

FINAL DELIVERABLE

Title	Camp Courageous- Cultural Education Center	94 1998 1998
Completed By	Austin Duffy, Nolan Osland, Grace Gudenkauf	
Date Completed	December 2021	-
UI Department	Department of Civil & Environmental Engineering	
Course Name	CEE:4850:0001 Project Design & Management	
Instructor	Paul Hanley & Richard Fosse	
Community Partners	Camp Courageous, Maquoketa River Watershed Management Authority, Iowa DNR	

This project was supported by the Iowa Initiative for Sustainable Communities (IISC), a program that partners with rural and urban communities across the state to develop projects that university students and faculty complete through research and coursework. Through supporting these projects, the IISC pursues a dual mission of enhancing quality of life in Iowa while transforming teaching and learning at the University of Iowa.

IISC is a member of the Educational Partnerships for Innovation in Communities -Network (EPIC-N), a growing network of educational institutions across the globe using the EPIC Model to partner existing course work and university human capital with the needs of local governments, and communities, to improve quality of life. Learn more about other network programs at www.epicn.org.

Research conducted by University of Iowa faculty, staff, and students exists in the public domain. When referencing, implementing, or otherwise making use of the contents in this report, the following citation style is recommended:

[Student names], led by [Professor's name]. [Year]. [Title of report]. Research report produced through the Iowa Initiative for Sustainable Communities at the University of Iowa.

This publication may be available in alternative formats upon request.

Iowa Initiative for Sustainable Communities The University of Iowa 347 Jessup Hall Iowa City, IA, 52241 Email: iisc@uiowa.edu Website: http://iisc.uiowa.edu/

The University of Iowa prohibits discrimination in employment, educational programs, and activities on the basis of race, creed, color, religion, national origin, age, sex, pregnancy, disability, genetic information, status as a U.S. veteran, service in the U.S. military, sexual orientation, gender identity, associational preferences, or any other classification that deprives the person of consideration as an individual. The University also affirms its commitment to providing equal opportunities and equal access to University facilities. For additional information contact the Office of Equal Opportunity and Diversity, (319) 335-0705.

Camp Courageous Cultural Education Center Final Preliminary Design–December 10, 2021

Submitted By:

Austin Duffy, Nolan Osland, and Grace Gudenkauf

The University of Iowa, College of Engineering | Iowa City, Iowa 52240 | (319) 238-3856

Section I Executive Summary

Our team designed the proposed cultural education center for Camp Courageous in Monticello, Iowa. The design meets each of your envisioned uses for the center including:

- Four-season nature observation from within the building.
- A large, open space for engaging activities suitable for campers of all ages and members of the public.
- Space for educational displays of the native plant and animal species and audio/visual nature observation enhancement equipment.
- A storage room and restroom facilities.

The building and site plan meets all ADA design standards as well as integrating the seven Universal Design Principles into the final design. For the architectural design of the building, it is modern style that blends well with the natural environment and existing camp facilities. We emphasize an open concept with large windows spanning around the building. Our site location is situated in the northeast wooded area on the camp property, overlooking the valley leading to the Maquoketa River.

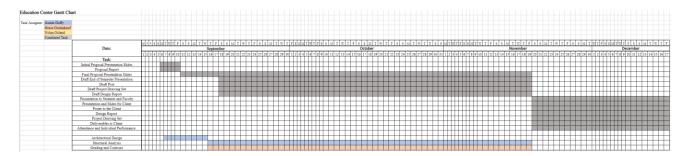
The design of the cultural education center was completed in the following phases:

- Data collection: Met with the client to determine the scope of the project and to gather design ideas. Then, collected spatial data of the site including elevation contours and soil types.
- Architectural design: Developed preliminary architectural designs utilizing AutoDesk Revit and Lumion and presented them to the client.
- Determined site location and building orientation.
- Structural analysis and design: An iterative process of sizing and spacing structural members to meet strength and safety requirements. AutoDesk Revit was utilized for the building modeling and FTool was employed for the structural analysis.
- Site Design: Line work, grading, utility, and earthwork design was completed using Civil 3D.
- Delivery of Design: A presentation to the client was delivered along with the plan sheets and the design report.

For the design of the project there were several alternatives to consider for the project location and architectural designs. Within the wooded area on the northeast side of the camp property there are two suitable locations for the building. The first is at the old outdoor church gathering space overlooking the valley and the second is located near the base of the valley overlooking a rock outcropping. We recommend the second site due to the opportunity to view various topographic features and it is a suitable area to cultivate animal wildlife viewing. For the structural framing of the center, we recommend the use of steel for longevity in the wooded location. The total cost of the building is estimated at \$700,000 which includes material costs, general contractor's overhead and profit, contingencies, and administrative costs.

Section II Organization Qualifications and Experience

1. Organization and Design Team Description


For our final semester at the University of Iowa, we designed the cultural education center at Camp Courageous in Monticello, IA. Our team, includes Austin Duffy as the project manager, Nolan Osland, and Grace Gudenkauf. Austin took the lead in architectural modeling as well as the structural modeling of the building. Nolan led the design work outside of the cultural education center which includes line work, grading, utilities, and earthwork. Grace led the structural design calculations for the building, foundation, and retaining wall.

