67} \\ & \text{else} \\ & \parallel \frac{1.6 \cdot F_{y} \cdot S_{y}}{1.67} \\ & \text{i= if } \frac{P_{y}}{P_{c}} < 0.2 \\ & = 0.468 \\ & i = \text{if } \frac{P_{y}}{P_{c}} < 0.2 \\ & \text{else} \\ & \parallel \frac{P_{u}}{2 \cdot P_{c}} + \left(\frac{M_{z,w}}{M_{cx}} + \frac{M_{y,y}}{M_{cy}}\right) \\ & \text{else} \\ & \parallel \frac{P_{u}}{P_{c}} + \frac{8}{9} \cdot \left(\frac{M_{x,w}}{M_{cx}} + \frac{M_{y,y}}{M_{cy}}\right) \\ & \text{else} \\ & \parallel \frac{P_{u}}{P_{c}} + \frac{8}{9} \cdot \left(\frac{M_{x,w}}{M_{cx}} + \frac{M_{y,y}}{M_{cy}}\right) \\ & \text{else} \\ & \parallel \frac{P_{u}}{P_{c}} + \frac{8}{9} \cdot \left(\frac{M_{x,w}}{M_{cx}} + \frac{M_{y,y}}{M_{cy}}\right) \\ & \text{else} \\ & \parallel \frac{P_{u}}{P_{c}} + \frac{8}{9} \cdot \left(\frac{M_{x,w}}{M_{cx}} + \frac{M_{y,y}}{M_{cy}}\right) \\ & \text{else} \\ & \parallel \frac{P_{u}}{P_{c}} + \frac{8}{9} \cdot \left(\frac{M_{x,w}}{M_{cx}} + \frac{M_{y,y}}{M_{cy}}\right) \\ & \text{else} \\ & \parallel \frac{P_{u}}{P_{c}} + \frac{8}{9} \cdot \left(\frac{M_{x,w}}{M_{cx}} + \frac{M_{y,y}}{M_{cy}}\right) \\ & \text{else} \\ & \parallel \frac{P_{u}}{P_{c}} + \frac{8}{9} \cdot \left(\frac{M_{x,w}}{M_{cx}} + \frac{M_{y,y}}{M_{cy}}\right) \\ & \text{else} \\ & \parallel \frac{P_{u}}{P_{c}} + \frac{8}{9} \cdot \left(\frac{M_{x,w}}{M_{cx}} + \frac{M_{y,y}}{M_{cy}}\right) \\ & \text{else} \\ & \parallel \frac{P_{u}}{P_{c}} + \frac{8}{9} \cdot \left(\frac{M_{u}}{M_{u}} + \frac{M_{u}}{M_{u}}\right) \\ & \text{else} \\ & \parallel \frac{P_{u}}{P_{u}} + \frac{8}{9} \cdot \left(\frac{M_{u}}{M_{u}} + \frac{M_{u}}{M_{u}}\right) \\ & \parallel \frac{P_{u}}{P_{u}} + \frac{P_{u}}{P_{u}}$$

W4x13 section has sufficient strength to be used as corner columns

Calculate quantities:

K. South Pier Design

 Concrete Properties:

$$f_c := 4 \text{ ksi}$$
 $w_c := 145 \text{ pcf}$
 $\nu := 0.2$
 $E_c := 1820 \cdot \sqrt{\frac{\Gamma_c}{ksi}}$. ksi = 3640 ksi

 Pier Cap Design

 Designing it like a beam

 #4 bars for stirrups
 $d_{stirrup} := 0.5 \text{ in}$
 $c_c := 2 \text{ in}$
 $b := 36 \text{ in}$
 $h := 48 \text{ in}$
 $f_1 := 0.85$
 $cover := c_c + d_{stirrup} + d_b$
 $d_b := 1.693 \text{ in}$
 $d := h - cover$
 singly reinforced therefore
 $d_c := d = 43.807 \text{ in}$

 upper limit for tension for tension controlled design
 $A_{stension} := \frac{0.85 \cdot \Gamma_c \cdot b \cdot \beta_1}{\Gamma_y} \cdot \left(\frac{3 \cdot d_1}{8}\right) = 28.486 \text{ in}^2$
 $A_s := 4 \cdot A_b = 9 \text{ in}^2$
 $A_c < A_{stension} = 1$
 $A_c < A_{stension} = 1$
 $A_c > A_{stension} = 1$
 $a = \frac{A_s \cdot f_y}{(\frac{f_y}{psi})} \cdot \frac{f_y}{psi}$
 $b \cdot d = 5.257 \text{ in}^2$
 $A_s > A_{smin} = 1$
 $a = \frac{A_s \cdot f_y}{0.85 \cdot \Gamma_c \cdot b} = 4.412 \text{ in}$
 $b = 3.257 \text{ in}^2$
$$F_{c} := 0.85 \cdot f'_{c} \cdot b \cdot a = 540 \text{ kip}$$

$$F_{s} := A_{s} \cdot f_{y} = 540 \text{ kip}$$

$$M_{n} := F_{s} \cdot \left(d - \frac{a}{2}\right) = 1872.05 \text{ kip} \cdot \text{ft}$$

$$M_{r} := 0.9 \cdot M_{n} = 1684.845 \text{ kip} \cdot \text{ft}$$

$$M_{u} := 1441.29 \text{ kip} \cdot \text{ft}$$

$$\frac{M_{u}}{M_{r}} = 0.855 \quad \text{OK}$$

$$\frac{\text{Shear Resistance}}{\phi_{s} := 0.75}$$

$$\lambda := 1$$

$$\lambda_{s} := \min\left(1, \sqrt{\frac{2}{1 + \frac{d}{\ln \cdot 10}}}\right) = 0.61$$

$$\varphi_{u} := \frac{A_{s}}{b \cdot d} = 0.006$$

$$V_{c} := \min\left(5 \cdot \lambda \cdot \sqrt{\frac{F_{c}}{\text{psi}}} \text{ psi}, 8 \cdot \lambda \cdot \lambda_{s} \cdot \rho_{w}^{-\frac{1}{2}} \cdot \sqrt{\frac{f_{c}}{\text{psi}}} \text{ psi}\right) \cdot b \cdot d = 86.935 \text{ kip}$$

$$\varphi_{v} := \phi_{s} \cdot V_{c} = 65.201 \text{ kip} \quad V_{u} := 293.66 \text{ kip}$$
this is less than Vu therefore need shear reinforcement
Use #4 U stirrups

$$f_{y_{f}} := 40 \text{ ksi} \quad d_{st} := 0.5 \text{ in} \quad A_{st} := 0.2 \text{ in}^{2}$$

$$A_{s} = 9 \text{ in}^{2}$$

$$V_{umax} := \phi_{s} \cdot \left(V_{c} + 8 \cdot \sqrt{\frac{F_{c}}{\text{psi}}} \text{ psi} \cdot b \cdot d\right) = 663.65 \text{ kip} \quad \text{OK}$$

$r := 0.288 \cdot h = 0.864 \text{ ft}$	
L := 27.5 ft k := 2.1	
$F_{e} \coloneqq \frac{\pi^{2} \cdot E_{c}}{\left(\frac{k \cdot L}{r}\right)^{2}} = 8.041 \text{ ksi}$	
$P_{cr} := F_e \cdot A_g = 10421.486 \text{ kip}$	
Axial load capacity based on elastic buckl Strength controls.	ing is much larger than that based on strength
Reinforcement	
minimal horizontal clear spacing	
$s_{bc} := max (1 \text{ in }, d_{bar}) = 1.693 \text{ in}$	
minimal vertical clear spacing	d _{ties} :=0.5 in
s _{hc} :=1 in	
maximum vertical spacing between ties	$16 \cdot d_{bar} = 2.257 \text{ ft}$ $b = 3 \text{ ft}$ $48 \cdot d_{ties} = 2 \text{ ft}$
$s \le \min(16 \cdot d_{bar}, 48 \cdot d_{ties}, b) = 1$	s:=2 ft
Wind Loading	
wind creates a negligible amount of axial con check axial moment caused in pier column	mpression in the pier cap.
Combined Axial and Flexure Resistance	
Point A	
$P_{rA} := \phi P_n = 2821.104 \text{ kip}$	
$\phi M_{hA} \coloneqq 0$ kip•ft $M_{rA} \coloneqq \phi M_{hA}$	

stresses	$\varepsilon_{\mathrm{ty}} = 0.00207$
f _{s1} ≔0 ksi strain was 0	$F_{s1} := A_{s1} \cdot f_{s1} = 0$ lbf
$\varepsilon_{s2} < \varepsilon_{ty} = 1$ elastic in compre	ession
$f_{s2} := E_s \cdot \varepsilon_{s2} - 0.85 \cdot f_c = 35.642$ ksi	$F_{s2} := A_{s2} \cdot f_{s2} = 160.389 \text{ kip}$
$\varepsilon_{s3} > \varepsilon_{ty} = 1$ yielded in compl	ression
$f_{s3} := f_y - 0.85 \cdot f'_c = 56.6$ ksi	$F_{s3} := A_{s3} \cdot f_{s3} = 382050$ lbf
$A_c := b \cdot a = 6.939 \ ft^2$	
$F_c := 0.85 \cdot f'_c \cdot A_c = 3397270.14$ lbf	
$y_c := h - \frac{a}{2} = 1.844$ ft	
$P_n := F_c + F_{s1} + F_{s2} + F_{s3} = 3939.709$	kip
$M_n := F_c \cdot (y_c - y_{bar}) + F_{s1} \cdot (y_{s1} - y_{bar}) + F_{s2}$	$\cdot (y_{s_2} - y_{bar}) + F_{s_3} \cdot (y_{s_3} - y_{bar})$
M _n = 1633.567 kip · ft	
$\varepsilon_t := \varepsilon_{s1} = 0$	
φ=0.65	
$P_{rB} := \phi \cdot P_n = 2560.811 \text{ kip}$	
$M_{rB} \coloneqq \phi \cdot M_n = 1061.819 \text{ kip} \cdot \text{ft}$	
Point C	
$\varepsilon_{s1} \coloneqq \frac{-f_y}{E_s} = -0.002$	$\varepsilon_0 \coloneqq \frac{\varepsilon_{s1} \cdot h - \varepsilon_{cu} \cdot y_{s1}}{h - y_{s1}} = -0.003$
$c := \frac{\varepsilon_{cu} \cdot h}{\varepsilon_{cu} - \varepsilon_{o}} = 19.326 \text{ in}$	

$$\begin{aligned} a := \beta_1 \cdot c = 1.369 \ \text{ft} \\ \varepsilon_{s3} := \frac{(h - y_{s2})}{h} \cdot \varepsilon_n + \frac{y_{s2}}{h} \cdot \varepsilon_{cu} = 0.00021 \\ \varepsilon_{s3} := \frac{(h - y_{s3})}{h} \cdot \varepsilon_n + \frac{y_{s3}}{h} \cdot \varepsilon_{cu} = 0.00248 \\ \text{stresses} \\ \varepsilon_{ty} = 0.00207 \\ |\varepsilon_{s1}| \ge \varepsilon_{ty} = 1 \\ \varepsilon_{s1} < 0 = 1 \\ \text{yielded in tension} \\ f_{s1} := -f_y = -60 \ \text{ksi} \\ F_{s1} := A_{s1} \cdot f_{s1} = -405 \ \text{kip} \\ |\varepsilon_{t2}| < \varepsilon_{ty} = 1 \\ \varepsilon_{s2} > 0 = 1 \\ \text{elastic in compression} \\ f_{s2} := E_{5} \cdot \varepsilon_{s2} - 0.85 \cdot f_{c} = 2.567 \ \text{ksi} \\ F_{s2} := A_{s2} \cdot f_{s2} = 11.553 \ \text{kip} \\ |\varepsilon_{s3}| \ge \varepsilon_{ty} = 1 \\ \varepsilon_{s3} > 0 = 1 \\ \text{yielded in compression} \\ f_{s3} := f_y - 0.85 \cdot f_c = 56.6 \ \text{ksi} \\ F_{s3} := A_{s3} \cdot f_{s3} = 382.05 \ \text{kip} \\ A_{c} := b \cdot a = 4.107 \ \text{ft}^2 \\ F_{c} := 0.85 \cdot f_c \cdot A_{c} = 2010.629 \ \text{kip} \\ y_{c} := h - \frac{a}{2} = 2.316 \ \text{ft} \\ P_{n} := F_{c} \cdot (y_{c} - y_{har}) + F_{s1} \cdot (y_{s1} - y_{har}) + F_{s2} \cdot (y_{s2} - y_{har}) + F_{s3} \cdot (y_{s3} - y_{har}) \\ M_{n} := F_{c} \cdot (y_{c} - y_{har}) + F_{s1} \cdot (y_{s1} - y_{har}) + F_{s2} \cdot (y_{s2} - y_{har}) + F_{s3} \cdot (y_{s3} - y_{har}) \\ M_{n} := 0.65 \\ P_{rC} := \phi \cdot P_{n} = 1299.501 \ \text{kip} \\ M_{rc} := \phi \cdot M_{n} = 1690.561 \ \text{kip} \cdot \text{ft} \end{aligned}$$

Point D

$$\varepsilon_{s_1} := -0.005$$

 $\varepsilon_0 := \frac{\varepsilon_{s_1} \cdot h - \varepsilon_{c_1} \cdot y_{s_1}}{h - y_{s_1}} = -0.006$
 $c_{=} = \frac{\varepsilon_{ou} \cdot h}{\varepsilon_{ou} - \varepsilon_0} = 12.245 \text{ in}$
 $a := \beta_1 \cdot c = 0.867 \text{ ft}$
 $\varepsilon_{s_2} := \frac{(h - y_{s_2})}{h} \cdot \varepsilon_0 + \frac{y_{s_2}}{h} \cdot \varepsilon_{c_0} = -0.00141$
 $\varepsilon_{s_3} := \frac{(h - y_{s_3})}{h} \cdot \varepsilon_0 + \frac{y_{s_3}}{h} \cdot \varepsilon_{c_4} = 0.00218$
stresses
 $\varepsilon_{1y} = 0.00207$
 $|\varepsilon_{s_1}| \ge \varepsilon_{1y} = 1$ $\varepsilon_{s_1} < 0 = 1$ yielded in tension
 $f_{s_1} := -f_y = -60 \text{ ksi}$ $F_{s_1} := A_{s_1} \cdot f_{s_1} = -405 \text{ kip}$
 $|\varepsilon_{s_2}| < \varepsilon_{1y} = 1$ $\varepsilon_{s_2} < 0 = 1$ elastic in tension
 $f_{s_2} := E_s \cdot \varepsilon_{s_2} = -40.888 \text{ ksi}$ $F_{s_2} := A_{s_2} \cdot f_{s_2} = -183.997 \text{ kip}$
 $|\varepsilon_{s_3}| \ge \varepsilon_{1y} = 1$ $\varepsilon_{s_3} > 0 = 1$ yielded in compression
 $f_{s_3} := f_y - 0.85 \cdot f_c = 56.6 \text{ ksi}$ $F_{s_3} := A_{s_3} \cdot f_{s_3} = 382.05 \text{ kip}$
 $A_c := b \cdot a = 2.602 \text{ ft}^2$
 $F_c := 0.85 \cdot f_c \cdot A_c = 1273976.303 \text{ lbf}$
 $y_c := h - \frac{a}{2} = 2.566 \text{ ft}$
 $P_n := F_c + F_{s_1} + F_{s_2} + F_{s_3} = 1067.029 \text{ kip}$

ε	$ \varepsilon_{s2} \ge \varepsilon_{ty} = 1$ ε_{s}	_{s2} < 0 = 1	yielded in t	ension	
f_s	₂:= - f _y = - 60 ksi			$F_{s2} \coloneqq A_{s2}$	f _{s2} = - 270 kip
ε	$ \varepsilon_{s3} < \varepsilon_{ty} = 1$ ε_{s}	₃ > 0 = 1	elastic in co	ompression	
f_s	₃≔E₅• <i>ε</i> ₅₃ - 0.85•	f' _c = 15.242	ksi	F _{s3} ≔A _{s3} •	f _{s3} = 102886.074 lbf
A	_c ≔b•a=0.905 ft	2			
F	$c := 0.85 \cdot f'_c \cdot A_c = 4$	443.122 kip			
Ус	$h = h - \frac{a}{2} = 2.849$ 1	ft			
P	$\mathbf{h} \coloneqq \mathbf{F}_{c} + \mathbf{F}_{s1} + \mathbf{F}_{s2} + \mathbf{F}_{s1} + \mathbf{F}_{s2} + \mathbf{F}_{s2} + \mathbf{F}_{s2} + \mathbf{F}_{s1} + \mathbf{F}_{s2} $	+ F _{s3} = - 128	992 kip		
$M_n := F_c \cdot ($	y _c - y _{bar}) + F _{s1} •(y	′ _{s1} - y _{bar}) + F	_{s2} •(y _{s2} - y _{ba}	$_{r}$) + $F_{s3} \cdot (y_{s3} - y_{t})$	ar)
N	1 _n = 1218.033 kip	٠ft			
ε _t	$ \varepsilon_{s1} = 0.02$				
€ _t ≔	$\left \varepsilon_{\rm s1}\right = 0.02$				
$\varepsilon_{\rm t}$ > ε	$\varepsilon_{ty} = 1$				
$\varepsilon_{\rm t}$ > ε	$\varepsilon_{ty} + 0.003 = 1$				
$\phi := 0$).9				
P _{rE} :	= \$ • P _n = - 116.09	3 kip			
M _{rE}	$= \phi \cdot M_n = 1096.23$	3 kip•ft			

Anchor Design (Critical Case: Strength I)

Description:	
The design of the anchors is for a pro- located on the north side of the bridg contain one back-stay cable with a tra	posed pedestrian overpass in Waterloo, IA. The anchors will be e, and will be supporting the two main towers. Each tower will ansition block, anchorage cable, and concrete anchor block.
Project Goal:	
Determine the most economical desig	gn for the anchors.
Variables:	
$\gamma \coloneqq 109 \frac{lb}{ft^3}$	Unit Weight of Soil
$\gamma_{sat} \coloneqq 130 \frac{lb}{ft^3}$	Saturated Unit Weight of Soil
$\gamma_w \coloneqq 62.4 \frac{lb}{ft^3}$	Unit Weight of Water
$\gamma' \coloneqq \gamma_{sat} - \gamma_w = 67.6 \frac{lb}{ft^3}$	Submerged Unit Weight of Soil
$\gamma_c \coloneqq 150 \frac{lb}{ft^3}$	Unit Weight of Concrete
φ := 38.5 °	Angle of Friction
$D_w \coloneqq 12 \ ft$	Depth of Water Table
$P_x \coloneqq 1710000 \ b$	Horizontal Load
$P_y \coloneqq 1710000 \ lb$	Vertical Load
$P := \sqrt[2]{P_x^2 + P_y^2} = (2.418 \cdot 10^6) \ lb$	Load in Back-Stay Cable
Assumptions: From the soil report from USGS geog	data it shows that from 0-18" the soil is a loamy sand
followed by sand per 18-30", gravelly	y course sand per 30-55", course sand per 55-70", and
gravelly course sand per 70-80". Since	te the layer that is cohesive only goes down a short distance
from soil grade, it may be reasonable	to analyze this soil as a purely granular soil. It was also
noted from the soils report that the so	bil surrounding the project site is excessively drained. The
remaining accient with or with a 10	Are concrete unenor crock unenored at 15 below the

ground surface.

Anchor Design (Critical Case: Strength I)

Anchor Design (Critical Case: Strength I)

	TABLE OF CONTENTS
i	Project Description
;;	Soil Properties and Calculations
11	
iii	Design Calculations for Individual Piles
iv	Design Calculations for Pile Group
V	Design Summary

Foundation Description: The design of this foundation is for a proposed pedestrian overpass in Waterloo, IA. The foundation in need of attention is the foundations located on the north side of the bridge, and will be supporting two concrete towers. To guard against excessive settlement of the abutments that would be detrimental to bridge operations, the abutments shall be supported by a pile group. **Project Goal:** Determine the most economical design for the pile group. Variables: $\gamma \coloneqq 109 \frac{lb}{ft^3}$ Unit Weight of Soil $\gamma_{sat} \coloneqq 130 \ \frac{lb}{ft^3}$ Saturated Unit Weight of Soil $\gamma_w \coloneqq 62.4 \ \frac{lb}{ft^3}$ Unit Weight of Water $\gamma' \coloneqq \gamma_{sat} - \gamma_w = 67.6 \ \frac{lb}{ft^3}$ Submerged Unit Weight of Soil $D_w \coloneqq 12 \ ft$ Depth of Water Table Length of the Pile $L_p \coloneqq 60 \, ft$ Reaction Force From Bridge Load $P_{rxn} \coloneqq 7232466 \ lb$ Dead Load of Both Tower $P_{dead} \coloneqq 1000000 \ lb$ $P_q \coloneqq P_{rxn} + P_{dead}$ Vertical Load Horizontal Load N-S $V_{y} := 369526 \ lb$ Horizontal Load E-W $V_{r} \coloneqq 2050 \ lb$ Moment N-S $M_{y} \coloneqq 18825 \ lb \cdot ft$ Moment E-W $M_r := 107350600 \ lb \cdot ft$ **Assumptions:** From the soil report from USGS geodata, it shows that from 0-18" the soil is a loamy sand, followed by sand per 18-30", gravelly course sand per 30-55", course sand per 55-70", and gravelly course sand per 70-80". Since the layer that is cohesive only goes down a short distance from soil grade, it may be reasonable to analyze this soil as a purely granular soil. It was also

noted from the soils report that the soil surrounding the project site is excessively drained. The preliminary design with be with a HP18x204 steel pile cross section with an individual pile length of 60'.

	Design Calculation	ons for Individual Piles
For calculating pile point Therefore taking values to Bowles, <i>Foundation Ana</i>	t bearing capacity, the r for the static stress-stra <i>lysis and Design</i> was f	educed rigidity index needs to be assessed. in modulus of elasticity from table 5-6 in the ound for the soil at the bottom of the pile.
E _s := 50 MPa	Assuming course sand	d that is dense and wet.
$E_s \coloneqq 1000000 \frac{lb}{ft^2}$	Conversion to US uni	ts.
$\sigma_{z12}' \coloneqq \gamma \cdot D_w = 1308 \frac{lb}{ft^2}$		Vertical Effective Stress at Water Table Depth
$\sigma_{z40}' \coloneqq \gamma \cdot D_w + \left(\gamma' \cdot \left(L_p - D_w\right)\right)$	$=4552.8\frac{lb}{ft^2}$	Vertical Effective Stress at Pile Depth
Using table 2-7 in the Bo	wles text, the Poisson's	s ratio for this soil was determined:
$\mu := 0.35$	Cohesionless, dense s	and.
Taking the assumed inter Engineering Reference for from the Poulos and Dav $\phi' \coloneqq 38$ °	nal angle of friction for or <i>PE 8th Edition</i> , the c is text:	r poorly graded sand from Lindeburg, <i>Civil</i> ritical depth can be found using Figure 3.10
$\phi \coloneqq \frac{3}{4} \cdot \phi' + 10 \circ = 38.5 \circ$		
Zc / d ratio from Poulos	& Davis, Pile Foundati	on Analysis & Design, Figure 3.10: = 10.5
$b_f := 18.1 \ in$ $d := 18.3 \ in$	ı H	P18x204 steel pile.
$B_p \coloneqq \sqrt[2]{(d^2) + (b_f^2)} = 25.739 i$	n W	idth of pile is diagonal
$A_p \coloneqq b_f \cdot d = 331.23 \ in^2$	In	cluding Soil Plug
$z_c \coloneqq 10.5 \cdot B_p = 22.522 \ ft$	C	ritical Depth

 $\sigma_p'' \coloneqq D_w \cdot \gamma + \left((z_c - D_w) \cdot \gamma' \right) = 2019.266 \frac{lb}{ft^2}$ Vertical Effective Stress at Critical Depth

Calculation of bearing capacity factors	s ensues:	
$G_s := \frac{E_s}{2 \cdot (1+\mu)} = 370370.37 \frac{lb}{ft^2}$	<i>c'</i> := 0	Cohesionless sand.
$I_r \coloneqq \frac{G_s}{c' + \sigma_{z40}' \cdot \tan(\phi')} = 104.123$		Rigidity Index
Bowles, Foundation Analysis & Desig	n, Table o	on P.894 : Rigidity Index Within Range for Sandy Soil
$\varepsilon_{v} \coloneqq \frac{(1+\mu) \cdot (1-2\cdot\mu) \cdot (\sigma_{z40})}{E_{s} \cdot (1-\mu)} = 0.003$	V	olumetric Strain
$I_{rr} \coloneqq \frac{I_r}{1 + \varepsilon_v \cdot I_r} = 80.381$	R	educed Rigidity Index
$K_o \coloneqq 1 - \sin(\phi') = 0.384$	А	t rest earth pressure coefficient
Vesic's Bearing Capacity Factors:		
$\eta \coloneqq \frac{1 + 2 \cdot K_o}{3} = 0.59$		
$N_q \coloneqq \frac{3}{3 - \sin(\phi')} \cdot \exp\left(\left(\frac{\pi}{2} - \phi'\right) \tan(\phi')\right) \cdot \left(\tan(\phi')\right) \cdot \left(\operatorname{in}(\phi')\right) \cdot \left($	$n\left(\frac{\pi}{4}+\frac{\phi'}{2}\right)$	$\Big)^{2} \cdot I_{rr} \frac{\left(\frac{4 \cdot \sin(\phi)}{3 \cdot (1 + \sin(\phi))}\right)}{99.84} = 99.84$
$N_{\gamma} \coloneqq 0.6 \cdot (N_q - 1) \tan(\phi') = 46.333$		
$N_{c1} \coloneqq (N_q - 1) \cot (\phi') = 126.509$		
$N_{c2} \coloneqq \frac{4}{3} \cdot \left(\ln \left(I_{rr} \right) + 1 \right) + \frac{\pi}{2} + 1 = 9.753$		
$N_{c} \coloneqq \mathbf{if} \left(\phi' = 0 \;, N_{c2} \;, N_{c1} \right) = 126.509$		
$q_p \coloneqq \eta \cdot \sigma_{z40}' \cdot N_q + \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 271342.785$	$\frac{lb}{ft^2}$	Pile Point Bearing Capacity
$P_p := A_p \cdot q_p = 624144.936 \ lb$		Pile Point Load Capacity

Calculation of Side Friction Car	pacity:
α - Method calculations will be	used to calculate the pile side friction capacity.
From Tomlinson, <i>Pile Design an</i> due to Steel HP shape. Range is	<i>ad Construction Practice</i> , Table 4.10, Large displacement pile based on soil density, therefore with our dense sand assumption:
$\frac{K_s}{K_o} = 1.25$	
$K_s := K_o \cdot 1.25 = 0.48$	Lateral Earth-Pressure Coefficient for Side Friction
From Tomlinson, Table 4.11, Sn	nooth Steel Pile at interface with sand:
$\delta_p\!\coloneqq\!0.6\boldsymbol{\cdot}\phi'\!=\!22.8~^{\bullet}$	Angle of Friction Between Pile and Soil
$f_s \coloneqq K_s \cdot \sigma_p'' \cdot \tan\left(\delta_p\right) = 407.793 \frac{lb}{ft^2}$	Side Friction Stress, Considering Critical Depth
Calculation of side friction stres	s profile:
$z_1 \coloneqq D_w$	
$\sigma_{z1} \coloneqq D_w \cdot \gamma = 1308 \frac{lb}{ft^2}$	
$f_{s12} \coloneqq K_s \cdot \sigma_{z1} \cdot \tan\left(\delta_p\right) = 264.152 \frac{lb}{ft^2}$	
$z_c = 22.522 \ ft$	
Layers	Avg. Side Friction Stress
0-12 ft	$f_{s1Bar} \coloneqq \frac{1}{2} \cdot \left(0 + f_{s12}\right) = 132.076 \frac{lb}{ft^2}$
12-22.5 ft	$f_{s2Bar} := \frac{1}{2} \cdot (f_{s12} + f_s) = 335.973 \frac{lb}{ft^2}$
22.5-75 ft	$f_{s3Bar} := f_s = 407.793 \frac{lb}{ft^2}$
$P_{p1} \coloneqq b_f + b_f + d + d = 6.067 \text{ ft}$	Perimeter of Pile (Including Soil Plug)
$P_s \coloneqq P_{p1} \cdot \left(12 \ \mathbf{ft} \cdot (f_{s1Bar}) + 10.5 \ \mathbf{ft} \cdot (f_{s2})\right)$	$_{Bar}$) + 52.5 $ft \cdot (f_{s3Bar})$) = 160898.831 <i>lb</i> Side Friction Capacity

Calculations for compression an	nd tension load capacity:	
L _p = 60 ft	Length of Pile	
$W_p \coloneqq 204 \ \frac{lb}{ft} \cdot L_p = 12240 \ lb$	Nominal Weight of pile type multiplied by pile length	
From the <i>Standard Guidelines f</i> of safety were determined from piles, the design axial load will	for the Design and Installation of Pile Foundations, the factors table A.1 and A.2. Assuming a pile group consisting of 64 be distributed throughout these 64 piles.	
$N \coloneqq 64$ Number of Pile	es	
$P_{g1} \coloneqq \frac{P_g}{N} = 64.316$ ton		
$F_1 = 2.0$ Table A.1, Since analysis to dete	ce this is a preliminary design, using driving formulas and static ermine factors of safety	
$F_2 = 1.1$ Table A.2, HP I	Pile	
$FS \coloneqq F_1 \boldsymbol{\cdot} F_2 = 2.2$		
$P \coloneqq P_{g1} + W_p = 140872.281 \ lb$ =</td <td>$P_{all} \coloneqq \frac{P_p + P_s}{FS} = 356838.076 \ lb$</td> <td></td>	$P_{all} \coloneqq \frac{P_p + P_s}{FS} = 356838.076 \ lb$	
Condition Satisfied		
For uplift, the factor of safety is factor of safety.	s approximately a 50% increase from the compression capacity	
$FS_T \coloneqq 1.5 \cdot FS = 3.3$	Factor of Safety for Uplift	
$T_{all}\!:=\!\frac{P_s}{FS_T}\!+\!W_p\!=\!60997.221\;{l\!b}$	Tension Capacity	
Each individual pile satisfies t moment. This design criteria the analysis of pile groups. Th	this condition for both combined axial load and bending is calculated when calculating to see if the piles will buckle in nis value is also shown in the summary.	

Pile settlement for	an individual pile is as follows (Bowles Method):
$A_p := 60.2 \ in^2$	AISC Table 1-4: HP 18x201
$E_p \coloneqq 29000000 \frac{lb}{in^2}$	
$\begin{array}{l} m \coloneqq 1 \\ I_s \coloneqq 1 \end{array}$	Shape Factor, m*Is = 1.0 (Relatively square pile)
$\frac{L_p}{B_p} = 27.973$	Fox Embedment Factor Inequality Satisfaction
$I_F \coloneqq 0.35$	Fox Embedment Factor
$F_1 := 0.25$	Reduction Factor, High side friction capacity compared to design load for an individual pile.
$q \coloneqq \frac{P_{g1}}{A_p} = 2136.749 \frac{ll}{in}$	
$\boldsymbol{\delta}_{p} \coloneqq \boldsymbol{q} \boldsymbol{\cdot} \boldsymbol{B}_{p} \boldsymbol{\cdot} \left(\frac{1 - \mu^{2}}{E_{s}} \right) \boldsymbol{\cdot} \boldsymbol{r}$	$n \cdot I_s \cdot I_F \cdot F_1 = 0.608 $ <i>in</i> Point Bearing Settlement
For elastic settleme	ent assume that the point load is equal to zero.
$P(z) \coloneqq P_{g1} + \left(\frac{P_{g1}}{L_p}\right) \cdot z$	
$\delta_E \coloneqq \int_{0}^{L_p} \frac{P(z)}{E_p \cdot A_p} \mathrm{d}z = 0.0$	8 <i>in</i> Elastic Shortening
$\delta_{pile}\coloneqq \delta_p + \delta_E \!=\! 0.688$ in	Total Pile Settlement
$B_p \cdot 0.03 = 0.772 \ in$	Pile settlement should not be greater than 3% of pile diameter
Condition Satisfied	

	Design Calcu	lations for Pile Group
Vertical load capacity of the	entire pile group:	
$P_s = 160898.831$ <i>lb</i>	Single pile	
$P_p = 624144.936$ <i>lb</i>	Single pile	
$P_{Group} \coloneqq N \cdot \left(P_s + P_p\right) = 50242801.0$	086 lb	
$s := 2 \cdot B_p = 4.29 \; ft$		Minimum Spacing Requirement
s:=5 ft		Pile Spacing
<i>e</i> := 1 <i>ft</i>		Edge Distance
$B_g := (7 \cdot s) + \left(\frac{\langle B_p \rangle}{2} + e\right) + \left(\frac{\langle B_p \rangle}{2} + e\right)$	$\left(-e\right) = 39.145 \ ft$	See Drawing for Dimensions
$L_g \coloneqq (7 \cdot s) + \left(\frac{\langle B_p \rangle}{2} + e\right) + \left(\frac{\langle B_p \rangle}$	$\left(e\right) = 39.145 ft$	
$B_g := 40 ft \qquad \text{Simplified I}$	Dimension	
$L_g \coloneqq 40 \ ft$ Simplified I	Dimension	
$f_s := (f_{s1Bar}) + (f_{s2Bar}) + (f_{s3Bar}) = 8$	$75.842 \frac{lb}{m^2}$	
$P_{\text{res}} \coloneqq (2 \cdot B_{\text{res}}) + (2 \cdot L_{\text{res}}) = 160 \text{ ft}$	ft²	Perimeter of Group
$\frac{1}{gg} = \frac{1}{gg} + \frac{1}{gg} $		Area of Group
$A_g \coloneqq L_g \cdot B_g \equiv 1600 \ \mathbf{jt}$		Alea of Gloup
$P_{NBlock} \coloneqq P_{gg} \boldsymbol{\cdot} L_p \boldsymbol{\cdot} f_s + A_g \boldsymbol{\cdot} q_p = 442$	556544.349 lb	Block Failure Capacity
$P_{Ngroup} \coloneqq min\left(P_{Group},P_{NBlock}\right) = 5$	0242801.086 <i>lb</i>	
$FS \coloneqq 3$		Assumed FS for pile group
$P_{allGroup} \coloneqq \frac{P_{Ngroup}}{FS} = 16747600.362$	2 lb >/= F	$P_g = 8232466 \ lb$
Condition Satisfied		

- 8 -

Predicted elastic settlement of t	the entire pile grou	<u>up:</u>					
$x \coloneqq \frac{2}{3} \cdot L_p = 40 \ ft$	Equivalent Foot	ing Depth for Piles in Sa	nd				
$D_b \coloneqq \frac{1}{3} \cdot L_p = 20 \ ft$							
$D_{bb} \coloneqq \frac{2}{3} \cdot D_b = 13.333 ft$	Starting of 4/1 S	Slope Stress Distribution					
$B_{EQ} := B_g + 2 \cdot \left(\frac{D_{bb}}{4}\right) = 46.667 \ ft$	$L_{EQ} \coloneqq L_g + 2 \cdot \left(-\frac{1}{2}\right)$	$\left(\frac{D_{bb}}{4}\right) = 46.667 \ ft$					
$q_{net} \coloneqq \frac{P_g}{B_{EQ}^2} = 3780.214 \frac{b}{ft^2}$							
Strain Influence Factor Method	l:						
$z_1 \! := \! B_{EQ} \cdot \left(0.5 + 0.555 \cdot \left(\frac{L_{EQ}}{B_{EQ}} - 1 \right) \right) \! = \! 1$	23.333 ft =</td <td>$B_{EQ} = 46.667 \; ft$</td> <td>OK</td> <td></td> <td></td> <td></td> <td></td>	$B_{EQ} = 46.667 \; ft$	OK				
$z_2 \coloneqq B_{EQ} \cdot \left(2 + 0.222 \cdot \left(\frac{L_{EQ}}{B_{EQ}} - 1\right)\right) = 93$	3.333 ft =</td <td>$4 \cdot B_{EQ} = 186.667 \ ft$</td> <td>OK</td> <td></td> <td></td> <td></td> <td></td>	$4 \cdot B_{EQ} = 186.667 \ ft$	OK				
$I_{z0} \coloneqq 0.1 + 0.0111 \cdot \left(\frac{L_{EQ}}{B_{EQ}} - 1\right) = 0.1$	=</td <td>0.2</td> <td>OK</td> <td></td> <td></td> <td></td> <td></td>	0.2	OK				
$\sigma_{zp}' \coloneqq \gamma \cdot D_w + \gamma' \cdot \left(\left(x - D_w \right) + D_{bb} + z_1 \right)$	$=5679.467 \frac{lb}{ft^2}$	Vertical Effective Str	ess at z	l (Before	: Install	lation)	
$I_{zMax} \coloneqq 0.5 + 0.1 \cdot \sqrt[2]{\frac{q_{net}}{\sigma_{zp'}}} = 0.582$		All sand layer		$\Sigma = I_{zBar1}$	Δz_1		
Layer 1					E_s		
$\Delta z_1 \coloneqq z_1 = 23.333 ft \qquad \qquad E_s = 50$	$00 \frac{ton}{ft^2}$	$I_{zBar1} \coloneqq \frac{I_{z0} + I_{zMax}}{2} = 0.34$	1	$\Sigma_1 \coloneqq 2.428$	$58 \cdot 10^{-6}$	ft ³ lb	
Layer 2							
$\Delta z_2 := z_2 - z_1 = 70 \ ft$ $E_s = 50$	$00 \frac{ton}{ft^2}$	$I_{zBar2} := rac{I_{zMax}}{2} = 0.291$		$\Sigma_2 := 6.200$	$68 \cdot 10^{-6}$	ft ³ lb	
$\boldsymbol{\Sigma} \coloneqq \boldsymbol{\Sigma}_1 + \boldsymbol{\Sigma}_2 = 0.0000086326 \frac{\boldsymbol{f} \boldsymbol{t}^3}{\boldsymbol{l} \boldsymbol{b}}$							
$\sigma_z' \coloneqq \gamma \boldsymbol{\cdot} D_w + \gamma' \boldsymbol{\cdot} \left(\left(x - D_w \right) + D_{bb} \right) = 41$	$02.133 \frac{lb}{ft^2}$	Vertical Effective Stress	at Equi	valent Fo	ooting		
$C_1 \coloneqq 1 - 0.5 \cdot \left(\frac{\sigma_z'}{q_{net}}\right) = 0.457$							
$t \coloneqq 50$ Years							
$C_2 \coloneqq 1 + 0.2 \cdot \log\left(\frac{t}{0.1}\right) = 1.54$							
$\delta_{pg}\!\coloneqq\!C_1\!\cdot\!C_2\!\cdot\!q_{net}\!\cdot\!\Sigma\!=\!0.276~{\it in}$		Elastic Settlement of Pil	e Group)			

Allowable Lateral Load Calc	culations (B	rom's Method):		
Assume Fixed-Head, Long P	Pile (Tomlin	son)		
$B_p = 25.739 \ in$ $e := 27 \ ft$	$S_x \coloneqq 380 \ \textit{in}^3$	$S_y \coloneqq 124 \ \textit{in}^3$	$\frac{e}{B_p} = 12.588$	
$F_y \coloneqq 60000 \frac{lb}{in^2}$	Yield S	tress of Pile		
N-S Horizontal Load:				
$M_Y \coloneqq S_x \cdot F_y = 1900000 \ lb \cdot ft$.	Yield Moment N-S		
$K_p := \tan\left(45 \circ + \frac{\phi'}{2}\right)^2 = 4.204$				
$\frac{M_Y}{K_p \cdot \gamma \cdot B_p^4} = 195.904$	I	Figure 7.12 from Poulous	s and Davis	
$V_{*} := 150 \cdot K_{*} \cdot \gamma \cdot B_{*}^{-3} = 678249.205$	5 <i>1</i> b U	Jltimate Load		
<i>FS</i> := 1.67	I	Factor of Safety for Steel		
$V_{all} := \frac{V_u}{T^2} = 406137.249 \ lb$	>/=	$V_y = 369526 \ lb$		
FS Condition Satisfied				
E-W Horizontal Load:				
$M_Y \coloneqq S_y \cdot F_y = 620000 \ lb \cdot ft$		Yield Moment E-W		
$K_p \coloneqq \tan\left(45^\circ + \frac{\phi'}{2}\right) = 4.204$				
$\frac{M_Y}{K_p \cdot \gamma \cdot B_p^4} = 63.927$	I	Figure 7.12 from Poulous	s and Davis	
$V_u := 75 \cdot K_p \cdot \gamma \cdot B_p^{-3} = 339124.603$	<i>њ</i> (Jltimate Load		
FS := 1.67	I	Factor of Safety for Steel		
$V_{all} \coloneqq \frac{V_u}{FS} = 203068.624 \ \textit{lb}$	>/=	$V_x = 2050 \ lb$		
Condition Satisfied				

Pile Buckling Calculations:		
See AutoCAD drawing for pile arrangement		
N-S Axis Bending (Overturning Moment)		
$y_4 \coloneqq \frac{s}{2} + s + s + s = 17.5 \ ft$ $y_3 \coloneqq \frac{s}{2} + s + s = 12.5 \ ft$	$y_2 \coloneqq \frac{s}{2} + s = 7.5 ft$	$y_1 \coloneqq \frac{s}{2} = 2.5 ft$
$y_5 \coloneqq y_1$ $y_6 \coloneqq y_2$	$y_7 \coloneqq y_3$	$y_8 \coloneqq y_4$
$\Sigma y_{squared1} \coloneqq 2 \cdot \left(8 \cdot \left(y_1^2 + y_2^2 + y_3^2 + y_4^2\right)\right) = 8400 \ \mathbf{ft}^2$		
$P_1 \coloneqq \frac{P_g}{N} + \frac{M_y \cdot y_1}{\varSigma y_{squared1}} = 128637.884 \ \textit{lb}$	=</td <td>$P_{all} = 356838.076 \ lb$</td>	$P_{all} = 356838.076 \ lb$
$P_2 \coloneqq \frac{P_g}{N} + \frac{M_y \cdot y_2}{\Sigma y_{squared1}} = 128649.089 \ \textit{lb}$	=</td <td>$P_{all} = 356838.076 \ lb$</td>	$P_{all} = 356838.076 \ lb$
$P_3 \coloneqq \frac{P_g}{N} + \frac{M_y \cdot y_3}{\Sigma y_{squared1}} = 128660.295 \ \textit{lb}$	=</td <td>$P_{all} = 356838.076 \ lb$</td>	$P_{all} = 356838.076 \ lb$
$P_4 \coloneqq \frac{P_g}{N} + \frac{M_y \cdot y_4}{\varSigma y_{squared1}} = 128671.5 \ \textit{lb}$	=</td <td>$P_{all} = 356838.076$ <i>lb</i></td>	$P_{all} = 356838.076$ <i>lb</i>
$P_5 \coloneqq \frac{P_g}{N} - \frac{M_y \cdot y_5}{\Sigma y_{squared1}} = 128626.679 \ \textit{lb}$	=</td <td>$P_{all} = 356838.076$ <i>lb</i></td>	$P_{all} = 356838.076$ <i>lb</i>
$P_6 \coloneqq \frac{P_g}{N} - \frac{M_y \cdot y_6}{\varSigma y_{squared1}} = 128615.473 \ \textit{lb}$	=</td <td>$P_{all} = 356838.076$ <i>lb</i></td>	$P_{all} = 356838.076$ <i>lb</i>
$P_7 \coloneqq \frac{P_g}{N} - \frac{M_y \cdot y_7}{\Sigma y_{squared1}} = 128604.268 \ \textit{lb}$	=</td <td>$P_{all} = 356838.076$ <i>lb</i></td>	$P_{all} = 356838.076$ <i>lb</i>
$P_8 \coloneqq \frac{P_g}{N} - \frac{M_y \cdot y_8}{\Sigma y_{squared1}} = 128593.063 \ lb$	=</td <td>$P_{all} = 356838.076 \ lb$</td>	$P_{all} = 356838.076 \ lb$

All Piles are able to handle this loading.

E-W Axis Bending (Overturning Moment)

$x_4 \coloneqq \frac{s}{2} + s + s + s = 17$	$.5 ft \qquad x_3 \coloneqq \frac{s}{2} + s + s = 12.5 f$	ft $x_2 := \frac{s}{2} + s = 7.5 ft$	$x_1 := \frac{s}{2} = 2.5 \ ft$	
$x_5 \coloneqq x_1$	$x_6 \coloneqq x_2$	$x_7 \coloneqq x_3$	$x_8 \coloneqq x_4$	
$\Sigma x_{squared1} \coloneqq 2 \cdot (8 \cdot (x_1$	$(x^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2})) = 8400 \ ft^{2}$			

P_1 :	$=\frac{P_g}{N}+$	$\frac{M_x \boldsymbol{\cdot} y_1}{\boldsymbol{\Sigma} x_{squared1}}$	= 160581.865 <i>lb</i>	=</td <td>$P_{all} = 356838.076$ <i>lb</i></td> <td></td>	$P_{all} = 356838.076$ <i>lb</i>	
P_2 :	$=\frac{P_g}{N}+$	$\frac{M_x \cdot y_2}{\Sigma x_{squared1}}$	= 224481.031 lb	=</td <td>$P_{all} = 356838.076 \ lb$</td> <td></td>	$P_{all} = 356838.076 \ lb$	
P_3 :	$=\frac{P_g}{N}+$	$\frac{M_x \cdot y_3}{\Sigma x_{squared1}}$	= 288380.198 lb	=</td <td>$P_{all} = 356838.076$ <i>lb</i></td> <td></td>	$P_{all} = 356838.076$ <i>lb</i>	
P_4 :	$=\frac{P_g}{N}+$	$\frac{M_x \boldsymbol{\cdot} y_4}{\boldsymbol{\Sigma} x_{squared1}}$	= 352279.365 <i>lb</i>	=</td <td>$P_{all} = 356838.076$ <i>lb</i></td> <td></td>	$P_{all} = 356838.076$ <i>lb</i>	
P_5 :	$=\frac{P_g}{N}-$	$\frac{M_x \boldsymbol{\cdot} y_5}{\boldsymbol{\Sigma} x_{squared1}}$	= 96682.698 lb	=</td <td>P_{all} = 356838.076 lb</td> <td></td>	P _{all} = 356838.076 lb	
P_6 :	$=\frac{P_g}{N}$	$\frac{M_x \boldsymbol{\cdot} y_6}{\boldsymbol{\Sigma} x_{squared1}}$	= 32783.531 lb	=</td <td>$T_{all} = 60997.221 \ lb$</td> <td></td>	$T_{all} = 60997.221 \ lb$	
P_7 :	$=\frac{P_g}{N}$	$\frac{M_x \cdot y_7}{\Sigma x_{squared1}}$	= -31115.635 lb	=</td <td>$T_{all} = 60997.221 \ lb$</td> <td></td>	$T_{all} = 60997.221 \ lb$	
P_8 :	$=\frac{P_g}{N}-$	$\frac{M_x \cdot y_8}{\varSigma x_{squared1}}$	=-95014.802 lb	=</td <td>$T_{all} = 60997.221 \ lb$</td> <td></td>	$T_{all} = 60997.221 \ lb$	
Al	l Piles	are able	to handle this loading.			