Section III Proposed Services

1. Project Scope

For the cultural education center our goal was to provide a building to be used yearround that gives campers and the public the opportunity to interact with wildlife around the area. The building consists of a large open room for nature education and activities as well as wildlife exhibits. Additionally, there is a viewing room to provide an overlook of the forested area. To accomplish this, we began by collecting spatial data of the site including elevation contours, soil types, wetlands, river and stream channels, land use, and existing utilities using ESRI ArcMaps. After visiting the site location and determining the proposed building uses, several architectural design concept alternatives were developed using Revit and Lumion. Once an architectural design plan was determined, the structural framing plan was completed using AutoDesk Revit. When the building design was finished, a site design was completed in Civil 3D which includes plans for grading, landscaping, utility routing, and a sidewalk connection to the proposed trail. After the plans were finalized, a cost estimate for the design, materials, and construction was tabulated.

2. Work Plan

Above is the Gantt chart for the schedule of tasks for the project. See Appendix B for a larger version in landscape.

3. Methods and Design Guides

For the design of the cultural education center, we utilized the 2018 International Building Code, and 2010 ADA Standards for Accessible Design as well as the Universal Design Principles as our design standards. Additionally, the Universal Design Principles guided our architectural plans for the facility. To determine the applied and member loading for the structure, ASCE 7-10: Minimum Design Loads for Buildings and Other Structures was employed. To complete the structural analysis for the building, the Load and Resistance Factor (LRFD) method was used. The structural materials chosen for design were steel and concrete so the AISC Steel Construction Manual (15th Ed.) and ACI 319-19: Building Code Requirements for Structural Concrete were utilized.

For the design of the site surrounding the cultural education center, the 2021 Iowa Statewide Urban Design and Specifications (SUDAS) manual was used. The Iowa SUDAS manual includes design standards for sidewalks, utilities and erosion control.

Section IV Constraints, Challenges, and Impacts

1. Constraints

There were a variety of constraints that were present during the planning and construction of the cultural education center. The first constraint was the time limit for the design of the project. The design needed to be completed on December 8th, 2021, which gave our team approximately three months for the design process.

Another constraint was the cost of the project. Although there is not a set budget, the project needed to be cost-effective while meeting the client's goals for the design of the center and the site. The building material type, quantity, and technical difficulty of construction are just a few considerations that make a substantial impact on the cost of the overall project.

A third constraint is the location of the project within the property. Currently, the desired location for the center is an undeveloped timbered area with vast changes in elevations.

2. Challenges

One challenge for the design of this project was choosing a location for the building. The site for this project will be located within the forested area on the Camp Courageous property. This forested area has karst topography with varying elevations. Furthermore, this presented a

challenge when meeting site grading requirements for ADA sidewalk standards and the client's desire to meet Universal Design principles.

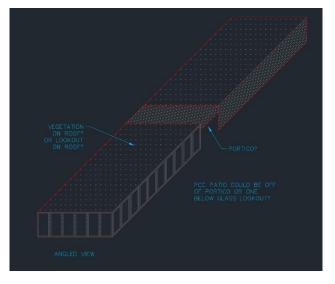
During architectural planning the choice of building materials presented a challenge for the construction process. Certain materials will be difficult to transport to the site such as prefabricated trusses, pilings and concrete due to the size of vehicles required to deliver these materials. Additionally, the client preferred a modern style for the cultural education center, which caused difficulty in integrating the building into the natural environment.

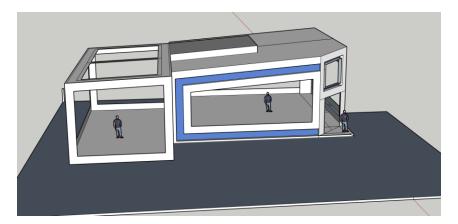
Another challenge in the design process is the routing and design of utilities to the building. The distance from the existing tie-in points is relatively long which presented a high cost to extend utilities into a rural area with rough terrain. Additionally, the maintenance associated utilities presented a cost and goes against the client's desire for a low maintenance facility. The client also desired to remove as few trees as possible, therefore, the selected location needed to be without much required tree removal. Due to the site not being developed we chose underground electricity, as overhead electricity was not feasible.

A final challenge was to coordinate with other senior design project teams the location of our site in relation to their projects. The hiking trail design needed to align with the walkway towards the cultural education center and the water feature needed to be visible from the indoor viewing area.

3. Societal Impact within the Community and/or State of Iowa

The cultural education center will create opportunities for campers as well as the public to experience and learn about the natural environment in Northeast Iowa. The proposed center will have educational displays and activities for campers and visitors to learn about the local ecosystem. Additionally, the center will have an indoor observation area for the viewing of the natural habitat. The center will help foster a greater appreciation for the natural environment and encourage environmental stewardship.


With this proposed camp amenity, there may also be an increase in campers attending Camp Courageous as well as members of the public who desire to utilize the facility and the connecting trail system. With a larger population of the public visiting the camp, there may be an increase in donations to support Camp Courageous and its operations.