All piles satisfy axial load capacity

 $A \coloneqq 60.2 \ in^2$

 $P_d = P_4$ Maximum Axial Load Controls

 $\sigma_d \coloneqq \frac{P_d}{A} = 5851.817 \frac{lb}{in^2}$

 $\sigma_{all} \coloneqq 0.35 \cdot F_y = 21000 \frac{lb}{in^2}$ Standard Guidelines for the Design and Installation of Pile Foundations, $\sigma_d \quad <\!\!/= \quad \sigma_{all}$

Criteria is satisfied. Piles will not buckle.

All requirements were satisfied for the design of the individual piles and the pile group. The piles are HP 18x204 and 60ft long. The pile cap contains 64 piles that are spaced at 5ft with a typical distribution of an isolated pile cap. Pile axial capacity is analyzed for each individual pile and passes the requirement for axial load. When combining axial load and bending moment the capacity is also satisfied and is shown in the analysis of pile groups portion of the calculations. The pile cap will be a 2ft thick concrete slab, which rests on top of the pile. This cap is a 40' x 40' square block.		Design Summary					
	All requirements were satisfied for the design of the individual piles and the pile group. The piles are HP 18x204 and 60ft long. The pile cap contains 64 piles that are spaced at 5ft with a typical distribution of an isolated pile cap. Pile axial capacity is analyzed for each individual pile and passes the requirement for axial load. When combining axial load and bending moment the capacity is also satisfied and is shown in the analysis of pile groups portion of the calculations. The pile cap will be a 2ft thick concrete slab, which rests on top of the pile. This cap is a 40' x 40' square block.						

	TABLE OF CONTENTS								
i	Project Description								
	J								
ii	Soil Properties and Calculations								
iii	Design Calculations for Individual Piles								
1V	Design Calculations for Pile Group								
V	Design Summary								
v									

Foundation Description:	
The design of this foundation need of attention is the four concrete towers. To guard a bridge operations, the abut	on is for a proposed pedestrian overpass in Waterloo, IA. The foundation in additions located on the north side of the bridge, and will be supporting two gainst excessive settlement of the abutments that would be detrimental to ments shall be supported by a pile group.
Project Goal:	
Determine the most econom	nical design for the pile group.
Variables:	
$\gamma \coloneqq 109 \ \frac{lb}{ft^3}$	Unit Weight of Soil
$\gamma_{sat} \coloneqq 130 \; rac{lb}{ft^3}$	Saturated Unit Weight of Soil
$\gamma_w \coloneqq 62.4 \ \frac{lb}{ft^3}$	Unit Weight of Water
$\gamma' \coloneqq \gamma_{sat} - \gamma_w = 67.6 \frac{lb}{ft^3}$	Submerged Unit Weight of Soil
<i>D_w</i> := 12 <i>ft</i>	Depth of Water Table
$L_p \coloneqq 60 \ ft$	Length of the Pile
$P_{rxn} \coloneqq 1372000 \ lb$	Reaction Force From Bridge Load
$P_{dead} \coloneqq 1000000 \ lb$	Dead Load of Both Tower
$P_g \coloneqq P_{rxn} + P_{dead}$	Vertical Load
V _y := 265800 lb	Horizontal Load N-S
$V_x \coloneqq 190000 \ lb$	Horizontal Load E-W
$M_y \coloneqq 3272000 \ b \cdot ft$	Moment N-S
$M_x \coloneqq 71630000 \ lb \cdot ft$	Moment E-W
Assumptions:	
From the soil report from U	SGS geodata, it shows that from 0-18" the soil is a loamy sand,
followed by sand per 18-30	", gravelly course sand per 30-55", course sand per 55-70", and
gravelly course sand per 70 from soil grade, it may be r	-80". Since the layer that is cohesive only goes down a short distance easonable to analyze this soil as a purely granular soil. It was also

noted from the soils report that the soil surrounding the project site is excessively drained. The preliminary design with be with a HP18x204 steel pile cross section with an individual pile length of 60'.

	Design Calcu	lations for Individual Piles
For calculating pile point Therefore taking values for Bowles, <i>Foundation Anal</i>	bearing capacity, to or the static stress- lysis and Design w	the reduced rigidity index needs to be assessed. strain modulus of elasticity from table 5-6 in the vas found for the soil at the bottom of the pile.
E _s := 50 MPa	Assuming course	sand that is dense and wet.
$E_s \coloneqq 1000000 \frac{lb}{ft^2}$	Conversion to US	S units.
$\sigma_{z12}' \coloneqq \gamma \cdot D_w = 1308 \frac{lb}{ft^2}$		Vertical Effective Stress at Water Table Depth
$\sigma_{z40}' \coloneqq \gamma \boldsymbol{\cdot} D_w + \left(\gamma' \boldsymbol{\cdot} \left(L_p - D_w\right)\right) =$	$=4552.8\frac{lb}{ft^2}$	Vertical Effective Stress at Pile Depth
Using table 2-7 in the Bo	wles text, the Pois	son's ratio for this soil was determined:
μ := 0.35	Cohesionless, der	nse sand.
Taking the assumed intern Engineering Reference fo from the Poulos and Davi $\phi' := 38$ °	nal angle of frictio <i>r PE 8th Edition</i> , 1 is text:	n for poorly graded sand from Lindeburg, <i>Civil</i> the critical depth can be found using Figure 3.10
$\phi \coloneqq \frac{3}{4} \cdot \phi' + 10 \circ = 38.5 \circ$		
Zc / d ratio from Poulos &	& Davis, Pile Four	idation Analysis & Design, Figure 3.10: = 10.5
$b_f \coloneqq 18.1 \ in$ $d \coloneqq 18.3 \ in$		HP18x204 steel pile.
$B_p := \sqrt[2]{\left(d^2\right) + \left(b_f^2\right)} = 25.739$ in	2	Width of pile is diagonal
$A_p \coloneqq b_f \cdot d = 331.23 \ in^2$		Including Soil Plug
$z_c \coloneqq 10.5 \cdot B_p = 22.522 \ ft$		Critical Depth
$\sigma_p'' \coloneqq D_w \cdot \gamma + \left(\left(z_c - D_w \right) \cdot \gamma' \right) = 2$	$2019.266 \frac{lb}{ft^2}$	Vertical Effective Stress at Critical Depth

Calculation of bearing capacity factors	ensues:	
$G_s := \frac{E_s}{2 \cdot (1 + \mu)} = 370370.37 \frac{lb}{ft^2}$	c' := 0	Cohesionless sand.
$I_r := \frac{G_s}{c' + \sigma_{z40}'} = 104.123$		Rigidity Index
Bowles, Foundation Analysis & Desig	<i>n</i> , Table o	n P.894 : Rigidity Index Within Range for Sandy Soil
$\varepsilon_{v} \coloneqq \frac{(1+\mu) \cdot (1-2\cdot\mu) \cdot (\sigma_{z40})}{E_{s} \cdot (1-\mu)} = 0.003$	Vo	lumetric Strain
$I_{rr} \coloneqq \frac{I_r}{1 + \varepsilon_v \cdot I_r} = 80.381$	Re	educed Rigidity Index
$K_o \coloneqq 1 - \sin(\phi') = 0.384$	At	rest earth pressure coefficient
Vesic's Bearing Capacity Factors:		
$\eta \coloneqq \frac{1 + 2 \cdot K_o}{3} = 0.59$		
$N_q \coloneqq \frac{3}{3 - \sin\left(\phi'\right)} \cdot \exp\left(\left(\frac{\pi}{2} - \phi'\right) \tan\left(\phi'\right)\right) \cdot \left(\tan\left(\phi'\right)\right) \cdot \left(\operatorname{d}\left($	$\ln\left(\frac{\pi}{4} + \frac{\phi'}{2}\right)$	$ \cdot I_{rr}^{2} \cdot I_{err}^{\left(\frac{4 \cdot \sin(\phi)}{3 \cdot (1 + \sin(\phi))}\right)} = 99.84 $
$N_{\gamma} \coloneqq 0.6 \cdot (N_q - 1) \tan(\phi') = 46.333$		
$N_{c1} \coloneqq (N_q - 1) \cot (\phi') = 126.509$		
$N_{c2} \coloneqq \frac{4}{3} \cdot \left(\ln \left(I_{rr} \right) + 1 \right) + \frac{\pi}{2} + 1 = 9.753$		
$N_c \coloneqq \mathbf{if} \left(\phi' = 0 \;, N_{c2} \;, N_{c1} \right) = 126.509$		
$q_p \coloneqq \eta \cdot \sigma_{z40}' \cdot N_q + \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 271342.785$	$\frac{lb}{ft^2}$	Pile Point Bearing Capacity
$P_p := A_p \cdot q_p = 624144.936$ <i>lb</i>		Pile Point Load Capacity

× ×	8 /	
Calculation of Side Friction Cap	acity:	
α - Method calculations will be	used to calculate the pile side friction capacity.	
From Tomlinson, <i>Pile Design an</i> due to Steel HP shape. Range is l	<i>d Construction Practice</i> , Table 4.10, Large displacement pile based on soil density, therefore with our dense sand assumption:	
$\frac{K_s}{K_o} = 1.25$		
$K_s := K_o \cdot 1.25 = 0.48$	Lateral Earth-Pressure Coefficient for Side Friction	
From Tomlinson, Table 4.11, Sm	ooth Steel Pile at interface with sand:	
$\delta_p \coloneqq 0.6 \bullet \phi' = 22.8 \bullet$	Angle of Friction Between Pile and Soil	
$f_s \coloneqq K_s \cdot \sigma_p'' \cdot \tan\left(\delta_p\right) = 407.793 \frac{lb}{ft^2}$	Side Friction Stress, Considering Critical Depth	
Calculation of side friction stress	s profile:	
$z_1 \coloneqq D_w$		
$\sigma_{z1} \coloneqq D_w \cdot \gamma = 1308 \frac{lb}{ft^2}$		
$f_{s12} \coloneqq K_s \cdot \sigma_{z1} \cdot \tan\left(\delta_p\right) = 264.152 \frac{lb}{ft^2}$		
$z_c = 22.522 \ ft$		
Layers	Avg. Side Friction Stress	
0-12 ft	$f_{s1Bar} \coloneqq \frac{1}{2} \cdot (0 + f_{s12}) = 132.076 \frac{lb}{4t^2}$	
12-22.5 ft	$f_{s2Bar} := \frac{1}{2} \cdot (f_{s12} + f_s) = 335.973 \frac{lb}{ft^2}$	
22.5-75 ft	$f_{s3Bar} := f_s = 407.793 \frac{lb}{ft^2}$	
$P_{p1} := b_f + b_f + d + d = 6.067 \ ft$	Perimeter of Pile (Including Soil Plug)	
$P_s \coloneqq P_{p1} \cdot \left(12 \ \mathbf{ft} \cdot (f_{s1Bar}) + 10.5 \ \mathbf{ft} \cdot (f_{s2B})\right)$	$(f_{s3Bar}) + 52.5 \mathbf{ft} \cdot (f_{s3Bar})) = 160898.831 \mathbf{lb}$ Side Friction Capacity	

			Surigi			
Calculations for	or compression a	nd tension load c	apacity:			
$L_p = 60 \ ft$		Length of Pile				
$W_p \coloneqq 204 \frac{lb}{ft} \cdot L_p =$	= 12240 lb	Nominal Weigh	it of pile type	multiplied by p	oile length	
From the <i>Stand</i> of safety were piles, the desig	<i>lard Guidelines j</i> determined from n axial load will	for the Design an table A.1 and A. be distributed th	d Installation 2. Assuming a roughout thes	<i>of Pile Founda</i> a pile group co e 64 piles.	<i>ations</i> , the factorns is the factorns of 64	ors
N := 64	Number of Pile	es				
$P_{g1} := \frac{P_g}{N} = 18.531$	ton					
$F_1 := 2.0$	Table A.1, Sind analysis to dete	ce this is a prelim ermine factors of	inary design, safety	using driving f	ormulas and sta	ıtic
$F_2\!\coloneqq\!1.1$	Table A.2, HP	Pile				
$FS := F_1 \cdot F_2 = 2.2$						
$P := P_{g1} + W_p = 493$	302.5 <i>lb</i> =</td <td>$P_{all} := \frac{P_p + P_s}{FS} = 35$</td> <td>6838.076 lb</td> <td></td> <td></td> <td></td>	$P_{all} := \frac{P_p + P_s}{FS} = 35$	6838.076 lb			
Condition Sati	sfied					
For uplift, the factor of safety	factor of safety is	s approximately a	a 50% increas	e from the com	pression capac	ity
$FS_T \coloneqq 1.5 \cdot FS = 3.$.3		Factor of Sa	fety for Uplift		
$T_{all} \coloneqq \frac{P_s}{FS_T} + W_p =$	= 60997.221 lb		Tension Cap	acity		
Fach individu	ol nilo gotiafica	this condition for	u hoth some	nod avial load	and hending	
moment. This	design criteria f pile groups. Th	is calculated wh	en calculatin	g to see if the summary.	piles will buck	le in

er

	Design Calcul	ations for Pile Group
Vertical load capacity of th	ne entire pile group:	
$P_s = 160898.831$ <i>lb</i>	Single pile	
$P_p = 624144.936$ <i>lb</i>	Single pile	
$P_{Group} \coloneqq N \cdot \left(P_s + P_p \right) = 5024280$	1.086 <i>lb</i>	
$s := 2 \cdot B_p = 4.29 \; ft$		Minimum Spacing Requirement
<i>s</i> := 5 <i>ft</i>		Pile Spacing
$e \coloneqq 1 ft$		Edge Distance
$B_g \coloneqq (7 \cdot s) + \left(\frac{(B_p)}{2} + e\right) + \left(\frac{(B_p)}{2}\right)$	$(-+e) = 39.145 \ ft$	See Drawing for Dimensions
$L_g := (7 \cdot s) + \left(\frac{\langle B_p \rangle}{2} + e\right) + \left(\frac{\langle B_p \rangle}{2}\right)$	(+ e) = 39.145 ft	
$B_q \coloneqq 40 \ ft$ Simplified) I Dimension	
$L_a = 40 ft$ Simplified	l Dimension	
$f_{a} := (f_{a1}, g_{aa}) + (f_{a2}, g_{aa}) + (f_{a2}, g_{aa}) = (f_{a2}, g_{aa}) = (f_{a2}, g_{aa})$	= 875.842 <i>lb</i>	
	ft ²	
$P_{gg} \coloneqq (2 \cdot B_g) + (2 \cdot L_g) = 160 \ ft$		Perimeter of Group
$A_g \coloneqq L_g \cdot B_g = 1600 \; \mathbf{ft}^2$		Area of Group
$P_{NBlock} \coloneqq P_{gg} \boldsymbol{\cdot} L_p \boldsymbol{\cdot} f_s + A_g \boldsymbol{\cdot} q_p = 4$	42556544.349 lb	Block Failure Capacity
$P_{Ngroup} \coloneqq min\left(P_{Group}, P_{NBlock}\right) =$	= 50242801.086 <i>lb</i>	
<i>FS</i> := 3		Assumed FS for pile group
$P_{allGroup} \coloneqq \frac{P_{Ngroup}}{P_{C}} = 16747600.3$	$_{362}$ lb $>/=$ P_g	= 2372000 <i>lb</i>
FS Condition Satisfied		
Conation Satisfied		

Predicted elastic settleme	ent of the	entire p	oile group	<u>):</u>						
$= \frac{2}{3} \cdot L_p = 40 ft \qquad \qquad \text{Equivalent For}$				ng Depth	for Piles in S	and				
$D_b \coloneqq \frac{1}{3} \cdot L_p = 20 ft$										
$D_{bb} \coloneqq \frac{2}{3} \cdot D_b = 13.333 ft$	S	tarting	of 4/1 Sl	ope Stre	ss Distribution	1				
$B_{EQ} := B_g + 2 \cdot \left(\frac{D_{bb}}{4}\right) = 46.667$	ft	$L_{EQ} \coloneqq$	$L_g + 2 \cdot \left(\frac{D}{4}\right)$	$\left(\frac{bb}{4}\right) = 46.6$	67 ft					
$q_{net} \coloneqq \frac{P_g}{B_{EO}^2} = 1089.184 \frac{lb}{ft^2}$										
Strain Influence Factor N	/lethod:									
$z_1 := B_{EQ} \cdot \left(0.5 + 0.555 \cdot \left(\frac{L_{EQ}}{B_{EQ}} \right) \right)$	(-1) = 23.3	333 ft	=</td <td>$B_{EQ} = 4$</td> <td>6.667 ft</td> <td>OK</td> <td></td> <td></td> <td></td> <td></td>	$B_{EQ} = 4$	6.667 ft	OK				
$z_2 \coloneqq B_{EQ} \cdot \left(2 + 0.222 \cdot \left(\frac{L_{EQ}}{B_{EQ}} - \right)\right)$	1) = 93.33	3 ft	=</td <td>$4 \cdot B_{EQ}$</td> <td>= 186.667 ft</td> <td>OK</td> <td></td> <td></td> <td></td> <td></td>	$4 \cdot B_{EQ}$	= 186.667 ft	OK				
$I_{z0} \coloneqq 0.1 + 0.0111 \cdot \left(\frac{L_{EQ}}{B_{EQ}} - 1\right)$	= 0.1		=</td <td>0.2</td> <td></td> <td>OK</td> <td></td> <td></td> <td></td> <td></td>	0.2		OK				
$\sigma_{zp}' \coloneqq \gamma \cdot D_w + \gamma' \cdot \left(\left(x - D_w \right) + D_w \right) + D_w + \gamma' \cdot \left(\left(x - D_w \right) + D_w + D_w \right) + D_w + D_$	$D_{bb} + z_1 \big) = 5$	5679.467	lb	Vertic	al Effective S	tress at z	1 (Befor	e Instal	lation)	,
$I_{zMax} \coloneqq 0.5 + 0.1 \cdot \sqrt[2]{rac{q_{net}}{\sigma_{zp'}}} = 0.5$	644			All sa	nd layer		$\Sigma = I_{-}$	Δz_1		
Layer 1										
$\Delta z_1 := z_1 = 23.333 \; ft$	$E_s = 500 - $	ton ft ²		$I_{zBar1} \coloneqq$	$\frac{I_{z0} + I_{zMax}}{2} = 0.3$	322	$\Sigma_1 \coloneqq 2.42$	$258 \cdot 10^{-6}$	5 <u>f</u> t ³ lb	
Layer 2										
$\Delta z_2 \coloneqq z_2 - z_1 = 70 ft$	$E_s = 500 - $	ton ft ²		I_{zBar2} :=	$\frac{I_{zMax}}{2} = 0.272$		$\Sigma_2 \coloneqq 6.20$	$68 \cdot 10^{-6}$	5 <u>f</u> t ³ lb	
$\Sigma := \Sigma_1 + \Sigma_2 = 0.0000086326 \frac{J}{2}$	ft ³ lb									
$\sigma_z' \coloneqq \gamma \cdot D_w + \gamma' \cdot \left(\left(x - D_w \right) + D_w \right) + D_w = 0$	$\left(D_{bb} \right) = 4102.7$	$133 \frac{lb}{ft^2}$	٦	/ertical H	Effective Stres	s at Equ	ivalent F	ooting		
$C_1 \coloneqq 1 - 0.5 \cdot \left(\frac{\sigma_z'}{q_{net}} \right) = -0.883$										
t = 50 Years										
$C_2 \coloneqq 1 + 0.2 \cdot \log\left(\frac{t}{0.1}\right) = 1.54$										
$p_{g} \coloneqq C_{1} \cdot C_{2} \cdot q_{net} \cdot \Sigma = -0.153$ in			E	Elastic Settlement of Pile Group						

Allowable Lateral Load Calculations	Brom's Method):	
Assume Fixed-Head, Long Pile (Tom	inson)	
$B_p = 25.739 \ in$ $e := 27 \ ft$ $S_x := 380 \ i$	n^3 $S_y \coloneqq 124 \ in^3$ $-\frac{6}{E}$	$\frac{e}{B_p} = 12.588$
$F_y \coloneqq 60000 \frac{lb}{in^2}$ Yield	Stress of Pile	
N-S Horizontal Load:		
$M_Y \coloneqq S_x \cdot F_y = 1900000 \ lb \cdot ft$	Yield Moment N-S	
$K_p \coloneqq \tan\left(45^\circ + \frac{\phi'}{2}\right)^2 = 4.204$		
$\frac{M_Y}{K_p \cdot \gamma \cdot B_p^4} = 195.904$	Figure 7.12 from Poulous and	Davis
$V_{u} \coloneqq 150 \cdot K_{p} \cdot \gamma \cdot B_{p}^{-3} = 678249.205 \ lb$	Ultimate Load	
<i>FS</i> := 1.67	Factor of Safety for Steel	
$V_{all} \coloneqq \frac{V_u}{FS} = 406137.249 \ lb$ >/=	$V_y = 265800 \ lb$	
Condition Satisfied		
E-W Horizontal Load:		
$M_Y \coloneqq S_y \cdot F_y = 620000 \ lb \cdot ft$	Yield Moment E-W	
$K_p := \tan\left(45 \circ + \frac{\phi'}{2}\right)^2 = 4.204$		
$\frac{M_Y}{K_p \cdot \gamma \cdot B_p^4} = 63.927$	Figure 7.12 from Poulous and	Davis
$V_u := 75 \cdot K_p \cdot \gamma \cdot B_p^{-3} = 339124.603 \ lb$	Ultimate Load	
<i>FS</i> := 1.67	Factor of Safety for Steel	
$V_{all} := \frac{V_u}{FS} = 203068.624 \ lb$ >/=	V _x = 190000 lb	
Condition Satisfied		

Pile Buckling	Calculations:			
See AutoCAD	drawing for pile arrangem	ent		
N-S Axis Bend	ling (Overturning Moment)		
$y_4 \coloneqq \frac{s}{2} + s + s + s =$	= 17.5 ft $y_3 \coloneqq \frac{s}{2} + s + s = 12$	$.5 ft \qquad y_2 := \frac{s}{2} + s = 7$	$y_1 \coloneqq \frac{s}{2} = 2.5 \ ft$	
$y_5 \coloneqq y_1$	$y_6 \coloneqq y_2$	$y_7\coloneqq y_3$	$y_8 \coloneqq y_4$	
$\Sigma y_{squared1} \coloneqq 2 \cdot (8 \cdot$	$(y_1^2 + y_2^2 + y_3^2 + y_4^2)) = 8400$	ft ²		
$P_1 \coloneqq \frac{P_g}{N} + \frac{M_y \cdot y}{\Sigma y_{squar}}$	$\frac{J_1}{red_1} = 38036.31 \ lb$	=</td <td>$P_{all} = 356838.076 \ lb$</td> <td></td>	$P_{all} = 356838.076 \ lb$	
$P_2 \coloneqq \frac{P_g}{N} + \frac{M_y \boldsymbol{\cdot} \boldsymbol{y}}{\boldsymbol{\Sigma} \boldsymbol{y}_{squar}}$	$\frac{y_2}{z_{red1}} = 39983.929 \ lb$	=</td <td>$P_{all} = 356838.076 \ lb$</td> <td></td>	$P_{all} = 356838.076 \ lb$	
$P_3 \coloneqq \frac{P_g}{N} + \frac{M_y \boldsymbol{\cdot} \boldsymbol{y}}{\boldsymbol{\Sigma} \boldsymbol{y}_{squar}}$	$\frac{y_3}{1} = 41931.548 \ lb$	=</td <td>$P_{all} = 356838.076$ <i>lb</i></td> <td></td>	$P_{all} = 356838.076$ <i>lb</i>	
$P_4 \! := \! \frac{P_g}{N} \! + \! \frac{M_y \! \cdot \! y}{\varSigma y_{squar}}$	$\frac{y_4}{1} = 43879.167 \ b$	=</td <td>$P_{all} = 356838.076 \ lb$</td> <td></td>	$P_{all} = 356838.076 \ lb$	
$P_5 \! \coloneqq \! \frac{P_g}{N} \! - \! \frac{M_y \! \cdot \! y}{\Sigma y_{squar}}$	$\frac{1}{2} = 36088.69 \ lb$	=</td <td>$P_{all} = 356838.076 \ lb$</td> <td></td>	$P_{all} = 356838.076 \ lb$	
$P_6 \! \coloneqq \! \frac{P_g}{N} \! - \! \frac{M_y \! \cdot \! y}{\Sigma y_{squar}}$	$\frac{y_6}{z_{ed1}} = 34141.071 \ b$	=</td <td>$P_{all} = 356838.076 \ lb$</td> <td></td>	$P_{all} = 356838.076 \ lb$	
$P_7 \coloneqq \frac{P_g}{N} - \frac{M_y \cdot y}{\Sigma y_{sauar}}$	$\frac{b_{7}}{b_{red1}} = 32193.452 \ b_{b}$	=</td <td>$P_{all} = 356838.076 \ lb$</td> <td></td>	$P_{all} = 356838.076 \ lb$	
$P_8 \coloneqq \frac{P_g}{N} - \frac{M_y \cdot y}{\Sigma y_{squar}}$	$\frac{J_8}{red1} = 30245.833 \ lb$	=</td <td>$P_{all} = 356838.076$ <i>lb</i></td> <td></td>	$P_{all} = 356838.076$ <i>lb</i>	

All Piles are able to handle this loading.

E-W Axis Bending (Overturning Moment)

$x_4\!\coloneqq\!\frac{s}{2}\!+\!s$	+ s + s =	= 17.5 f i	t x ₃	$=\frac{s}{2}+$	s + s = 12	.5 ft	$x_2 \coloneqq \frac{s}{2} +$	s=7.5 ft	$x_1 \coloneqq \frac{s}{2}$	-=2.5 ft		
$x_5\!\coloneqq\!x_1$			x_6	$= x_2$			$x_7 \coloneqq x_3$		$x_8 \coloneqq x_s$			
$\Sigma x_{squared1}$::	=2•(8•	$(x_1^2 + x_2^2)$	$x_2^2 + x_3^2$	$x^{2} + x_{4}^{2}$)) = 8400	ft ²						

$P_1 \coloneqq \frac{P_2}{N}$	$\frac{g}{\Sigma} + \frac{M_x \cdot y_1}{\Sigma x_{squared1}}$	= 58380.952 <i>lb</i>	=</td <td>$P_{all} = 356838.076$ lb</td> <td></td>	$P_{all} = 356838.076$ lb	
$P_2 \coloneqq \frac{P_2}{N}$	$\frac{g}{\Sigma} + \frac{M_x \cdot y_2}{\Sigma x_{squared1}}$	= 101017.857 <i>lb</i>	=</th <th>$P_{all} = 356838.076 \ lb$</th> <th></th>	$P_{all} = 356838.076 \ lb$	
$P_3 \coloneqq \frac{P_3}{N}$	$\frac{g}{\Sigma} + \frac{M_x \cdot y_3}{\Sigma x_{squared1}}$	= 143654.762 <i>lb</i>	=</th <th>$P_{all} = 356838.076$ lb</th> <th></th>	$P_{all} = 356838.076$ lb	
$P_4 \coloneqq \frac{P_2}{N}$	$\frac{g}{\Sigma x_{squared1}} + \frac{M_x \cdot y_4}{\Sigma x_{squared1}}$	= 186291.667 <i>lb</i>	=</th <th>$P_{all} = 356838.076$ lb</th> <th></th>	$P_{all} = 356838.076$ lb	
$P_5 \coloneqq \frac{P_5}{N}$	$\frac{g}{\Sigma x_{squared1}} = rac{M_x \cdot y_5}{\Sigma x_{squared1}}$	= 15744.048 lb	=</th <th>$P_{all} = 356838.076$ lb</th> <th></th>	$P_{all} = 356838.076$ lb	
$P_6 \coloneqq \frac{P_6}{N}$	$\frac{g}{\Sigma x_{squared1}} = rac{M_x \cdot y_6}{\Sigma x_{squared1}}$	= -26892.857 lb	=</th <th>$T_{all} = 60997.221 \ lb$</th> <th></th>	$T_{all} = 60997.221 \ lb$	
$P_7 \coloneqq \frac{P_2}{N}$	$\frac{g}{\Sigma x_{squared1}} - rac{M_x \cdot y_7}{\Sigma x_{squared1}}$	= -69529.762 <i>lb</i>	=</th <th>$T_{all} = 60997.221 \ lb$</th> <th></th>	$T_{all} = 60997.221 \ lb$	
$P_8 \coloneqq \frac{P_8}{N}$	$\frac{g}{\Delta T} = rac{M_x \cdot y_8}{\Sigma x_{squared1}}$	=-112166.667 lb	=</th <th>$T_{all} \!=\! 60997.221 \; lb$</th> <th></th>	$T_{all} \!=\! 60997.221 \; lb$	
All Pi	les are able	to handle this loading.			
All pi	les satisfy av	kial load capacity			

 $A \coloneqq 60.2 \ in^2$

	N (· · · · · · · · · · · · · · · · · · ·	- 1 T	10	1
$P_{i} = P_{i}$	viax	imum A	x1ai L	oad C	ontrois
- d - 4	1.1.0011			00000	01101010

 $\sigma_d \coloneqq \frac{P_d}{A} = 3094.546 \frac{lb}{in^2}$

 $\sigma_{all} \coloneqq 0.35 \cdot F_y = 21000 \frac{lb}{in^2}$ Standard Guidelines for the Design and Installation of Pile Foundations, $\sigma_d \quad <\!\!/= \quad \sigma_{all}$

Criteria is satisfied. Piles will not buckle.

	Des	ign Summary			
All requirements were satisfied for the design of the individual piles and the pile group. The piles are HP 18x204 and 60ft long. The pile cap contains 64 piles that are spaced at 5ft with a typical distribution of an isolated pile cap. Pile axial capacity is analyzed for each individual pile and passes the requirement for axial load. When combining axial load and bending moment the capacity is also satisfied and is shown in the analysis of pile groups portion of the calculations. The pile cap will be a 2ft thick concrete slab, which rests on top of the pile. This cap is a 40' x 40' square block.					

	TABLE OF CONTENTS
1	Project Description
;;	Sail Properties and Calculations
11	
iii	Design Calculations for Individual Piles
iv	Design Calculations for Pile Group
v	Design Summary

Foundation Description:	
The design of this foundati need of attention is the fou concrete towers. To guard a bridge operations, the abut	on is for a proposed pedestrian overpass in Waterloo, IA. The foundation in ndations located on the north side of the bridge, and will be supporting two against excessive settlement of the abutments that would be detrimental to ments shall be supported by a pile group.
Project Goal:	
Determine the most econor	nical design for the pile group.
Variables:	
$\gamma \coloneqq 109 \frac{lb}{ft^3}$	Unit Weight of Soil
$\gamma_{sat} \coloneqq 130 \ \frac{lb}{ft^3}$	Saturated Unit Weight of Soil
$\gamma_w \coloneqq 62.4 \ \frac{lb}{ft^3}$	Unit Weight of Water
$\gamma' \coloneqq \gamma_{sat} - \gamma_w = 67.6 \ rac{lb}{ft^3}$	Submerged Unit Weight of Soil
$D_w \coloneqq 12 \ ft$	Depth of Water Table
$L_p \coloneqq 60 \ ft$	Length of the Pile
<i>P_{rxn}</i> ≔ 4503842 <i>lb</i>	Reaction Force From Bridge Load
P _{dead} ≔ 1000000 lb	Dead Load of Both Tower
$P_g \coloneqq P_{rxn} + P_{dead}$	Vertical Load
V _y := 271922 lb	Horizontal Load N-S
$V_x = 39514$ <i>lb</i>	Horizontal Load E-W
$M_y \coloneqq 691440 \ \textit{lb} \cdot \textit{ft}$	Moment N-S
$M_x \coloneqq 77715800 \ \textit{lb} \cdot \textit{ft}$	Moment E-W
Assumptions: From the soil report from U followed by sand per 18-30 gravelly course sand per 70 from soil grade, it may be n noted from the soils report preliminary design with be	JSGS geodata, it shows that from 0-18" the soil is a loamy sand,)", gravelly course sand per 30-55", course sand per 55-70", and 0-80". Since the layer that is cohesive only goes down a short distance reasonable to analyze this soil as a purely granular soil. It was also that the soil surrounding the project site is excessively drained. The with a HP18x204 steel pile cross section with an individual pile

length of 60'.

	Design Calculat	ions for Individual Piles			
For calculating pile poin Therefore taking values Bowles, <i>Foundation And</i>	nt bearing capacity, the for the static stress-str alysis and Design was	reduced rigidity index needs to be assessed. ain modulus of elasticity from table 5-6 in the found for the soil at the bottom of the pile.			
$E_s \coloneqq 50 \ MPa$	$E_s = 50 MPa$ Assuming course sand that is dense and wet.				
$E_s \coloneqq 1000000 \frac{lb}{ft^2}$	Conversion to US un	nits.			
$\sigma_{z12}' \coloneqq \gamma \cdot D_w = 1308 \frac{lb}{ft^2}$		Vertical Effective Stress at Water Table Depth			
$\sigma_{z40}' \coloneqq \gamma \boldsymbol{\cdot} D_w + \left(\gamma' \boldsymbol{\cdot} \left(L_p - D_w\right)\right)$	$) = 4552.8 \frac{lb}{ft^2}$	Vertical Effective Stress at Pile Depth			
Using table 2-7 in the B	owles text, the Poisson	's ratio for this soil was determined:			
μ := 0.35	Cohesionless, dense	sand.			
Taking the assumed inte Engineering Reference f from the Poulos and Day	ernal angle of friction for <i>for PE 8th Edition</i> , the vis text:	or poorly graded sand from Lindeburg, <i>Civil</i> critical depth can be found using Figure 3.10			
$\phi' \coloneqq 38$ •					
$\phi \coloneqq \frac{3}{4} \cdot \phi' + 10 \circ = 38.5 \circ$					
Zc / d ratio from Poulos	& Davis, Pile Founda	tion Analysis & Design, Figure 3.10: = 10.5			
$b_f := 18.1 \ in$ $d := 18.3 \ i$	in H	HP18x204 steel pile.			
$B_p \coloneqq \sqrt[2]{(d^2) + (b_f^2)} = 25.739$	in N	Width of pile is diagonal			
$A_p \coloneqq b_f \cdot d = 331.23 \ \boldsymbol{in}^2$	I	ncluding Soil Plug			
$z_c \coloneqq 10.5 \cdot B_p = 22.522 \ ft$		Critical Depth			

 $\sigma_p'' \coloneqq D_w \cdot \gamma + \left(\left(z_c - D_w \right) \cdot \gamma' \right) = 2019.266 \frac{lb}{ft^2}$ Vertical Effective Stress at Critical Depth

Calculation of bearing capacity factors	ensues:	
$G_s := \frac{E_s}{2 \cdot (1 + \mu)} = 370370.37 \frac{lb}{ft^2}$	$c' \coloneqq 0$	Cohesionless sand.
$I_r \coloneqq \frac{G_s}{c' + \sigma_{z40}' \cdot \tan{(\phi')}} = 104.123$		Rigidity Index
Bowles, Foundation Analysis & Design	n, Table or	n P.894 : Rigidity Index Within Range for Sandy Soil
$\varepsilon_{v} \coloneqq \frac{(1+\mu) \cdot (1-2\cdot\mu) \cdot (\sigma_{z40})}{E_{s} \cdot (1-\mu)} = 0.003$	Vo	lumetric Strain
$I_{rr} \coloneqq \frac{I_r}{1 + \varepsilon_v \cdot I_r} = 80.381$	Re	duced Rigidity Index
$K_o \coloneqq 1 - \sin(\phi') = 0.384$	At	rest earth pressure coefficient
Vesic's Bearing Capacity Factors:		
$\eta \coloneqq \frac{1 + 2 \cdot K_o}{3} = 0.59$		
$N_q \coloneqq \frac{3}{3 - \sin(\phi')} \cdot \exp\left(\left(\frac{\pi}{2} - \phi'\right) \tan(\phi')\right) \cdot \left(\tan(\phi')\right) \cdot \left(\operatorname{in}(\phi')\right) \cdot \left(\operatorname{in}(\phi'$	$\left(\frac{\pi}{4} + \frac{\phi'}{2}\right)$	$\cdot I_{rr}^{\left(\frac{4 \cdot \sin\left(\phi\right)}{3 \cdot (1 + \sin\left(\phi\right))}\right)} = 99.84$
$N_{\gamma} \coloneqq 0.6 \cdot (N_q - 1) \tan(\phi') = 46.333$		
$N_{c1} \coloneqq (N_q - 1) \cot(\phi') = 126.509$		
$N_{c2} \coloneqq \frac{4}{3} \cdot \left(\ln \left(I_{rr} \right) + 1 \right) + \frac{\pi}{2} + 1 = 9.753$		
$N_{c} \coloneqq \mathbf{if} \left(\phi' = 0 \;, N_{c2} \;, N_{c1} \right) = 126.509$		
$q_p \coloneqq \eta \cdot \sigma_{z40}' \cdot N_q + \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 271342.785 - \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 271342.785 - \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 271342.785 - \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 271342.785 - \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 271342.785 - \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 271342.785 - \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 271342.785 - \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 271342.785 - \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 271342.785 - \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 271342.785 - \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 271342.785 - \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 271342.785 - \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 271342.785 - \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 271342.785 - \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 271342.785 - \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 271342.785 - \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 271342.785 - \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 271342.785 - \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 271342.785 - \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 271342.785 - \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 271342.785 - \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 271342.785 - \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 271342.785 - \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 271342.785 - \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 271342.785 - \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 271342.785 - \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 271342.785 - \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = \frac{1}{2} \cdot \gamma' \cdot B_p $	<i>lb</i> <i>ft</i> ²	Pile Point Bearing Capacity
$P_p := A_p \cdot q_p = 624144.936$ <i>lb</i>		Pile Point Load Capacity

Calculation of Side Friction Cap	pacity:
α - Method calculations will be	used to calculate the pile side friction capacity.
From Tomlinson, <i>Pile Design a</i> due to Steel HP shape. Range is	<i>nd Construction Practice</i> , Table 4.10, Large displacement pile based on soil density, therefore with our dense sand assumption:
$\frac{K_s}{K_o} = 1.25$	
$K_s := K_o \cdot 1.25 = 0.48$	Lateral Earth-Pressure Coefficient for Side Friction
From Tomlinson, Table 4.11, Sr	nooth Steel Pile at interface with sand:
$\delta_p\!\coloneqq\!0.6\boldsymbol{\cdot}\phi'\!=\!22.8~^{\bullet}$	Angle of Friction Between Pile and Soil
$f_s \coloneqq K_s \cdot \sigma_p'' \cdot \tan\left(\delta_p\right) = 407.793 \frac{lb}{ft^2}$	Side Friction Stress, Considering Critical Depth
Calculation of side friction stres	s profile:
$z_1 \coloneqq D_w$	
$\sigma_{z1} \coloneqq D_w \cdot \gamma = 1308 \frac{lb}{ft^2}$	
$f_{s12} \coloneqq K_s \cdot \sigma_{z1} \cdot \tan\left(\delta_p\right) = 264.152 \frac{lb}{ft^2}$	
$z_c = 22.522 \ ft$	
Layers	Avg. Side Friction Stress
0-12 ft	$f_{s1Bar} := \frac{1}{2} \cdot (0 + f_{s12}) = 132.076 \frac{lb}{ft^2}$
12-22.5 ft	$f_{s2Bar} \coloneqq \frac{1}{2} \cdot (f_{s12} + f_s) = 335.973 \frac{lb}{ft^2}$
22.5-75 ft	$f_{s3Bar} := f_s = 407.793 \ \frac{lb}{ft^2}$
$P_{p1} \coloneqq b_f + b_f + d + d = 6.067 \ ft$	Perimeter of Pile (Including Soil Plug)
$P_s \coloneqq P_{p1} \cdot \left(12 \ \mathbf{ft} \cdot \left(f_{s1Bar} \right) + 10.5 \ \mathbf{ft} \cdot \left(f_{s2} \right) \right)$	$(Bar) + 52.5 \mathbf{ft} \cdot (f_{s3Bar})) = 160898.831 \mathbf{lb}$ Side Friction Capacity

Calculations for compression ar	nd tension load capacity:
$L_p = 60 \ ft$	Length of Pile
$W_p \coloneqq 204 \ \frac{lb}{ft} \cdot L_p = 12240 \ lb$	Nominal Weight of pile type multiplied by pile length
From the <i>Standard Guidelines for</i> of safety were determined from piles, the design axial load will	<i>For the Design and Installation of Pile Foundations</i> , the factors table A.1 and A.2. Assuming a pile group consisting of 64 be distributed throughout these 64 piles.
$N \coloneqq 64$ Number of Pile	s
$P_{g1} \coloneqq \frac{P_g}{N} = 42.999$ ton	
$F_1 = 2.0$ Table A.1, Sinc analysis to dete	e this is a preliminary design, using driving formulas and static rmine factors of safety
$F_2 = 1.1$ Table A.2, HP I	Pile
$FS \coloneqq F_1 \cdot F_2 = 2.2$	
$P := P_{g1} + W_p = 98237.531$ <i>lb</i> =</td <td>$P_{all} \coloneqq \frac{P_p + P_s}{FS} = 356838.076 \ lb$</td>	$P_{all} \coloneqq \frac{P_p + P_s}{FS} = 356838.076 \ lb$
Condition Satisfied	
For uplift, the factor of safety is factor of safety.	approximately a 50% increase from the compression capacity
$FS_T := 1.5 \cdot FS = 3.3$	Factor of Safety for Uplift
$T_{all} \coloneqq \frac{P_s}{FS_T} + W_p = 60997.221 \ \textit{lb}$	Tension Capacity
Each individual pile satisfies t moment. This design criteria i the analysis of pile groups. Th	his condition for both combined axial load and bending s calculated when calculating to see if the piles will buckle in is value is also shown in the summary.

Pile settlement for an	individual pile is as follows (Bowles Method):
$A_p \coloneqq 60.2 \ in^2$ Al	ISC Table 1-4: HP 18x201
$E_p \coloneqq 29000000 \frac{lb}{in^2}$	
$m \coloneqq 1$ Sh $I_s \coloneqq 1$	nape Factor, m*Is = 1.0 (Relatively square pile)
$\frac{L_p}{B_p} = 27.973 \qquad \text{Fc}$	ox Embedment Factor Inequality Satisfaction
<i>I_F</i> := 0.35 Fo	ox Embedment Factor
$F_1 \coloneqq 0.25$ Reinform	eduction Factor, High side friction capacity compared to design load for an dividual pile.
$q \coloneqq \frac{P_{g_1}}{A_p} = 1428.53 \frac{lb}{in^2}$	
$\delta_p \coloneqq q \cdot B_p \cdot \left(\frac{1 - \mu^2}{E_s}\right) \cdot m \cdot I$	$I_s \cdot I_F \cdot F_1 = 0.407$ in Point Bearing Settlement
For elastic settlement	assume that the point load is equal to zero.
$P(z) \coloneqq P_{g1} + \left(\frac{P_{g1}}{L_p}\right) \cdot z$	
$\delta_E \coloneqq \int_{0}^{L_p} \frac{P(z)}{E_p \cdot A_p} \mathrm{d}z = 0.053 \mathrm{d}z$	in Elastic Shortening
$\delta_{pile} \coloneqq \delta_p + \delta_E = 0.46 ~\textit{in}$	Total Pile Settlement
$B_p \cdot 0.03 = 0.772$ in	Pile settlement should not be greater than 3% of pile diameter
Condition Satisfied	

	Design Calcula	ations for Pile Group
Vertical load capacity of the	e entire pile group:	
P = 160808 831 b	Single pile	
r _s = 100030.031 10	Shigle pile	
$P_p = 624144.936$ <i>lb</i>	Single pile	
$P_{Group} \coloneqq N \boldsymbol{\cdot} \left(P_s + P_p \right) = 50242801$.086 <i>lb</i>	
$s \coloneqq 2 \cdot B_n = 4.29 \ ft$		Minimum Spacing Requirement
		Dilo Specing
s = 5 ft		Phe Spacing
e := 1 ft		Edge Distance
((B)) ((B))		
$B_g \coloneqq (7 \cdot s) + \left\lfloor \frac{(-p)}{2} + e \right\rfloor + \left\lfloor \frac{(-p)}{2} \right\rfloor$	+e = 39.145 ft	See Drawing for Dimensions
$L_a \coloneqq (7 \cdot s) + \left(\frac{\langle B_p \rangle}{1 + e} + e\right) + \left(\frac{\langle B_p \rangle}{1 + e} + e\right)$	(+e) = 39.145 ft	
	•	
$B_g = 40 ft$ Simplified	Dimension	
I - 40 # Simplified	Dimension	
	Dimension	
$f_s \coloneqq \left(f_{s1Bar}\right) + \left(f_{s2Bar}\right) + \left(f_{s3Bar}\right) =$	875.842 <u>lb</u>	
	Jt	
$P_{gg} \coloneqq (2 \cdot B_g) + (2 \cdot L_g) = 160 \ ft$		Perimeter of Group
$A_g \coloneqq L_g \cdot B_g = 1600 \; \textit{ft}^2$		Area of Group
		Plaak Failura Canacity
$P_{NBlock} \coloneqq P_{gg} \cdot L_p \cdot f_s + A_g \cdot q_p = 44$	2556544.349 lo	Block Fanure Capacity
$P_{Ngroup} \coloneqq \min\left(P_{Group}, P_{NBlock}\right) = 0$	50242801.086 lb	
$FS \coloneqq 3$		Assumed FS for pile group
$P_{Ngroup} = \frac{P_{Ngroup}}{16747600.36}$	2 lb > = P	- 5503842 Jb
FS FS		
Condition Satisfied		

- 8 -

Predicted elastic settlement of the	he entire nile groun		
redicted clustre settlement of th	ne entire prie group.		
$x \coloneqq \frac{2}{3} \cdot L_p = 40 \ ft$	Equivalent Footing	g Depth for Piles in San	ıd
$D_b \coloneqq \frac{1}{3} \cdot L_p = 20 \ ft$			
$D_{bb} \coloneqq \frac{2}{3} \cdot D_b = 13.333 \ ft$	Starting of 4/1 Slop	pe Stress Distribution	
$B_{EQ} := B_g + 2 \cdot \left(\frac{D_{bb}}{4}\right) = 46.667 \ ft$	$L_{EQ} \coloneqq L_g + 2 \cdot \left(\frac{D_{bb}}{4} \right.$	$-) = 46.667 \ ft$	
$q_{net} \coloneqq \frac{P_g}{B_{EQ}^2} = 2527.274 \frac{lb}{ft^2}$			
Strain Influence Factor Method			
$z_1 := B_{EQ} \cdot \left(0.5 + 0.555 \cdot \left(\frac{L_{EQ}}{B_{EQ}} - 1 \right) \right) = 2$	23.333 ft =</td <td>$B_{EQ} = 46.667 \; ft$</td> <td>ОК</td>	$B_{EQ} = 46.667 \; ft$	ОК
$z_2 \coloneqq B_{EQ} \cdot \left(2 + 0.222 \cdot \left(\frac{L_{EQ}}{B_{EQ}} - 1 \right) \right) = 93.$.333 ft =</td <td>$4 \cdot B_{EQ} = 186.667 ft$</td> <td>ОК</td>	$4 \cdot B_{EQ} = 186.667 ft$	ОК
$I_{z0} \coloneqq 0.1 + 0.0111 \cdot \left(\frac{L_{EQ}}{B_{EQ}} - 1\right) = 0.1$	=</td <td>0.2</td> <td>ОК</td>	0.2	ОК
$\sigma_{zp}' \coloneqq \gamma \boldsymbol{\cdot} D_w + \gamma' \boldsymbol{\cdot} \left(\left(x - D_w \right) + D_{bb} + z_1 \right)$	$= 5679.467 \frac{lb}{ft^2}$	Vertical Effective Stre	ess at z1 (Before Installation)
$I_{zMax} \coloneqq 0.5 + 0.1 \cdot \sqrt[2]{\frac{q_{net}}{\sigma_{zp'}}} = 0.567$		All sand layer	$\Sigma = I_{\rm exp} + \frac{\Delta z_1}{2}$
Layer 1			$E = r_{zBar1}$ E_s
$\Delta z_1 := z_1 = 23.333 \ ft$ $E_s = 50$	$0 \frac{ton}{ft^2}$	$I_{zBar1} := \frac{I_{z0} + I_{zMax}}{2} = 0.333$	$\Sigma_1 := 2.4258 \cdot 10^{-6} \frac{ft^3}{b}$
Layer 2			
$\Delta z_2 \coloneqq z_2 - z_1 = 70 ft \qquad \qquad E_s = 50$	$0.0 \frac{ton}{ft^2}$	$I_{zBar2} := \frac{I_{zMax}}{2} = 0.283$	$\Sigma_2 := 6.2068 \cdot 10^{-6} \frac{ft^3}{b}$
$\boldsymbol{\Sigma} \coloneqq \boldsymbol{\Sigma}_1 + \boldsymbol{\Sigma}_2 = 0.0000086326 \frac{\boldsymbol{ft}^3}{\boldsymbol{lb}}$			
$\sigma_z' \coloneqq \gamma \cdot D_w + \gamma' \cdot \left(\left(x - D_w \right) + D_{bb} \right) = 410$	$\frac{lb}{ft^2}$ Ve	ertical Effective Stress a	at Equivalent Footing
$C_1 \coloneqq 1 - 0.5 \cdot \left(\frac{\sigma_z'}{q_{net}}\right) = 0.188$			
t = 50 Years			
$C_2 \coloneqq 1 + 0.2 \cdot \log\left(\frac{t}{0.1}\right) = 1.54$			
$\delta_{pg} \coloneqq C_1 \cdot C_2 \cdot q_{net} \cdot \Sigma = 0.076 \ in$	El	astic Settlement of Pile	Group

Allowable Lateral Load Calc	culations (Brom	's Method):		
Assume Fixed-Head, Long P	ile (Tomlinson)			
$B_p = 25.739 \ in$ $e := 27 \ ft$	$S_x \coloneqq 380 \ in^3$	$S_y \coloneqq 124 \ \textit{in}^3$	$\frac{e}{B_p} = 12.588$	
$F_y \coloneqq 60000 \frac{lb}{in^2}$	Yield Stress	s of Pile		
N-S Horizontal Load:				
$M_Y \coloneqq S_x \cdot F_y = 1900000 \ \textit{lb} \cdot \textit{ft}$	Yield	l Moment N-S		
$K_p := \tan\left(45 \circ + \frac{\phi'}{2}\right)^2 = 4.204$				
$\frac{M_Y}{K_p \cdot \gamma \cdot B_p^4} = 195.904$	Figu	re 7.12 from Pould	ous and Davis	
V_{-} 150 V_{-} D^{3} (79940.905	n Illtin	anta Lond		
$V_u \coloneqq 150 \cdot K_p \cdot \gamma \cdot B_p^* = 678249.205$	o lo Ulum			
FS := 1.67	Facto	or of Safety for Ste	eel	
$V_{all} \coloneqq \frac{V_u}{FS} = 406137.249 \ \textit{lb}$	$> = V_y$,=271922 lb		
Condition Satisfied				
E-W Horizontal Load:				
$M_Y := S_y \cdot F_y = 620000 \ lb \cdot ft$	Yield	l Moment E-W		
$K_p \coloneqq \tan\left(45 \ \circ + \frac{\phi'}{2}\right)^2 = 4.204$				
$\frac{M_Y}{K_p \cdot \gamma \cdot B_p^4} = 63.927$	Figur	re 7.12 from Pould	ous and Davis	
$V_u := 75 \cdot K_p \cdot \gamma \cdot B_p^{-3} = 339124.603$	1 6 Ultin	nate Load		
<i>FS</i> := 1.67	Facto	or of Safety for Ste	eel	
$V_{all} := rac{V_u}{FS} = 203068.624 \ lb$	>/= V _x	,=39514 lb		
Condition Satisfied				

Pile Buckling Calculations:		
See AutoCAD drawing for pile arrangement		
N-S Axis Bending (Overturning Moment)		
$y_4 := \frac{s}{2} + s + s + s = 17.5 \ ft$ $y_3 := \frac{s}{2} + s + s = 12.5 \ ft$	$y_2 \coloneqq \frac{s}{2} + s = 7.5 ft$	$y_1 := \frac{s}{2} = 2.5 ft$
$y_5 \coloneqq y_1$ $y_6 \coloneqq y_2$	$y_7 \coloneqq y_3$	$y_8 \coloneqq y_4$
$\Sigma y_{squared1} \coloneqq 2 \cdot \left(8 \cdot \left(y_1^2 + y_2^2 + y_3^2 + y_4^2\right)\right) = 8400 \text{ ft}^2$		
$P_1 \coloneqq \frac{P_g}{N} + \frac{M_y \cdot y_1}{\Sigma y_{squared1}} = 86203.317 \text{ lb}$	=</td <td>$P_{all} = 356838.076$ <i>lb</i></td>	$P_{all} = 356838.076$ <i>lb</i>
$P_2 \coloneqq \frac{P_g}{N} + \frac{M_y \cdot y_2}{\Sigma y_{squared1}} = 86614.888 \ \textit{lb}$	=</td <td>P_{all} = 356838.076 lb</td>	P _{all} = 356838.076 lb
$P_3 \coloneqq \frac{P_g}{N} + \frac{M_y \cdot y_3}{\Sigma y_{squared1}} = 87026.46 \ \textit{lb}$	=</td <td>$P_{all} = 356838.076$ <i>lb</i></td>	$P_{all} = 356838.076$ <i>lb</i>
$P_4 \coloneqq \frac{P_g}{N} + \frac{M_y \cdot y_4}{\Sigma y_{squared1}} = 87438.031 \ \textit{lb}$	=</td <td>$P_{all} = 356838.076$ lb</td>	$P_{all} = 356838.076$ lb
$P_5 \coloneqq \frac{P_g}{N} - \frac{M_y \cdot y_5}{\Sigma y_{squared1}} = 85791.746 \ lb$	=</td <td>$P_{all} = 356838.076$ <i>lb</i></td>	$P_{all} = 356838.076$ <i>lb</i>
$P_6 \coloneqq \frac{P_g}{N} - \frac{M_y \cdot y_6}{\Sigma y_{squared1}} = 85380.174 \text{ lb}$	=</td <td>P_{all} = 356838.076 lb</td>	P _{all} = 356838.076 lb
$P_7 \coloneqq \frac{P_g}{N} - \frac{M_y \cdot y_7}{\Sigma y_{squared1}} = 84968.603 \ lb$	=</td <td>$P_{all} = 356838.076 \ lb$</td>	$P_{all} = 356838.076 \ lb$
$P_8 \coloneqq \frac{P_g}{N} - \frac{M_y \cdot y_8}{\Sigma y_{squared1}} = 84557.031 \ lb$	=</td <td>P_{all} = 356838.076 lb</td>	P _{all} = 356838.076 lb

All Piles are able to handle this loading.

E-W Axis Bending (Overturning Moment)

$x_4\!\coloneqq\!\frac{s}{2}\!+\!s$	+ s + s =	17.5 ft	$x_3 \coloneqq$	$\frac{s}{2} + s + s =$	12.5 ft	$x_2 := \frac{s}{2} + s = 7$.5 ft x ₁ :	$=\frac{s}{2}=2.5 ft$	
$x_5\!\coloneqq\!x_1$			$x_6 \coloneqq$	- x ₂		$x_7 \coloneqq x_3$	x_8	$= x_4$	
$\Sigma x_{squared1} :=$	2 • (8 •	$(x_1^2 + x_2^2)$	$x_2^2 + x_3^2 - x_3^2$	$+x_4^2)) = 840$	00 ft ²				

P_1	$=\frac{P_g}{N}+$	$\frac{M_x \cdot y_1}{\Sigma x_{squared1}} =$	= 109127.234 lb	=</td <td>$P_{all} =$</td> <td>- 356838.076 lb</td> <td></td>	$P_{all} =$	- 356838.076 lb	
P_2	$=\frac{P_g}{N}+$	$\frac{M_x \cdot y_2}{\Sigma x_{squared1}} =$	= 155386.638 <i>lb</i>	=</td <td>$P_{all} =$</td> <td>= 356838.076 lb</td> <td></td>	$P_{all} =$	= 356838.076 lb	
P_3	$=\frac{P_g}{N}+$	$\frac{M_x \cdot y_3}{\Sigma x_{squared1}} =$	= 201646.043 <i>lb</i>	=</td <td>$P_{all} =$</td> <td>= 356838.076 lb</td> <td></td>	$P_{all} =$	= 356838.076 lb	
P_4	$=\frac{P_g}{N}+$	$\frac{M_x \cdot y_4}{\Sigma x_{squared1}} =$	= 247905.448 lb	=</td <td>$P_{all} =$</td> <td>= 356838.076 lb</td> <td></td>	$P_{all} =$	= 356838.076 lb	
P_5	$=\frac{P_g}{N}$	$\frac{M_x \cdot y_5}{\varSigma x_{squared1}} =$	= 62867.829 lb	=</td <td>$P_{all} =$</td> <td>= 356838.076 lb</td> <td></td>	$P_{all} =$	= 356838.076 lb	
P_6	$=\frac{P_g}{N}$	$\frac{M_x \cdot y_6}{\varSigma x_{squared1}} =$	= 16608.424 <i>lb</i>	=</td <td>$T_{all} =$</td> <td>- 60997.221 lb</td> <td></td>	$T_{all} =$	- 60997.221 lb	
P_7	$=\frac{P_g}{N}$	$\frac{M_x \cdot y_7}{\Sigma x_{squared1}} =$	= -29650.981 lb	=</td <td>T_{all} =</td> <td>= 60997.221 lb</td> <td></td>	T _{all} =	= 60997.221 lb	
P_8	$=\frac{P_g}{N}-$	$\frac{M_x \cdot y_8}{\Sigma x_{squared1}} =$	= -75910.385 lb	=</td <td>$T_{all} =$</td> <td>= 60997.221 lb</td> <td></td>	$T_{all} =$	= 60997.221 lb	
Al	l Piles	are able i	to handle this load	ing.			
Δ1	1 niles	satisfy av	ial load canacity				
	ii piies	satisty an	iai load capacity				
1 .	- 60 2 4	2					
A	– 00.2 <i>1</i> 1	•					
P_d	$= P_4$	Maxi	mum Axial Load C	Controls			

 $\sigma_d := \frac{P_d}{A} = 4118.031 \frac{lb}{in^2}$

 $\sigma_{all} \coloneqq 0.35 \cdot F_y = 21000 \frac{lb}{in^2}$ Standard Guidelines for the Design and Installation of Pile Foundations, $\sigma_d \quad <\!\!/= \quad \sigma_{all}$

Criteria is satisfied. Piles will not buckle.

		Design Summary		
All requirements were sa HP 18x204 and 60ft long distribution of an isolated the requirement for axial satisfied and is shown in 2ft thick concrete slab, w	tisfied for the g. The pile cap d pile cap. Pile load. When co the analysis of hich rests on to	design of the individua contains 64 piles that a axial capacity is analy ombining axial load and f pile groups portion of op of the pile. This cap	l piles and the pile g re spaced at 5ft with zed for each individu l bending moment th the calculations. Th is a 40' x 40' square	roup. The piles are a typical ual pile and passes ne capacity is also e pile cap will be a block.

- 14 -

	TABLE OF CONTENTS
i	Project Description
;;	Soil Properties and Calculations
11	
iii	Design Calculations for Individual Piles
iv	Design Calculations for Pile Group
V	Design Summary

Foundation Description:	
The design of this foundation is IA. The foundation in need of a will be supporting an elevator. T detrimental to bridge operations	for the elevator tower of a proposed pedestrian overpass in Waterloo, ttention is the foundations located on the south side of the bridge, and To guard against excessive settlement of the abutments that would be by the abutments shall be supported by a pile group.
Project Goal:	
Determine the most economical	design for the pile group.
Variables:	
$\gamma \coloneqq 109 \ \frac{lb}{ft^3}$	Unit Weight of Soil
$\gamma_{sat} \coloneqq 130 \frac{b}{ft^3}$	Saturated Unit Weight of Soil
$\gamma_w \coloneqq 62.4 \frac{lb}{ft^3}$	Unit Weight of Water
$\gamma' \coloneqq \gamma_{sat} - \gamma_w = 67.6 \frac{lb}{ft^3}$	Submerged Unit Weight of Soil
$D_w \coloneqq 12 \ ft$	Depth of Water Table
<i>L</i> _p := 30 <i>ft</i>	Length of the Pile
P _{rxn} := 630000 lb	Reaction Force From Bridge Load
$P_{dead} \coloneqq 200000 \ lb$	Dead Load of Tower, Including Elevator Shaft
$P_g \coloneqq P_{rxn} + P_{dead}$	Vertical Load
$M_g \coloneqq 0 \ lb \cdot ft$	Moment
Assumptions:	
From the soil report from USGS	S geodata, it shows that from 0-18" the soil is a loamy sand,
gravelly course sand per 18-50", gr	Since the laver that is cohesive only goes down a short distance
from soil grade, it may be reaso	nable to analyze this soil as a purely granular soil. It was also
noted from the soils report that	the soil surrounding the project site is excessively drained. The
preliminary design with be with	a HP14x117 steel pile cross section with an individual pile length

- 2 -

of 30'.

	Design Calculati	ons for Individual Piles		
For calculating pile point Therefore taking values for Bowles, <i>Foundation Anal</i>	bearing capacity, the or the static stress-stra lysis and Design was	reduced rigidity index needs to be assessed. ain modulus of elasticity from table 5-6 in the found for the soil at the bottom of the pile.		
$E_s \coloneqq 50 \; \pmb{MPa}$	Assuming course san	nd that is dense and wet.		
$E_s \coloneqq 1000000 \frac{lb}{ft^2}$	Conversion to US un	iits.		
$\sigma_{z12}' \coloneqq \gamma \cdot D_w = 1308 \frac{lb}{ft^2}$		Vertical Effective Stress at Water Table Depth		
$\sigma_{z40}' \coloneqq \gamma \boldsymbol{\cdot} D_w + \left(\gamma' \boldsymbol{\cdot} \left(L_p - D_w\right)\right) \equiv$	$=2524.8\frac{lb}{ft^2}$	Vertical Effective Stress at Pile Depth		
Using table 2-7 in the Bo	wles text, the Poisson'	's ratio for this soil was determined:		
μ := 0.35	Cohesionless, dense	sand.		
Taking the assumed intern Engineering Reference fo from the Poulos and Davi $\phi' := 38$ °	nal angle of friction for <i>r PE 8th Edition</i> , the distinct text:	or poorly graded sand from Lindeburg, <i>Civil</i> critical depth can be found using Figure 3.10		
$\phi \coloneqq \frac{3}{4} \cdot \phi' + 10 \circ = 38.5 \circ$				
Zc / d ratio from Poulos &	& Davis, Pile Foundat	tion Analysis & Design, Figure 3.10: = 10.5		
$b_f \coloneqq 14.9 \ in$ $d \coloneqq 14.2 \ in$		IP14x117 steel pile.		
$B_p \coloneqq \sqrt[2]{\left(d^2\right) + \left({b_f}^2\right)} = 20.583$ is	n V	Vidth of pile is diagonal		
$A_p \coloneqq b_f \cdot d = 211.58 \ \mathbf{in}^2$	I	ncluding Soil Plug		
$z_c := 10.5 \cdot B_p = 18.01 \ ft$	C	Critical Depth		

 $\sigma_p'' \coloneqq D_w \cdot \gamma + \left((z_c - D_w) \cdot \gamma' \right) = 1714.27 \frac{lb}{ft^2}$ Vertical Effective Stress at Critical Depth

Calculation of bearing capacity factors of	ensues:	
$G_s := \frac{E_s}{2 \cdot (1+\mu)} = 370370.37 \frac{lb}{ft^2}$	e'≔0 Cohesior	iless sand.
$I_r \coloneqq \frac{G_s}{c' + \sigma_{z40}' \cdot \tan\left(\phi'\right)} = 187.758$	Rigidity	Index
Bowles, Foundation Analysis & Design	, Table on P.894 : 1	Rigidity Index Within Range for Sandy Soil
$\varepsilon_{v} \coloneqq \frac{(1+\mu) \cdot (1-2\cdot\mu) \cdot (\sigma_{z40})}{E_{s} \cdot (1-\mu)} = 0.002$	Volumetric S	Strain
$I_{rr} \coloneqq \frac{I_r}{1 + \varepsilon_v \cdot I_r} = 144.946$	Reduced Rig	gidity Index
$K_o := 1 - \sin(\phi') = 0.384$	At rest earth	pressure coefficient
Vesic's Bearing Capacity Factors:		
$\eta \coloneqq \frac{1 + 2 \cdot K_o}{3} = 0.59$		
$N_q \coloneqq \frac{3}{3 - \sin\left(\phi'\right)} \cdot \exp\left(\left(\frac{\pi}{2} - \phi'\right) \tan\left(\phi'\right)\right) \cdot \left(\tan\left(\phi'\right)\right) \cdot \left(\operatorname{d}\left(\operatorname{d}\left(\operatorname{d}\left(\phi'\right)\right)\right) \cdot \left(\operatorname{d}\left(\operatorname{d}\left(\operatorname{d}\left(\operatorname{d}\left(\phi'\right)\right)\right) \cdot \left(\operatorname{d}\left(\operatorname{d}\left(\phi'\right)\right) \cdot \left(\operatorname{d}\left(\operatorname{d}\left(\phi'\right)\right)\right) \cdot \left(\operatorname{d}\left(\operatorname{d}\left(\operatorname{d}\left(\operatorname{d}\left(\phi'\right)\right)\right) \cdot \left(\operatorname{d}\left(\operatorname{d}\left(\operatorname{d}\left(\operatorname{d}\left(\phi'\right)\right)\right) \cdot \left(\operatorname{d}$	$\left(\frac{\pi}{4} + \frac{\phi'}{2}\right)^2 \cdot I_{rr}^{\left(\frac{4 \cdot \mathrm{si}}{3 \cdot (1 + 1)}\right)^2}$	$\frac{n\left(\phi'\right)}{\sin\left(\phi'\right)} = 134.709$
$N_{\gamma} \coloneqq 0.6 \cdot (N_q - 1) \tan(\phi') = 62.679$		
$N_{c1} \coloneqq (N_q - 1) \cot (\phi') = 171.14$		
$N_{c2} \coloneqq \frac{4}{3} \cdot \left(\ln \left(I_{rr} \right) + 1 \right) + \frac{\pi}{2} + 1 = 10.539$		
$N_c \coloneqq \mathbf{if} \left(\phi' = 0 , N_{c2} , N_{c1} \right) = 171.14$		
$q_p \coloneqq \eta \cdot \sigma_p'' \cdot N_q + \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 139779.292 \frac{ll}{ft}$	b	Pile Point Bearing Capacity
$P_p \coloneqq A_p \cdot q_p = 205378.491 \ lb$		Pile Point Load Capacity

Calculation of Side Friction Ca	pacity:
α - Method calculations will be	e used to calculate the pile side friction capacity.
From Tomlinson, <i>Pile Design a</i> due to Steel HP shape. Range is	and Construction Practice, Table 4.10, Large displacement pile s based on soil density, therefore with our dense sand assumption:
$\frac{K_s}{K_o} = 1.25$	
$K_s := K_o \cdot 1.25 = 0.48$	Lateral Earth-Pressure Coefficient for Side Friction
From Tomlinson, Table 4.11, St	mooth Steel Pile at interface with sand:
$\delta_p\coloneqq 0.6 \boldsymbol{\cdot} \phi' = 22.8 \ ^{\bullet}$	Angle of Friction Between Pile and Soil
$f_s \coloneqq K_s \cdot \sigma_p'' \cdot \tan\left(\delta_p\right) = 346.199 \frac{lb}{ft^2}$	Side Friction Stress, Considering Critical Depth
Calculation of side friction stre	ss profile:
$z_1 \coloneqq D_w$	
$\sigma_{z1} \coloneqq D_w \cdot \gamma = 1308 \frac{lb}{ft^2}$	
$f_{s12} \coloneqq K_s \cdot \sigma_{z1} \cdot \tan\left(\delta_p\right) = 264.152 \frac{lb}{ft^2}$	
<i>z_c</i> = 18.01 <i>ft</i>	
Layers	Avg. Side Friction Stress
0-12 ft	$f_{s1Bar} \coloneqq \frac{1}{2} \cdot (0 + f_{s12}) = 132.076 \frac{lb}{ft^2}$
12-18 ft	$f_{s2Bar} \coloneqq \frac{1}{2} \cdot (f_{s12} + f_s) = 305.176 \frac{lb}{ft^2}$
18-30 ft	$f_{s3Bar} := f_s = 346.199 \frac{lb}{ft^2}$
$P_{p1} := b_f + b_f + d + d = 4.85 \ ft$	Perimeter of Pile (Including Soil Plug)
$P_{s} \coloneqq P_{p1} \cdot \left(12 \boldsymbol{ft} \cdot \left(f_{s1Bar} \right) + 6 \boldsymbol{ft} \cdot \left(f_{s2Bar} \right) \right)$	$(r) + 12 ft \cdot (f_{s3Bar})) = 36716.233 lb$ Side Friction Capacity

	(Cuse II Strengen I)
Calculations for compression a	nd tension load capacity:
$L_p = 30 \ ft$	Length of Pile
$W_p \coloneqq 117 \ \frac{lb}{ft} \cdot L_p = 3510 \ lb$	Nominal Weight of pile type multiplied by pile length
From the <i>Standard Guidelines</i> J of safety were determined from piles, the design axial load will	for the Design and Installation of Pile Foundations, the factors table A.1 and A.2. Assuming a pile group consisting of 12 be distributed throughout these 12 piles.
$N \coloneqq 12$ Number of Pile	es
$P_{g1} \coloneqq \frac{P_g}{N} = 34.583 \text{ ton}$	
$F_1 = 2.0$ Table A.1, Sind analysis to dete	ce this is a preliminary design, using driving formulas and static ermine factors of safety
$F_2 \coloneqq 1.1$ Table A.2, HP	Pile
$FS \coloneqq F_1 \boldsymbol{\cdot} F_2 = 2.2$	
$P := P_{g1} + W_p = 72676.667$ lb =</td <td>$P_{all} \coloneqq \frac{P_p + P_s}{FS} = 110043.056 \ lb$</td>	$P_{all} \coloneqq \frac{P_p + P_s}{FS} = 110043.056 \ lb$
Condition Satisfied	
For uplift, the factor of safety is factor of safety.	s approximately a 50% increase from the compression capacity
$FS_T \coloneqq 1.5 \bullet FS = 3.3$	Factor of Safety for Uplift
$T_{all} \coloneqq \frac{P_s}{FS_T} + W_p = 14636.131 \ \textit{lb}$	Tension Capacity
Each individual pile satisfies moment. This design criteria the analysis of pile groups. Th	this condition for both combined axial load and bending is calculated when calculating to see if the piles will buckle in his value is also shown in the summary.

Pile settlement for	an individual pile is as follows (Bowles Method):
$A_p := 34.4 \ in^2$	AISC Table 1-4: HP 18x201
$E_p \coloneqq 29000000 \frac{lb}{in^2}$	
$\begin{array}{l} m\coloneqq 1\\ I_s\coloneqq 1 \end{array}$	Shape Factor, m*Is = 1.0 (Relatively square pile)
$\frac{L_p}{B_p} = 17.49$	Fox Embedment Factor Inequality Satisfaction
$I_F \coloneqq 0.4$	Fox Embedment Factor
$F_1 := 0.25$	Reduction Factor, High side friction capacity compared to design load for an individual pile.
$q := \frac{P_{g1}}{A_p} = 2010.659 \frac{ll}{in}$	
$\boldsymbol{\delta}_p \coloneqq q \boldsymbol{\cdot} \boldsymbol{B}_p \boldsymbol{\cdot} \left(\frac{1 - \mu^2}{E_s} \right) \boldsymbol{\cdot} \boldsymbol{r}$	$n \cdot I_s \cdot I_F \cdot F_1 = 0.523$ in Point Bearing Settlement
For elastic settleme	ent assume that the point load is equal to zero.
$P(z) \coloneqq P_{g1} + \left(\frac{P_{g1}}{L_p}\right) \cdot z$	
$\delta_E \coloneqq \int_{0}^{L_p} \frac{P(z)}{E_p \cdot A_p} dz = 0.0$	37 <i>in</i> Elastic Shortening
$\delta_{pile} \coloneqq \delta_p + \delta_E \!=\! 0.56 \; \textit{in}$	Total Pile Settlement
$B_p \cdot 0.03 = 0.617 \ in$	Pile settlement should not be greater than 3% of pile diameter
Condition Satisfied	d

	Design Calcula	ations for Pile Group
Vertical load capacity of the	entire pile group:	
$P_s = 36716.233$ <i>lb</i>	Single pile	
$P_p = 205378.491 \ lb$	Single pile	
$P_{Group} \coloneqq N \cdot \left(P_s + P_p \right) = 2905136.6$	78 lb	Capacity of Pile Group based on piles failing individually
$s \coloneqq 2 \cdot B_p = 3.43 \ ft$		Minimum Spacing Requirement
s := 4 ft		Pile Spacing
e := 0.5 ft		Edge Distance
$B_g \coloneqq (2 \cdot s) + \left(\frac{\langle B_p \rangle}{2} + e\right) + \left(\frac{\langle B_p \rangle}{2} - \frac{1}{2}\right) + \frac{\langle B_p \rangle}{2} - \frac{1}{2} + \frac{\langle B_p \rangle}{2} + \frac{1}{2} + $	+e = 10.715 ft	See Drawing for Dimensions
$L_g \coloneqq (3 \cdot s) + \left(\frac{(B_p)}{2} + e\right) + \left($	$\left(+e\right) = 14.715 ft$	
$B_g \coloneqq 12 ft$ Simplified	Dimension	
$L_g \coloneqq 15 \ ft$ Simplified	Dimension	
$f_s \coloneqq \left(f_{s1Bar}\right) + \left(f_{s2Bar}\right) + \left(f_{s3Bar}\right) = 7$	$783.451 \frac{lb}{ft^2}$	
$P_{gg} \coloneqq \left(2 \cdot B_g \right) + \left(2 \cdot L_g \right) = 54 \ \mathbf{ft}$		Perimeter of Group
$A_g \coloneqq L_g \cdot B_g = 180 \; \boldsymbol{ft}^2$		Area of Group
$P_{NBlock} \coloneqq P_{gg} \cdot L_p \cdot f_s + A_g \cdot q_p = 264$	429463.147 <i>lb</i>	Block Failure Capacity (failure of entire group)
$P_{Ngroup} \coloneqq min\left(P_{Group}, P_{NBlock}\right) = 2$	2905136.678 lb	
<i>FS</i> := 3		Assumed FS for pile group
$P_{allGroup} \coloneqq \frac{P_{Ngroup}}{FS} = 968378.893 \text{ l}$	$P_g = 83$	30000 <i>lb</i>
Condition Satisfied		

- 8 -

Predicted elastic settlement of	the entire pile grou	<u>p:</u>				
$x \coloneqq \frac{2}{3} \cdot L_p = 20 ft$	Equivalent Footi	ng Depth for Piles in Sa	nd			
$D_b \coloneqq \frac{1}{3} \cdot L_p = 10 \ ft$						
$D_{bb} \coloneqq \frac{2}{3} \cdot D_b = 6.667 ft$	Starting of 4/1 S	lope Stress Distribution				
$B_{EO} \coloneqq B_a + 2 \cdot \left(\frac{D_{bb}}{D_{bb}}\right) = 15.333 \text{ ft}$	$L_{EQ} \coloneqq L_a + 2 \cdot \left(\frac{L}{2}\right)$	$\left(\frac{D_{bb}}{D_{bb}}\right) = 18.333 ft$				
	2.4 9 (4)				
$q_{net} \coloneqq \frac{P_g}{B_{EQ}^2} = 3530.246 \frac{lb}{ft^2}$						
Strain Influence Factor Metho	od:					
$((L_{FO}))$						
$z_1 \coloneqq B_{EQ} \cdot \left(0.5 + 0.555 \cdot \left(\frac{EQ}{B_{EQ}} - 1 \right) \right) =$	= 9.332 ft =</td <td>$B_{EQ} = 15.333 \; ft$</td> <td>OK</td> <td></td> <td></td> <td></td>	$B_{EQ} = 15.333 \; ft$	OK			
$z_2 \coloneqq B_{EQ} \cdot \left(2 + 0.222 \cdot \left(\frac{L_{EQ}}{B_{EQ}} - 1\right)\right) = 3$	31.333 ft =</td <td>$4 \cdot B_{EQ} = 61.333 \ ft$</td> <td>OK</td> <td></td> <td></td> <td></td>	$4 \cdot B_{EQ} = 61.333 \ ft$	OK			
$I_{z0} \coloneqq 0.1 + 0.0111 \cdot \left(\frac{L_{EQ}}{B_{EQ}} - 1\right) = 0.10$	2 =</td <td>0.2</td> <td>OK</td> <td></td> <td></td> <td></td>	0.2	OK			
$\sigma_{zn}' \coloneqq \gamma \cdot D_{w} + \gamma' \cdot ((x - D_{w}) + D_{bb} + z)$	$(1) = 2930.287 \frac{lb}{l}$	Vertical Effective Str	ess at z	1 (Before	Install	ation)
	-/ ft ²			`		
$I_{zMax} \coloneqq 0.5 + 0.1 \cdot \sqrt[2]{rac{q_{net}}{\sigma_{zp'}}} = 0.61$		All sand layer		D I	Δz_1	
Layer 1				$\Sigma = I_{zBar1}$	E_s	
$\Delta z_1 := z_1 = 9.332 \; ft$ $E_s =$	$500 \frac{ton}{ft^2}$	$I_{zBar1} := \frac{I_{z0} + I_{zMax}}{2} = 0.35$	6	$\Sigma_1 \coloneqq 2.425$	$8 \cdot 10^{-6}$ -	ft ³ lb
Layer 2						
	ton	I.v.				f # ³
$\Delta z_2 \! \coloneqq \! z_2 \! - \! z_1 \! = \! 22.001 \textit{ft} \qquad E_s \! = \!$	$500 \frac{ton}{ft^2}$	$I_{zBar2} := \frac{zMax}{2} = 0.305$		$\Sigma_2 \coloneqq 6.206$	$8 \cdot 10^{-6}$ -	lb
$\Sigma \coloneqq \Sigma_1 + \Sigma_2 = 0.0000086326 \frac{ft^3}{lb}$						
$\sigma_z' \coloneqq \gamma \cdot D_w + \gamma' \cdot \left(\left(x - D_w \right) + D_{bb} \right) = 2$	$\frac{lb}{dt^2}$	Vertical Effective Stress	at Equi	valent Fo	oting	
$C_1 \coloneqq 1 - 0.5 \cdot \left(\frac{\sigma_z'}{\sigma_z}\right) = 0.674$	jt					
t = 50 Years						
$C_2 \coloneqq 1 + 0.2 \cdot \log\left(\frac{t}{0.1}\right) = 1.54$						
$\delta_{pg} \coloneqq C_1 \cdot C_2 \cdot q_{net} \cdot \Sigma = 0.38 \ in$		Elastic Settlement of Pil	e Group)		

		Design Sum	imary	
All requirements were satisfied HP 14x117 and 30ft long. The	for the de pile cap co	esign of the in ontains 12 pile	dividual piles and the state of the spaced at a spaced at a spaced for each	the pile group. The piles are 4ft with a typical
the requirement for axial load.	When com	bining axial	oad and bending m	oment the capacity is also
satisfied and is shown in the an	alysis of p	ile groups po	rtion of the calculat	ions. The pile cap will be a
2ft thick concrete slab, which r	ests on top	of the pile. I	his cap is a $12^{\circ} \times 13^{\circ}$	rectangular block.

	TABLE OF CONTENTS
i	Project Description
11	Soil Properties and Calculations
111	Design Calculations for Individual Piles
	Design Coloulations for Pilo Group
IV	
v	Design Summary
v	

Foundation Description:	
The design of this foundation IA. The foundation in need of will be supporting an elevator detrimental to bridge operation	is for the elevator tower of a proposed pedestrian overpass in Waterloo, attention is the foundations located on the south side of the bridge, and To guard against excessive settlement of the abutments that would be and the abutments shall be supported by a pile group.
Project Goal:	
Determine the most economic	al design for the pile group.
Variables:	
$\gamma \coloneqq 109 \frac{lb}{ft^3}$	Unit Weight of Soil
$\gamma_{sat} \coloneqq 130 \frac{lb}{ft^3}$	Saturated Unit Weight of Soil
$\gamma_w \coloneqq 62.4 \frac{lb}{ft^3}$	Unit Weight of Water
$\gamma' \coloneqq \gamma_{sat} - \gamma_w = 67.6 \frac{lb}{ft^3}$	Submerged Unit Weight of Soil
$D_w \coloneqq 12 \ ft$	Depth of Water Table
<i>L</i> _p := 30 <i>ft</i>	Length of the Pile
<i>P_{rxn}</i> ≔ 441000 <i>lb</i>	Reaction Force From Bridge Load
$P_{dead} \coloneqq 200000 \ lb$	Dead Load of Tower, Including Elevator Shaft
$P_g \coloneqq P_{rxn} + P_{dead}$	Vertical Load
V _{gx} := 3000 lb	Horizontal Load
<i>M_{gy}</i> := 36000 <i>lb</i> ⋅ <i>ft</i>	Moment
Assumptions:	
From the soil report from USC followed by sand per 18-30", gravelly course sand per 70-80 from soil grade, it may be reas noted from the soils report tha preliminary design with be wi	GS geodata, it shows that from 0-18" the soil is a loamy sand, gravelly course sand per 30-55", course sand per 55-70", and ". Since the layer that is cohesive only goes down a short distance conable to analyze this soil as a purely granular soil. It was also t the soil surrounding the project site is excessively drained. The th a HP14x117 steel pile cross section with an individual pile length

of 30'.

Desi	gn Calculations for Individual Piles
For calculating pile point bearing Therefore taking values for the sta Bowles, <i>Foundation Analysis and</i>	capacity, the reduced rigidity index needs to be assessed. atic stress-strain modulus of elasticity from table 5-6 in the <i>Design</i> was found for the soil at the bottom of the pile.
$E_s \coloneqq 50 \ MPa$ Assumi	ng course sand that is dense and wet.
$E_s \coloneqq 1000000 \frac{b}{ft^2}$ Convers	sion to US units.
$\sigma_{z12}' \coloneqq \gamma \cdot D_w = 1308 \frac{lb}{ft^2}$	Vertical Effective Stress at Water Table Depth
$\sigma_{z40}' \coloneqq \gamma \cdot D_w + \left(\gamma' \cdot \left(L_p - D_w\right)\right) = 2524.8 - \frac{1}{f}$	$\frac{lb}{t^2}$ Vertical Effective Stress at Pile Depth
Using table 2-7 in the Bowles text	t, the Poisson's ratio for this soil was determined:
$\mu \coloneqq 0.35$ Cohesic	onless, dense sand.
Taking the assumed internal angle Engineering Reference for PE 8th from the Poulos and Davis text: $\phi' := 38^{\circ}$	e of friction for poorly graded sand from Lindeburg, <i>Civil</i> <i>Edition</i> , the critical depth can be found using Figure 3.10
$\phi \coloneqq \frac{3}{4} \cdot \phi' + 10 \circ = 38.5 \circ$	
Zc / d ratio from Poulos & Davis,	Pile Foundation Analysis & Design, Figure 3.10: = 10.5
$b_f := 14.9 \ in$ $d := 14.2 \ in$	HP14x117 steel pile.
$B_p := \sqrt[2]{(d^2) + (b_f^2)} = 20.583 $ in	Width of pile is diagonal
$A_p \coloneqq b_f \cdot d = 211.58 \ \boldsymbol{in}^2$	Including Soil Plug
$z := 10.5 \cdot B = 18.01 \text{ ft}$	Critical Depth

 $\sigma_p'' \coloneqq D_w \cdot \gamma + ((z_c - D_w) \cdot \gamma') = 1714.27 \frac{lb}{ft^2}$ Vertical Effective Stress at Critical Depth

Calculation of bearing capacity factors	ensues:	
$G_s := \frac{E_s}{2 \cdot (1 + \mu)} = 370370.37 \frac{lb}{ft^2}$	<i>c′</i> ≔ 0 C	phesionless sand.
$I_r \coloneqq \frac{G_s}{c' + \sigma_{z40}' \cdot \tan\left(\phi'\right)} = 187.758$	R	gidity Index
Bowles, Foundation Analysis & Design	ı, Table on I	2.894 : Rigidity Index Within Range for Sandy Soil
$\varepsilon_{v} \coloneqq \frac{(1+\mu) \cdot (1-2\cdot\mu) \cdot (\sigma_{z40})}{E_{s} \cdot (1-\mu)} = 0.002$	Volu	netric Strain
$I_{rr} \coloneqq \frac{I_r}{1 + \varepsilon_v \cdot I_r} = 144.946$	Redu	ced Rigidity Index
$K_o := 1 - \sin(\phi') = 0.384$	At re	st earth pressure coefficient
Vesic's Bearing Capacity Factors:		
$\eta \coloneqq \frac{1 + 2 \cdot K_o}{3} = 0.59$		
$N_{q} \coloneqq \frac{3}{3 - \sin\left(\phi'\right)} \cdot \exp\left(\left(\frac{\pi}{2} - \phi'\right) \tan\left(\phi'\right)\right) \cdot \left(\tan\left(\phi'\right)\right) \cdot \left(\operatorname{tan}\left(\phi'\right)\right) \cdot$	$\left(\frac{\pi}{4}+\frac{\phi'}{2}\right)^2$	$r_{rr} = \frac{4 \cdot \sin(\phi)}{3 \cdot (1 + \sin(\phi))} = 134.709$
$N_{\gamma} \coloneqq 0.6 \cdot (N_q - 1) \tan(\phi') = 62.679$		
$N_{c1} \coloneqq (N_q - 1) \cot (\phi') = 171.14$		
$N_{c2} \coloneqq \frac{4}{3} \cdot \left(\ln \left(I_{rr} \right) + 1 \right) + \frac{\pi}{2} + 1 = 10.539$		
$N_c := \mathbf{if} \left(\phi' = 0, N_{c2}, N_{c1} \right) = 171.14$		
$q_p \coloneqq \eta \cdot \sigma_p'' \cdot N_q + \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 139779.292 \frac{1}{f_1}$	<i>lb</i>	Pile Point Bearing Capacity
$P_p := A_p \cdot q_p = 205378.491$ <i>lb</i>		Pile Point Load Capacity

Calculation of Side Friction Cap	pacity:		
α - Method calculations will be	used to calculate the pile side friction capacity.		
From Tomlinson, <i>Pile Design a</i> due to Steel HP shape. Range is	<i>nd Construction Practice</i> , Table 4.10, Large displacement pile based on soil density, therefore with our dense sand assumption:		
$\frac{K_s}{K_o} = 1.25$			
$K_s := K_o \cdot 1.25 = 0.48$	Lateral Earth-Pressure Coefficient for Side Friction		
From Tomlinson, Table 4.11, Sr	nooth Steel Pile at interface with sand:		
$\delta_p \coloneqq 0.6 \bullet \phi' = 22.8 \bullet$	Angle of Friction Between Pile and Soil		
$f_s \coloneqq K_s \cdot \sigma_p'' \cdot \tan\left(\delta_p\right) = 346.199 \frac{lb}{ft^2}$	Side Friction Stress, Considering Critical Depth		
Calculation of side friction stres	s profile:		
$z_1 \coloneqq D_w$			
$\sigma_{z1} \coloneqq D_w \cdot \gamma = 1308 \frac{lb}{ft^2}$			
$f_{s12} \coloneqq K_s \cdot \sigma_{z1} \cdot \tan\left(\delta_p\right) = 264.152 \frac{lb}{ft^2}$			
<i>z_c</i> = 18.01 <i>ft</i>			
Layers	Avg. Side Friction Stress		
0-12 ft	$f_{s1Bar} \coloneqq \frac{1}{2} \cdot \left(0 + f_{s12}\right) = 132.076 \frac{lb}{ft^2}$		
12-18 ft	$f_{s2Bar} := \frac{1}{2} \cdot (f_{s12} + f_s) = 305.176 \frac{lb}{ft^2}$		
18-30 ft	$f_{s3Bar} := f_s = 346.199 \frac{lb}{ft^2}$		
$P_{p1} \coloneqq b_f + b_f + d + d = 4.85 \ \textbf{ft}$	Perimeter of Pile (Including Soil Plug)		
$P_s \coloneqq P_{p1} \cdot \left(12 \ \mathbf{ft} \cdot \left(f_{s1Bar} \right) + 6 \ \mathbf{ft} \cdot \left(f_{s2Bar} \right) \right)$	$() + 12 ft \cdot (f_{s3Bar})) = 36716.233 lb$ Side Friction Capacity		
		(Case 2: Strength III)	
--	---	---	--
Calculations for	or compression	and tension load capacity:	
$L_p = 30 \ ft$		Length of Pile	
$W_p \coloneqq 117 \frac{lb}{ft} \cdot L_p$	= 3510 <i>lb</i>	Nominal Weight of pile type multiplied by pile length	
From the <i>Stan</i> of safety were piles, the desig	<i>dard Guideline</i> determined fro gn axial load wi	s for the Design and Installation of Pile Foundations, the factors m table A.1 and A.2. Assuming a pile group consisting of 12 ll be distributed throughout these 12 piles.	
$N \coloneqq 12$	Number of P	iles	
$P_{g1} := \frac{P_g}{N} = 26.70$	8 ton		
$F_1 \coloneqq 2.0$	Table A.1, Si analysis to de	nce this is a preliminary design, using driving formulas and static stermine factors of safety	
$F_2 := 1.1$	Table A.2, HI	P Pile	
$FS := F_1 \cdot F_2 = 2.2$			
$P := P_{g1} + W_p = 56$	5926.667 lb =</td <td>$P_{all} \coloneqq \frac{P_p + P_s}{FS} = 110043.056 \ lb$</td> <td></td>	$P_{all} \coloneqq \frac{P_p + P_s}{FS} = 110043.056 \ lb$	
Condition Sat	isfied		
For uplift, the factor of safety	factor of safety y.	is approximately a 50% increase from the compression capacity	
$FS_T \coloneqq 1.5 \cdot FS = 3$	3.3	Factor of Safety for Uplift	
$T_{all} \coloneqq \frac{P_s}{FS_T} + W_p$	= 14636.131 lb	Tension Capacity	

Each individual pile satisfies this condition for both combined axial load and bending moment. This design criteria is calculated when calculating to see if the piles will buckle in the analysis of pile groups. This value is also shown in the summary.

Pile settlement for	an individual pile is as follows (Bowles Method):
$A_p \coloneqq 34.4 \ \mathbf{in}^2$	AISC Table 1-4: HP 18x201
$E_p \coloneqq 29000000 \frac{lb}{in^2}$	
$m \coloneqq 1$ $I_s \coloneqq 1$	Shape Factor, m*Is = 1.0 (Relatively square pile)
$\frac{L_p}{B_p} = 17.49$	Fox Embedment Factor Inequality Satisfaction
$I_F \coloneqq 0.4$	Fox Embedment Factor
$F_1 := 0.25$	Reduction Factor, High side friction capacity compared to design load for an individual pile.
$q \coloneqq \frac{P_{g1}}{A_p} = 1552.81 \frac{lb}{in^2}$	
$\boldsymbol{\delta}_{p} \coloneqq \boldsymbol{q} \boldsymbol{\cdot} \boldsymbol{B}_{p} \boldsymbol{\cdot} \left(\frac{1 - \boldsymbol{\mu}^{2}}{E_{s}} \right) \boldsymbol{\cdot} \boldsymbol{\eta}$	$n \cdot I_s \cdot I_F \cdot F_1 = 0.404$ in Point Bearing Settlement
For elastic settleme	ent assume that the point load is equal to zero.
$P(z) \coloneqq P_{g1} + \left(\frac{P_{g1}}{L_p}\right) \cdot z$	
$\delta_E \coloneqq \int_{0}^{L_p} \frac{P(z)}{E_p \cdot A_p} \mathrm{d}z = 0.0$	29 <i>in</i> Elastic Shortening
$\delta_{pile}\coloneqq \delta_p + \delta_E \!=\! 0.433$ in	Total Pile Settlement
$B_p \cdot 0.03 = 0.617$ in	Pile settlement should not be greater than 3% of pile diameter
Condition Satisfied	

	Design Calcul	ations for Pile Group
Vertical load capacity of the	entire pile group:	
$P_s = 36716.233$ b	Single pile	
$P_p = 205378.491 \ lb$	Single pile	
$P_{Group} := N \cdot (P_s + P_p) = 2905136.67$	78 <i>lb</i>	Capacity of Pile Group based on piles failing individually
$s \coloneqq 2 \cdot B_p = 3.43 \ ft$		Minimum Spacing Requirement
$s \coloneqq 4 ft$		Pile Spacing
e := 0.5 ft		Edge Distance
$B_g \coloneqq \left(2 \cdot s\right) + \left(\frac{\left\langle B_p \right\rangle}{2} + e\right) $	$\left(e\right) = 10.715 \ \mathbf{ft}$	See Drawing for Dimensions
$L_g \coloneqq \left(3 \cdot s \right) + \left(\frac{\left\langle B_p \right\rangle}{2} + e \right) + \left(\left\langle $	e = 14.715 ft	
$B_g := 12 ft$ Simplified I	Dimension	
$L_g \coloneqq 15 ft$ Simplified I	Dimension	
$f_s \coloneqq \left(f_{s1Bar} \right) + \left(f_{s2Bar} \right) + \left(f_{s3Bar} \right) = 7$	$83.451 \frac{lb}{ft^2}$	
$P_{gg} \coloneqq \left(2 \cdot B_g \right) + \left(2 \cdot L_g \right) = 54 \ \mathbf{ft}$		Perimeter of Group
$A_g \coloneqq L_g \cdot B_g = 180 \ ft^2$		Area of Group
$P_{NBlock} \coloneqq P_{gg} \boldsymbol{\cdot} L_p \boldsymbol{\cdot} f_s + A_g \boldsymbol{\cdot} q_p = 264$	29463.147 <i>lb</i>	Block Failure Capacity (failure of entire group)
$P_{Ngroup} \coloneqq min\left(P_{Group},P_{NBlock}\right) = 2$	905136.678 lb	
<i>FS</i> := 3		Assumed FS for pile group
$P_{allGroup} \coloneqq \frac{P_{Ngroup}}{FS} = 968378.893 \text{ ll}$	$P_g = 64$	11000 <i>lb</i>
Condition Satisfied		

- 8 -

Predicted elastic settlement of	the entire pile grou	<u>up:</u>				
$x \coloneqq \frac{2}{3} \cdot L_p = 20 \ ft$	Equivalent Foot	ing Depth for Piles in S	Sand			
$D_b \coloneqq \frac{1}{3} \cdot L_p = 10 ft$						
$D_{bb} \coloneqq \frac{2}{3} \cdot D_b = 6.667 ft$	Starting of 4/1 S	Slope Stress Distributio	n			
$B_{EQ} := B_g + 2 \cdot \left(\frac{D_{bb}}{4}\right) = 15.333 \ ft$	$L_{EQ}\coloneqq L_g+2\boldsymbol{\cdot} \left(-\frac{1}{2}\right)$	$\left(\frac{D_{bb}}{4}\right) = 18.333 \ ft$				
$q_{net} := \frac{P_g}{B_{EQ}^2} = 2726.371 \frac{lb}{ft^2}$						
Strain Influence Factor Metho	od:					
$z_1 := B_{EQ} \cdot \left(0.5 + 0.555 \cdot \left(\frac{L_{EQ}}{B_{EQ}} - 1 \right) \right) =$	= 9.332 <i>ft</i> =</td <td>$B_{EQ} = 15.333 \; ft$</td> <td>OK</td> <td></td> <td></td> <td></td>	$B_{EQ} = 15.333 \; ft$	OK			
$z_2 \coloneqq B_{EQ} \cdot \left(2 + 0.222 \cdot \left(\frac{L_{EQ}}{B_{EQ}} - 1\right)\right) = 3$	31.333 <i>ft</i> =</td <td>$4 \cdot B_{EQ} = 61.333 \ ft$</td> <td>OK</td> <td></td> <td></td> <td></td>	$4 \cdot B_{EQ} = 61.333 \ ft$	OK			
$I_{z0} \coloneqq 0.1 + 0.0111 \cdot \left(\frac{L_{EQ}}{B_{EQ}} - 1\right) = 0.10$	2 =</td <td>0.2</td> <td>OK</td> <td></td> <td></td> <td></td>	0.2	OK			
$\sigma_{zp'} \coloneqq \gamma \cdot D_w + \gamma' \cdot \left(\left(x - D_w \right) + D_{bb} + z \right)$		Vertical Effective S	tress at z1 (Before	Install	ation)
$I_{zMax} \coloneqq 0.5 + 0.1 \cdot \sqrt[2]{rac{q_{net}}{\sigma_{zp^{'}}}} = 0.596$		All sand layer			Δz_1	
Layer 1			2	- IzBar1	E_s	
$\Delta z_1 := z_1 = 9.332 \; ft$ $E_s =$	$500 \frac{ton}{ft^2}$	$I_{zBar1} \coloneqq \frac{I_{z0} + I_{zMax}}{2} = 0.$	349 Σ	$_1 := 2.4258$	$8 \cdot 10^{-6}$	ft ³ lb
Layer 2						
$\Delta z_2 := z_2 - z_1 = 22.001 \; ft \qquad E_s =$	$500 \frac{ton}{ft^2}$	$I_{zBar2} := \frac{I_{zMax}}{2} = 0.298$	Σ	$'_2 := 6.2068$	$8 \cdot 10^{-6}$	ft ³ lb
$\Sigma := \Sigma_1 + \Sigma_2 = 0.0000086326 \frac{ft^3}{lb}$						
$\sigma_z' \coloneqq \gamma \cdot D_w + \gamma' \cdot \left(\left(x - D_w \right) + D_{bb} \right) = 2$	$2299.467 \frac{lb}{ft^2}$	Vertical Effective Stres	ss at Equiva	lent Foo	oting	
$C_1 \coloneqq 1 - 0.5 \cdot \left(\frac{\sigma_z'}{q_{net}}\right) = 0.578$						
t = 50 Years						
$C_2 \coloneqq 1 + 0.2 \cdot \log\left(\frac{t}{0.1}\right) = 1.54$						
$\delta_{pg}\!\coloneqq\!C_1\!\cdot\!C_2\!\cdot\!q_{net}\!\cdot\!\Sigma\!=\!0.251~{m in}$		Elastic Settlement of P	ile Group			

<u>Pile</u>	Buc	kling	Calo	culation	ns:													
See 2	Auto	CAD	dra	wing fo	r pil	le arr	angen	nent										
Over	rturr	ing l	Mom	ent (N-	-S) (<u>Dnly</u>												
$y_1 \coloneqq s$	$+\frac{s}{2}$	=6 ft	;	$y_2 \coloneqq \frac{s}{2}$	-=2 j	ft	$y_3 \coloneqq q$	y_2		$y_4 \coloneqq$	y_1							
Σy_{sque}	ared1 :	= 2 • (3	$\mathbf{B} \boldsymbol{\cdot} \left(y_1^{-2} \right)$	$((y_2^2 + y_2^2))$	= 24	$0 ft^{2}$												
$P_1 := -$	$\frac{P_g}{N}$ +	M_{gy} Σy_{squ}	$oldsymbol{\cdot} y_1$	= 54316.	667 <mark>1</mark>	Ь		=</td <td>=</td> <td>P_{all}:</td> <td>$=\frac{P_p+P}{FS}$</td> <td>$\frac{2}{s} = 1449$</td> <td>966.9 lb</td> <td></td> <td></td> <td></td> <td></td> <td></td>	=	P_{all} :	$=\frac{P_p+P}{FS}$	$\frac{2}{s} = 1449$	966.9 lb					
$P_2 := -$	$\frac{P_g}{N}$ +	M_{gy} Σy_{squ}	$egin{array}{c} egin{array}{c} egin{array}$	= 53716.	667 <mark>1</mark>	Ь		=</td <td>=</td> <td>P_{all}:</td> <td>$=\frac{P_p+P}{FS}$</td> <td>$\frac{P_s}{=} = 1449$</td> <td>966.9 lb</td> <td></td> <td></td> <td></td> <td></td> <td></td>	=	P_{all} :	$=\frac{P_p+P}{FS}$	$\frac{P_s}{=} = 1449$	966.9 lb					
$P_3 := -$	$\frac{P_g}{N}$	M_{gy} Σy_{squ}	• y ₃ uared1	= 53116.	667 l i	Ь		=</td <td>=</td> <td>P_{all}:</td> <td>$=\frac{P_p+P}{FS}$</td> <td>$\frac{2}{s} = 1449$</td> <td>966.9 lb</td> <td></td> <td></td> <td></td> <td></td> <td></td>	=	P_{all} :	$=\frac{P_p+P}{FS}$	$\frac{2}{s} = 1449$	966.9 lb					
$P_4 := -$	$\frac{P_g}{N}$	M_{gy} Σy_{squ}	• y_4 uared1	= 52516.	667 l i	Ь		=</td <td>=</td> <td>P_{all}:=</td> <td>$=\frac{P_p+P}{FS}$</td> <td>$\frac{P_s}{=} = 1449$</td> <td>966.9 lb</td> <td></td> <td></td> <td></td> <td></td> <td></td>	=	P_{all} :=	$=\frac{P_p+P}{FS}$	$\frac{P_s}{=} = 1449$	966.9 lb					
All p	oiles	satis	fy ax	tial load	d caj	pacity	y											
$A \coloneqq 3$	4.4 i 1	2	F_y	= 50000	$\frac{lb}{in^2}$	_												
$P_d \coloneqq I$	P ₁ = 8	54316.	667 ll		Ma	ximu	ım Ax	ial Lo	oad Co	ntrols								
	P_d			lb														
$\sigma_d \coloneqq$	\overline{A} =	1578.	973 — i i	n ²														
σ_{all} :=	0.35	$\cdot F_y =$	17500	$\frac{lb}{in^2}$		Stand (35%	<i>dard C</i> 5 of Yi	<i>Guide</i> eld S	<i>lines fo</i> tress)	or the D	esign d	and Ins	stallati	on of	Pile I	Foun	datio	ns,
σ_d	</td <td>_</td> <td>σ_{a}</td> <td>u</td> <td></td>	_	σ_{a}	u														
<i>a</i> :		•		1 84														
Crite	eria	is sai	tisfie	d. Piles	s wil	l not	buckl	е.										

				Desig	n Summa	ary			
All requirement HP 14x117 and distribution of the requirement satisfied and is	ts were s l 30ft lon an isolate t for axia shown i	satisfied : ng. The p ed pile ca al load. V n the ana	for the de ile cap co up. Pile a Vhen con lysis of p	esign of ontains xial cap obining oile grou	the indiv 12 piles the bacity is an axial load ups portio	idual piles hat are spac nalyzed for l and bendi n of the cal	and the pile ed at 4ft wi each indivi ng moment lculations. T	group. The th a typical dual pile a the capaci he pile cap	e piles are nd passes ty is also o will be a
2ft thick concr	ete slab, [•]	which re	sts on top	o of the	pile. This	cap is a 12	2' x 15' recta	ngular bloo	ck.

	TABLE OF CONTENTS
1	Project Description
;;	Sail Properties and Calculations
11	
iii	Design Calculations for Individual Piles
iv	Design Calculations for Pile Group
v	Design Summary

Foundation Description:	
The design of this foundation is IA. The foundation in need of a will be supporting an elevator. T detrimental to bridge operations	for the elevator tower of a proposed pedestrian overpass in Waterloo, ttention is the foundations located on the south side of the bridge, and To guard against excessive settlement of the abutments that would be s, the abutments shall be supported by a pile group.
Project Goal:	
Determine the most economical	design for the pile group.
Variables:	
$\gamma \coloneqq 109 \frac{lb}{ft^3}$	Unit Weight of Soil
$\gamma_{sat} \coloneqq 130 \frac{lb}{ft^3}$	Saturated Unit Weight of Soil
$\gamma_w \coloneqq 62.4 \frac{lb}{ft^3}$	Unit Weight of Water
$\gamma' \coloneqq \gamma_{sat} - \gamma_w = 67.6 \frac{lb}{ft^3}$	Submerged Unit Weight of Soil
$D_w \coloneqq 12 \ ft$	Depth of Water Table
<i>L</i> _p := 30 <i>ft</i>	Length of the Pile
P _{rxn} := 460000 lb	Reaction Force From Bridge Load
$P_{dead} \coloneqq 200000 \ lb$	Dead Load of Tower, Including Elevator Shaft
$P_g \coloneqq P_{rxn} + P_{dead}$	Vertical Load
$V_{gx} \coloneqq 1000 \ lb$	Horizontal Load
M _{gy} := 8000 lb · ft	Moment
Assumptions:	
From the soil report from USGS followed by sand per 18-30", gravelly course sand per 70-80' from soil grade, it may be reason noted from the soils report that preliminary design with be with of 30'.	S geodata, it shows that from 0-18" the soil is a loamy sand, avelly course sand per 30-55", course sand per 55-70", and . Since the layer that is cohesive only goes down a short distance nable to analyze this soil as a purely granular soil. It was also the soil surrounding the project site is excessively drained. The a HP14x117 steel pile cross section with an individual pile length

	`	/
	Design Calculat	ions for Individual Piles
For calculating pile point	bearing capacity, the	reduced rigidity index needs to be assessed.
Therefore taking values f	or the static stress-str	ain modulus of elasticity from table 5-6 in the
Bowles, Foundation Anal	lysis and Design was	found for the soil at the bottom of the pile.
$E_{a} \coloneqq 50 \ MPa$	Assuming course sa	nd that is dense and wet.
s	6	
$E := 1000000 \frac{lb}{l}$	Conversion to US up	nits.
ft^2		
σ $(-\infty, D) = 1308$ b		Vertical Effective Stress at Water Table Depth
$U_{z12} = f U_w = 1500 \frac{ft^2}{ft^2}$		verheur Encenve Sness ut water Tuble Depti
$- \frac{1}{2} - $	<i>lb</i>	Vertical Effective Stress at Pile Depth
$O_{z40} = \gamma \cdot D_w + (\gamma \cdot (L_p - D_w))$	$= 2324.8 \frac{1}{\mathbf{ft}^2}$	vertical Effective stress at the Depth
Using table 2.7 in the De	wlas taxt the Deisson	la matie fen this soil was determined.
Using table 2-7 in the Bo	wies text, the Poisson	is ratio for this soft was determined:
	C 1	
$\mu := 0.35$	Conesionless, dense	sand.
T 1 · 1	1 1 0 0	
Taking the assumed inter	nal angle of friction f	or poorly graded sand from Lindeburg, <i>Civil</i>
Engineering Reference jo	<i>r PE 8th Eattion</i> , the	critical depth can be found using Figure 3.10
fiolif the Foulos and Davi	IS ICXI.	
$\phi' \coloneqq 38$ °		
9		
$\phi \coloneqq \frac{3}{4} \cdot \phi' + 10^{\circ} = 38.5^{\circ}$		
т 		
Zc / d ratio from Poulos &	& Davis, <i>Pile Founda</i>	tion Analysis & Design, Figure 3.10: = 10.5
$b_f := 14.9 \ in$ $d := 14.2 \ in$	1	HP14x117 steel pile.
$B_p := \sqrt[2]{(d^2) + (b_f^2)} = 20.583$ in	n	Width of pile is diagonal
$A_p \coloneqq b_f \boldsymbol{\cdot} d = 211.58 \ \boldsymbol{in}^2$		ncluding Soil Plug

 $z_c \coloneqq 10.5 \cdot B_p = 18.01 \ ft$

Critical Depth

Calculation of bearing capacity factors ensue	es:
$G_s := \frac{E_s}{2 \cdot (1 + \mu)} = 370370.37 \frac{lb}{ft^2}$ $c' := 0$	Cohesionless sand.
$I_r \coloneqq \frac{G_s}{c' + \sigma_{z40}' \cdot \tan\left(\phi'\right)} = 187.758$	Rigidity Index
Bowles, Foundation Analysis & Design, Tab	ole on P.894 : Rigidity Index Within Range for Sandy Soil
$\varepsilon_{v} \coloneqq \frac{(1+\mu) \cdot (1-2\cdot\mu) \cdot (\sigma_{z40})}{E_{s} \cdot (1-\mu)} = 0.002$	Volumetric Strain
$I_{rr} \coloneqq \frac{I_r}{1 + \varepsilon_v \cdot I_r} = 144.946$	Reduced Rigidity Index
$K_o \coloneqq 1 - \sin(\phi') = 0.384$	At rest earth pressure coefficient
Vesic's Bearing Capacity Factors:	
$\eta \coloneqq \frac{1 + 2 \cdot K_o}{3} = 0.59$	
$N_q \coloneqq \frac{3}{3 - \sin\left(\phi'\right)} \cdot \exp\left(\left(\frac{\pi}{2} - \phi'\right) \tan\left(\phi'\right)\right) \cdot \left(\tan\left(\frac{\pi}{4} + \frac{\pi}{4}\right)\right)$	$\frac{\phi'}{2}\bigg)\bigg)^2 \cdot I_{rr} \bigg(\frac{4 \cdot \sin(\phi)}{3 \cdot (1 + \sin(\phi))}\bigg) = 134.709$
$N_{\gamma} \coloneqq 0.6 \cdot (N_q - 1) \tan(\phi') = 62.679$	
$N_{c1} \coloneqq (N_q - 1) \cot (\phi') = 171.14$	
$N_{c2} \coloneqq \frac{4}{3} \cdot \left(\ln \left(I_{rr} \right) + 1 \right) + \frac{\pi}{2} + 1 = 10.539$	
$N_c := \mathbf{if} \left(\phi' = 0, N_{c2}, N_{c1} \right) = 171.14$	
$q_p \coloneqq \eta \cdot \sigma_p'' \cdot N_q + \frac{1}{2} \cdot \gamma' \cdot B_p \cdot N_\gamma = 139779.292 \frac{lb}{ft^2}$	Pile Point Bearing Capacity
$P_p := A_p \cdot q_p = 205378.491$ <i>lb</i>	Pile Point Load Capacity

Calculation of Side Friction Cap	pacity:
α - Method calculations will be	used to calculate the pile side friction capacity.
From Tomlinson, <i>Pile Design at</i> due to Steel HP shape. Range is	<i>nd Construction Practice</i> , Table 4.10, Large displacement pile based on soil density, therefore with our dense sand assumption:
$\frac{K_s}{K_o} = 1.25$	
$K_s := K_o \cdot 1.25 = 0.48$	Lateral Earth-Pressure Coefficient for Side Friction
From Tomlinson, Table 4.11, Sr	nooth Steel Pile at interface with sand:
$\delta_p \coloneqq 0.6 \bullet \phi' \!=\! 22.8 \bullet$	Angle of Friction Between Pile and Soil
$f_s \coloneqq K_s \cdot \sigma_p'' \cdot \tan(\delta_p) = 346.199 \frac{lb}{ft^2}$	Side Friction Stress, Considering Critical Depth
Calculation of side friction stres	s profile:
$z_1 \coloneqq D_w$	
$\sigma_{z1} \coloneqq D_w \cdot \gamma = 1308 \frac{lb}{ft^2}$	
$f_{s12} \coloneqq K_s \cdot \sigma_{z1} \cdot \tan\left(\delta_p\right) = 264.152 \frac{lb}{ft^2}$	
<i>z_c</i> = 18.01 <i>ft</i>	
Layers	Avg. Side Friction Stress
0-12 ft	$f_{s1Bar} := \frac{1}{2} \cdot (0 + f_{s12}) = 132.076 \frac{lb}{ft^2}$
12-18 ft	$f_{s2Bar} := \frac{1}{2} \cdot (f_{s12} + f_s) = 305.176 \frac{lb}{ft^2}$
18-30 ft	$f_{s3Bar} := f_s = 346.199 \frac{lb}{ft^2}$
$P_{p1} := b_f + b_f + d + d = 4.85 \ ft$	Perimeter of Pile (Including Soil Plug)
$P_s \coloneqq P_{p1} \cdot \left(12 \ \mathbf{ft} \cdot \left(f_{s1Bar} \right) + 6 \ \mathbf{ft} \cdot \left(f_{s2Bar} \right) \right)$	$(f_{s3Bar}) = 36716.233$ <i>lb</i> Side Friction Capacity

Calculations for compression	and tension load capacity:
L _p =30 ft	Length of Pile
$W_p \coloneqq 117 \frac{lb}{ft} \cdot L_p = 3510 \ lb$	Nominal Weight of pile type multiplied by pile length
From the <i>Standard Guideline</i> of safety were determined fre piles, the design axial load w	<i>es for the Design and Installation of Pile Foundations</i> , the factors om table A.1 and A.2. Assuming a pile group consisting of 12 rill be distributed throughout these 12 piles.
$N \coloneqq 12$ Number of H	Piles
$P_{g1} := \frac{P_g}{N} = 27.5 \text{ ton}$	
$F_1 = 2.0$ Table A.1, S analysis to d	ince this is a preliminary design, using driving formulas and static etermine factors of safety
$F_2 := 1.1$ Table A.2, H	IP Pile
$FS \coloneqq F_1 \cdot F_2 = 2.2$	
$P \coloneqq P_{g1} + W_p = 58510 \ lb$ 2</td <td>$= P_{all} := \frac{P_p + P_s}{FS} = 110043.056 \ lb$</td>	$= P_{all} := \frac{P_p + P_s}{FS} = 110043.056 \ lb$
Condition Satisfied	
For uplift, the factor of safet factor of safety.	y is approximately a 50% increase from the compression capacity
$FS_T \coloneqq 1.5 \bullet FS = 3.3$	Factor of Safety for Uplift
$T_{all} \coloneqq \frac{P_s}{FS_T} + W_p = 14636.131 \ \textit{lb}$	Tension Capacity
Each individual pile satisfic moment. This design criter the analysis of pile groups.	es this condition for both combined axial load and bending ia is calculated when calculating to see if the piles will buckle in This value is also shown in the summary.

Pile settlement for an individual pile is as follows (Bowles Method):									
$A_p \coloneqq 34.4 \ \mathbf{in}^2$	AISC Table 1-4: HP 18x201								
$E_p \coloneqq 29000000 \frac{\textit{lb}}{\textit{in}^2}$									
$m \coloneqq 1$ $I_s \coloneqq 1$	Shape Factor, m*Is = 1.0 (Relatively square pile)								
$\frac{L_p}{B_p} = 17.49$	Fox Embedment Factor Inequality Satisfaction								
$I_F := 0.4$	Fox Embedment Factor								
$F_1 := 0.25$	Reduction Factor, High side friction capacity compared to design load for an individual pile.								
$q := \frac{P_{g1}}{A_p} = 1598.837 \frac{ll}{in}$									
$\boldsymbol{\delta}_{p} \coloneqq \boldsymbol{q} \boldsymbol{\cdot} \boldsymbol{B}_{p} \boldsymbol{\cdot} \left(\frac{1-\mu^{2}}{E_{s}} \right) \boldsymbol{\cdot} \boldsymbol{r}$	$n \cdot I_s \cdot I_F \cdot F_1 = 0.416$ in Point Bearing Settlement								
For elastic settleme	ent assume that the point load is equal to zero.								
$P(z) \coloneqq P_{g1} + \left(\frac{P_{g1}}{L_p}\right) \cdot z$									
$\delta_E \coloneqq \int_{0}^{L_p} \frac{P(z)}{E_p \cdot A_p} \mathrm{d}z = 0.0$	3 <i>in</i> Elastic Shortening								
$\delta_{pile}\coloneqq \delta_p + \delta_E \!=\! 0.446$ is	n Total Pile Settlement								
$B_p \cdot 0.03 = 0.617$ in	Pile settlement should not be greater than 3% of pile diameter								
Condition Satisfied									

Design Calculations for Pile Group									
Vertical load capacity of th	e entire pile group:								
$P_s = 36716.233$ <i>lb</i>	Single pile								
$P_p = 205378.491$ <i>lb</i>	Single pile								
$P_{Group} \coloneqq N \cdot \left(P_s + P_p \right) = 2905136.$	678 <i>lb</i>	Capacity of Pile Group based on piles failing individually							
$s \coloneqq 2 \cdot B_p = 3.43 \ ft$		Minimum Spacing Requirement							
$s \coloneqq 4 ft$		Pile Spacing							
$e \coloneqq 0.5 \ ft$		Edge Distance							
$B_g \coloneqq \left(2 \cdot s\right) + \left(\frac{\left\langle B_p \right\rangle}{2} + e\right) + \left(\frac{\left\langle B_p \right\rangle}{2}\right)$	(+e) = 10.715 ft	See Drawing for Dimensions							
$L_g \coloneqq \left(3 \cdot s \right) + \left(\frac{\langle B_p \rangle}{2} + e \right) + \left(\frac{\langle B_p \rangle}{2} \right)$	+e = 14.715 ft								
$B_g \coloneqq 12 ft$ Simplified	$B_g \coloneqq 12 ft$ Simplified Dimension								
$L_g \coloneqq 15 ft$ Simplified	Dimension								
$f_s \coloneqq \left(f_{s1Bar} \right) + \left(f_{s2Bar} \right) + \left(f_{s3Bar} \right) =$	$783.451 \frac{lb}{ft^2}$								
$P_{gg} \coloneqq \left(2 \cdot B_g \right) + \left(2 \cdot L_g \right) = 54 \ \boldsymbol{ft}$		Perimeter of Group							
$A_g \coloneqq L_g \cdot B_g = 180 \; \mathbf{ft}^2$		Area of Group							
$P_{NBlock} \coloneqq P_{gg} \boldsymbol{\cdot} L_p \boldsymbol{\cdot} f_s + A_g \boldsymbol{\cdot} q_p = 26$	3429463.147 lb	Block Failure Capacity (failure of entire group)							
$P_{Ngroup} \coloneqq \min\left(P_{Group},P_{NBlock}\right) =$	2905136.678 lb								
<i>FS</i> := 3		Assumed FS for pile group							
$P_{allGroup} \coloneqq \frac{P_{Ngroup}}{FS} = 968378.893$	lb >/= $P_g = 60$	60000 <i>lb</i>							
Condition Satisfied									

- 8 -

Predicted elastic settlement of	f the entire pile gro	oup:			
$x \coloneqq \frac{2}{3} \cdot L_p = 20 \ ft$	Equivalent Foo	oting Depth for Piles in	n Sand		
$D_b \coloneqq \frac{1}{3} \cdot L_p = 10 \ ft$					
$D_{bb} \coloneqq \frac{2}{3} \cdot D_b = 6.667 ft$	Starting of 4/1	Slope Stress Distribut	tion		
$B_{EQ} := B_g + 2 \cdot \left(\frac{D_{bb}}{4}\right) = 15.333 \ ft$	$L_{EQ} \coloneqq L_g + 2 \bullet$	$\left(\frac{D_{bb}}{4}\right) = 18.333 ft$			
$q_{net} \coloneqq \frac{P_g}{B_{EQ}^2} = 2807.183 \frac{lb}{ft^2}$					
Strain Influence Factor Metho	od:				
$z_1 \coloneqq B_{EQ} \boldsymbol{\cdot} \left(0.5 + 0.555 \boldsymbol{\cdot} \left(\frac{L_{EQ}}{B_{EQ}} - 1 \right) \right) \coloneqq$	= 9.332 ft =</td <td>$B_{EQ} = 15.333 \; ft$</td> <td>ОК</td> <td></td> <td></td>	$B_{EQ} = 15.333 \; ft$	ОК		
$z_2 \coloneqq B_{EQ} \boldsymbol{\cdot} \left(2 + 0.222 \boldsymbol{\cdot} \left(\frac{L_{EQ}}{B_{EQ}} - 1 \right) \right) = z_2$	31.333 ft =</td <td>$4 \cdot B_{EQ} = 61.333 \ ft$</td> <td>ОК</td> <td></td> <td></td>	$4 \cdot B_{EQ} = 61.333 \ ft$	ОК		
$I_{z0} \coloneqq 0.1 + 0.0111 \cdot \left(\frac{L_{EQ}}{B_{EQ}} - 1\right) = 0.10$	2 =</td <td>0.2</td> <td>OK</td> <td></td> <td></td>	0.2	OK		
$\sigma_{zp}' \coloneqq \gamma \cdot D_w + \gamma' \cdot \left(\left(x - D_w \right) + D_{bb} + z \right)$	$z_1) = 2930.287 \frac{lb}{ft^2}$	Vertical Effective	e Stress at z	1 (Before I	nstallation)
$I_{zMax} \coloneqq 0.5 + 0.1 \cdot \sqrt[2]{\frac{q_{net}}{\sigma_{zp'}}} = 0.598$		All sand layer		$\Sigma = I$	Δz_1
Layer 1				$Z = I_z Bar1$	E_s
$\Delta z_1 \coloneqq z_1 = 9.332 \ ft$ $E_s =$	$500 \frac{ton}{ft^2}$	$I_{zBar1} := \frac{I_{z0} + I_{zMax}}{2} =$	0.35	$\varSigma_1\!\coloneqq\!2.4258$	$\cdot 10^{-6} \frac{ft^3}{lb}$
Layer 2					
$\Delta z_2 := z_2 - z_1 = 22.001 \ ft$ $E_s =$	$500 \frac{ton}{ft^2}$	$I_{zBar2} := \frac{I_{zMax}}{2} = 0.29$	9	$\varSigma_2 \coloneqq 6.2068$	$\cdot 10^{-6} \frac{ft^3}{lb}$
$\boldsymbol{\Sigma} \coloneqq \boldsymbol{\Sigma}_1 + \boldsymbol{\Sigma}_2 = 0.0000086326 \frac{\boldsymbol{ft}^3}{\boldsymbol{lb}}$					
$\sigma_z' \coloneqq \gamma \cdot D_w + \gamma' \cdot \left(\left(x - D_w \right) + D_{bb} \right) = 2$	$2299.467 \frac{lb}{ft^2}$	Vertical Effective St	ress at Equi	valent Foot	ting
$C_1 \coloneqq 1 - 0.5 \cdot \left(\frac{\sigma_z'}{q_{net}}\right) = 0.59$					
t = 50 Years					
$C_2 \coloneqq 1 + 0.2 \cdot \log\left(\frac{t}{0.1}\right) = 1.54$					
$\delta_{pg} \coloneqq C_1 \cdot C_2 \cdot q_{net} \cdot \Sigma = 0.264 \text{ in}$		Elastic Settlement of	f Pile Group)	

- 9 -

<u>Pile I</u>	Bucl	kling	Calc	ulatio	<u>ns:</u>											
See A	See AutoCAD drawing for pile arrangement															
Over	turn	ing M	lom	ent (N	-S) (<u>Only</u>										
$y_1 \coloneqq s$	$+\frac{s}{2}$	= 6 ft		$y_2 \coloneqq -\frac{s}{2}$	$\frac{1}{2} = 2$	ft	$y_3 \coloneqq y_2$	2		$y_4 \coloneqq$	y_1					
Σy_{squa}	red1 :=	= 2 • (3 •	$\cdot \left(y_1^{-2} \right)$	$+y_{2}^{2}$) = 24	0 ft ²										
$P_1 \coloneqq \frac{I}{I}$	$\frac{P_g}{N}$ +	$M_{gy} \cdot$ Σy_{squar}	$\frac{y_1}{red1} =$	= 55200	њ			=</td <td></td> <td>P_{all}:</td> <td>$=\frac{P_p + P_s}{FS} =$</td> <td>= 144966.9</td> <td>lb</td> <td></td> <td></td> <td></td>		P_{all} :	$=\frac{P_p + P_s}{FS} =$	= 144966.9	lb			
$P_2 \coloneqq \frac{1}{2}$	$\frac{P_g}{N}$ +	$M_{gy} \cdot$ Σy_{squar}	$\frac{y_2}{red1} =$	= 55066	.667	ь		=</td <td></td> <td>P_{all}:</td> <td>$=\frac{P_p + P_s}{FS} =$</td> <td>= 144966.9</td> <td>lb</td> <td></td> <td></td> <td></td>		P_{all} :	$=\frac{P_p + P_s}{FS} =$	= 144966.9	lb			
$P_3 \coloneqq \frac{1}{2}$	$\frac{P_g}{N}$	$M_{gy} \cdot$ Σy_{squar}	y_3 red1	= 54933	.333	ь		=</td <td></td> <td>P_{all}:</td> <td>$=\frac{P_p + P_s}{FS} =$</td> <td>= 144966.9</td> <td>lb</td> <td></td> <td></td> <td></td>		P_{all} :	$=\frac{P_p + P_s}{FS} =$	= 144966.9	lb			
$P_4 \coloneqq \frac{I}{I}$	$\frac{P_g}{N}$	$M_{gy} \cdot$ Σy_{squar}	$y_4 =$	= 54800	lb			=</td <td></td> <td>P_{all}:</td> <td>$=\frac{P_p + P_s}{FS} =$</td> <td>= 144966.9</td> <td>lb</td> <td></td> <td></td> <td></td>		P_{all} :	$=\frac{P_p + P_s}{FS} =$	= 144966.9	lb			
All p	iles	satisf	y ax	ial loa	ıd ca	pacity	7									
$A \coloneqq 34$	1.4 <i>ir</i>	2	F_y	= 5000	$0 \frac{lb}{in^2}$											
$P_d \coloneqq P$	$P_1 = 5$	5200 ll	Ь		Ma	aximu	m Axi	al Loa	d Cont	rols						
1	Þ,			h												
$\sigma_d \coloneqq -$	$\frac{a}{A} =$	1604.6	51	n ²												
$\sigma_{all} \coloneqq$	0.35	$F_y = 1$	7500	$\frac{lb}{in^2}$		<i>Stana</i> (35%	<i>lard G</i> of Yie	<i>uidelir</i> eld Stre	<i>nes for</i> ess)	the D	Design and	d Installe	ation of	Pile Fo	undatio	ons,
σ_d	:</td <td>=</td> <td>σ_{al}</td> <td>ı</td> <td></td>	=	σ_{al}	ı												
Cuito	mia	ia anti	GGA	J Dil		11 mot	huabl	•								
Crue	i iu	is suu	sjie	ı. <i>1</i> ше	s wi		бискіе	-								

- 12 -

											D	esig	n Su	ımn	nary												
All re HP 1 distri the re satist 2ft th	equi 4x1 buti equi fied nick	rem 17 a on rem and cor	nent and of a nent l is ncre	ts w 30 an i t for sho	vere ft lo sola r ax own slab	e sa ong atec ial in , w	tisfi . Th l pil loa the hicl	ied le c d. V ana h re	for th ile ca ap. P Vhen Ilysis sts of	ne de ap co ile a con of p n top	esign onta xial nbin oile o of	n of ins 1 cap ing grou the	the 12 p acit <u></u> axia ips p pile	indi iles y is ll loa oorti . Thi	vidu that analy ad ar on o is ca	al p are yzeo nd b of th p is	iles spa d fo enc e ca a 1	s and aced or ea ling alcu 2' x	d th at ich mo lati 15	e pile 4ft wi indivi oment ons. T ' recta	gro th a dua the The j ingu	up. typ l pi cap pile lar	Th bica le a baci caj blo	e pi l nd ty i o w ck.	iles pass s als ill b	are ses so so e a	

Engineering Costs:

Γ

ltem	Hours	Sala	ary/hr	Overhead Mult	Cost	
Planning and Data Collection	90	\$	30.00	2.5	\$	6,750.00
Bridge Design	250	\$	30.00	2.5	\$	18,750.00
Design Alternatives	150	\$	30.00	2.5	\$	11,250.00
Report and Presentations Production	50	\$	30.00	2.5	\$	3,750.00
Meetings	15	\$	30.00	2.5	\$	1,125.00
Travel, Material, Supplies					\$	100.00
				Total	\$	41,725.00

Substructure	Unit	Quantity	Price/Unit	Total	
HP18X204 Steel Piles (ft)	60	60	60	\$	216,000.00
HP14X117 Steel Piles (ft)	30	12	40	\$	14,400.00
CC Pile Caps/Anchors (yd^3)	130	2	200	\$	52,000.00
Excavation (yd^3)	210	1	60	\$	12,600.00
Crane+Operator(hr)	40	2	350	\$	28,000.00
Deisel Hammer(week)	1	2	1380	\$	2,760.00
Laborers(hr)	40	4	19.4	\$	3,104.00
Piledrivermen (hr)	40	2	24.15	\$	1,932.00
Concrete Finisher (hr)	16	4	24.8	\$	1,587.20
Construction Inspector/Engineer(hr)	40	1	60	\$	2,400.00
Carpenter (hr)	16	2	24.15	\$	772.80
Rebar (ft^2)	2400	1	0.2	\$	480.00
			Total	\$	336,036.00

Superstructure/Pylon/App	Unit	Quantity	Price/Unit	Total
W36X853 Steel Beams (ft)	525	2	383.85	\$ 403,042.50
CC Deck 8" depth x 10' wide(yd^3)	132	1	200	\$ 26,400.00
Deck Rebar (ft^2)	5250	1	0.2	\$ 1,050.00
Stay Cables (ft)	8850	2	3	\$ 53,100.00
Pylon/Pier CC (yd^3)	2	120	200	\$ 48,000.00
Elevator Tower Steel FramingW4x13(ft)	630	1	17	\$ 10,710.00
Pylon/Pier Rebar (ft^2)	3500	2	0.6	\$ 4,200.00
Elevator	1	1	108965.75	\$ 108,965.75
Ramp Approach CC(yd^3)	375	1	200	\$ 75,000.00
Ramp Approach Rebar (lb)	18000	1	1	\$ 18,000.00
Steel Paint (LS)	1	1	35000	\$ 35,000.00
Ramp Approach Stirrups	1	160	2	\$ 320.00
Laborers(hr)	400	8	19.4	\$ 62,080.00
Carpenter (hr)	400	2	24.15	\$ 19,320.00
Construction Inspector/Engineer(hr)	400	2	60	\$ 48,000.00
Roller Support	1	2	1000	\$ 2,000.00
Tower Support	1	2	15000	\$ 30,000.00
Superintendent(hr)	400	2	50	\$ 40,000.00
Welder(hr)	350	3	25.25	\$ 26,512.50
Electrician(hr)	40	2	22.25	\$ 1,780.00
Equipment Operator	400	2	29.05	\$ 23,240.00
Crane Oiler/Spotter (hr)	400	1	24.15	\$ 9,660.00
Concrete Finisher (hr)	80	4	24.8	\$ 7,936.00
Crane+Operator(hr)	400	1	350	\$ 140,000.00
Saftey Fencing (/7ft)	186	1	270	\$ 50,220.00
Deck Lighting (fixture)	1	12	250	\$ 3,000.00
Structure Lighting (fixture)	1	6	600	\$ 3,600.00
Elevator Tower Windows	1	8	4000	\$ 32,000.00
Bridge Steel Handrail (ft)	650	2	80	\$ 104,000.00
Precast CC Steps (step)	30	1	650	\$ 19,500.00
Elevator Tower Roof (ft^2)	634	1	12	\$ 7,608.00
CC Stair Landings	1	3	150	\$ 450.00
Elevator Tower Steel FramingW4x13(ft)	164	1	17	\$ 2,788.00
Elevator Tower Steel FramingW8x10	110	1	12	\$ 1,320.00
			Total	\$ 1,418,802.75

Site Design	Unit	Quantity	Price/Unit	Total					
Land Grading (ft ²)	20000	1	1.5	\$	30,000.00				
Subbase (yd^3)	484	1	15	\$	7,260.00				
Surveying Crew(hr)	60	1	96	\$	5,760.00				
Equipment Operator(hr)	160	2	29.05	\$	9,296.00				
Laborers(hr)	160	6	19.4	\$	18,624.00				
Concrete Finisher (hr)	8	4	24.8	\$	793.60				
Construction Inspector/Engineer(hr)	160	1	60	\$	9,600.00				
Superintendent(hr)	160	1	50	\$	8,000.00				
Lamposts	1	3	1000	\$	3,000.00				
Silt Fence (ft)	600	1	1	\$	600.00				
Native Grass (acre)	0.3	1	2000	\$	600.00				
Trees	1	6	150	\$	900.00				
CC Sidwalk (yd^3)	30	1	100	\$	3,000.00				
Rebar (ft^2)	700	1	0.2	\$	140.00				
			Total	ć	97 573 60				
			TULAI	Ş	57,575.00				
Cost before profit				\$	1,894,137.35				
Cost Multiplier					2.5				
Total Project Cost	Total Project Cost								

Notes:

1. Concrete Price includes forms

2. Cost of Cables is unkown and estimated from a much smaller product. Will contact manufacturer for specific product cost.

3. Elevator Cost includes installation

4. Survey Crew Includes 2 Liscensed Surveyors \$30/hr and 2 untrained assistants @\$18/hr.

Project Cost Breakdown								
Category	Cost							
Substructure	\$ 840,090.00							
Superstructre+Approaches	\$ 3,547,006.88							
Site Design	\$ 243,934.00							
Contigency (10%)	\$ 463,103.09							
Total Cost	\$ 5,094,133.96							

Project Cost Breakdown								
Category	Cost							
Substructure	\$ 850,000.00							
Superstructure+Approaches	\$ 3,600,000.00							
Site Design	\$ 250,000.00							
Contigency (10%)	\$ 470,000.00							
Total Cost	\$ 5,170,000.00							

Cost Est Substructure Excavation: 2.89 gd + 70 piles Piles > using augur: (60.2 11-)-> 60.7. 25' = 10.45 = 46d3 .4.60 = 32,5d 3 Total Excavation = 178-32 = 210303 Excarter Labor: Zone 4 Super Structure /Pylon W36×853 -> 3 Price/1++ = 45 - 883 = 1383.85 132303 Stay cable: Total Length From Earry Pylon Tower: 1235 .5. 5. 10. 9.150 = : 246yd Arra = (27.5. (10+5).2) + (3.4.150) = 30002

Super Structure Flowator Stairs: 27 up = 30 stors Stair Landing pads (10'x10'x.5']-2 Windows - 12'×12' = 452 = 0130/623+ Project Site Silf Fener; 140'x 175 225' = 540 heized wid Hsport Sidewalt : 140' × 5' × ,5' Lensth with Droth

<u>References</u>

AISC, (2017). Steel Construction Manual, 15th Edition. AISC.

- American Association of State Highway and Transportation Officials. (2009). *LRFD Guide Specifications* for the Design of Pedestrian Bridges. American Association of State Highway and Transportation Officials.
- American Association of State Highway and Transportation Officials. (2012). AASHTO LRFD Bridge Design Specifications. Washington, DC: American Association of State Highway and Transportation Officials.
- ASCE, (1997). Standard Guidelines for the Design and Installation of Pile Foundation. ASCE.

Bhatti, M. A., & Bhatti, N. (2020). Reinforced Concrete Design Fundamentals and Practice.

Bowles, J. E. (1997). Foundation Analysis and Design. McGraw-Hill inc.

- American Association of State Highway and Transportation Officials. (2009). *LRFD Guide Specifications* for the Design of Pedestrian Bridges. American Association of State Highway and Transportation Officials.
- American Association of State Highway and Transportation Officials. (2012). AASHTO LRFD Bridge Design Specifications. Washington, DC: American Association of State Highway and Transportation Officials.
- Bhatti, M. A., & Bhatti, N. (2020). Reinforced Concrete Design Fundamentals and Practice.
- Brockenbrough, R., & Merrit, F. (2020). *Structural Steel Designer's Handbook, 6th Edition*. New York: McGraw Hill.
- RJ Watson Inc. (n.d.). *Dimension Tables.* Retrieved from RJ Watson Inc: https://www.rjwatson.com/bridge-highway/bridge-structural-bearings/disktronbearings/dimension-tables-5/

Couto, D. P. (2001). Foundation Design Principles and Practices. Prentice Hall.

Lindeburg, M. R. (2001). *Civil Engineering Reference for PE, 8th Edition*. Professional Publications.

Poulos, H., Davis, E. H. (1980). Pile Foundation Analysis and Design. Rainbow-Bridge Book Co.

RJ Watson Inc. (n.d.). *Dimension Tables.* Retrieved from RJ Watson Inc: https://www.rjwatson.com/bridge-highway/bridge-structural-bearings/disktronbearings/dimension-tables-5

Tomlinson, M., Woodward, J. (2008). *Pile Design and Construction Practice*. Taylor & Francis Group.