Due to the construction of the center, the current habitat and subsurface conditions at the site will be altered. The alterations include the clearing of existing plant and animal species from the site and the grading and compaction of the existing soil. Additionally, after the construction of the center, there will be landscaping on the site to increase the aesthetic quality and draw wildlife to the viewing area.

Section V Alternative Solutions That Were Considered

Several alternative architectural designs were provided for the cultural education center. Each design provided a single-story open room plan, viewing area, and large windows spanning around the building to provide natural lighting and an overlook of the surrounding forested area. One of the proposed architectural styles considered was a modern design. This style was preferred due to the abundance of windows and use of multiple materials for the siding. A disadvantage to this style is the difficulty in having the building blend in with the natural environment and the existing camp buildings. Below are the initially proposed concepts for a modern design:

Another proposed design concept was the "Prairie style", influenced by the architect Frank Lloyd Wright. One advantage of this design is its ability to blend in with the natural environment with the use of wood and limestone materials. One disadvantage is the lack of window space often found in this design style.

After the completion of our visit to Camp Courageous, there were two locations that were candidates for the site. The first is at the old outdoor church gathering space overlooking the valley. This location was ideal due to the high elevation for water drainage and ease of access for the proposed trail. A disadvantage is the need to clear a substantial number of trees to get a clear view of the valley. Below is a picture of the site:

The second option, which we chose as the site location, is located near the base of the valley overlooking a rock outcropping. We recommend this location due to the optimal viewing of diverse topography and the opportunity to cultivate a habitat for wildlife. Additionally, if water education projects were desired at the site location, near the valley would be the best location for water detention. Below is a photo of the proposed site:

Another consideration for the center is the choice of utilities provided. Utilities typically considered in the design of a structure include water, electric, sanitary, gas, telephone, and internet.

To adhere to the desire of the client for a maintenance-free center, we recommend providing electricity for lighting and the HVAC system.

Section VI Final Design Details

1. Load Calculations

For the design wind, snow, dead, and live load calculations for the building, the ASCE 7-16 design standard was employed. The total upper roof dead load was 49 psf and was chosen based on the upper roof superimposed dead loads from Table C3.1-1a which includes the metal roof, a waterproofing membrane, rigid insulation, plywood, a wood furring suspension system, and a mechanical and electrical allowance. The total roof live load was 20 psf and was chosen from Table 4.3-1. The sloped roof snow load was 20 psf and was determined using the procedure outlined in Chapter 7. The unbalanced roof snow load was a linear triangular distribution with a maximum of 34.5 psf in the snow drift roof area. The drift height was determined using Fig. 7.6-1 and the dimensions of the snow drift are defined based on Fig. 7.7-2. The wind load for the walls and roof were determined using the Directional Procedure in Chapter 27 for the main force resisting system. The maximum wall pressure was 11.5 psf and the maximum positive roof wind pressure was 0.375 psf. For the floor live load a value of 100 psf was chosen from Table 4.3-1 and the superimposed dead loads from Table C3.1-1a for the floor consisted of wood flooring and a subfloor which totaled 7 psf. These loads were factored using the load combinations for strength design, the Load and Resistance Factor Design method. The maximum load combinations to be used for the structural calculations were 49.1 psf for the roof and 168.4 psf for the floor. To check for serviceability, load combinations for short and long-term deflection were determined using the load combinations outlined in Appendix CC.

2. Structural Member Sizing

For the sizing of the metal roof deck, the Vulcraft Roof Deck Catalog was utilized based on the applied factored loads and the roof deck chosen for design was a 22 Gauge, 1.5B deck, grade 50 steel, 4' O.C. For the sizing of the roof and floor joists, the New Milennium Building Systems Joist Design Guide was used based on the applied factored loads, span length, and tributary area and the joist size used in design are 10K1, 4' O.C. The structural studs used are 600S162-68 6" stud, 2' O.C. and were sized using the ClarkDietrich Design Guide Catalog for the associated wind loading, wall height, and tributary area. For the design of the beams and columns, the AISC Steel Construction Manual was utilized. Each beam was modeled in FTool and the maximum bending moment and shear force were determined. Additionally, for the short and longterm deflection load combinations, the maximum deflection was determined. After choosing a preliminary member size, the plastic moment and nominal shear strength (AISC Eq. (F2-1)) were determined. These member specific values were compared to the applied loading by using the demand capacity ratio. For the serviceability checks, a deflection limit of L/240 was used for the main building and a stricter limit of L/480 for the viewing area due to the use of windows that extend up to the ceiling. The final beam size used for design is W12 x 26. For the sizing of the columns and the steel piers, the axial load was determined from the reaction forces from the beam FTool analysis as well as the beam self-weight for the given column tributary width. After a preliminary column size was chosen, the design strength was determined by finding the critical stress for the given slenderness parameter and gross cross-sectional area. The design strength was checked against the axial load by using the demand capacity ratio. The final column sizes for the main building were HSS 4x4x1/2. For the viewing area the columns are HSS 3x3x3/8 members, and for the steel piers, the members are HSS 6x6x5/8.

3. Foundation Design

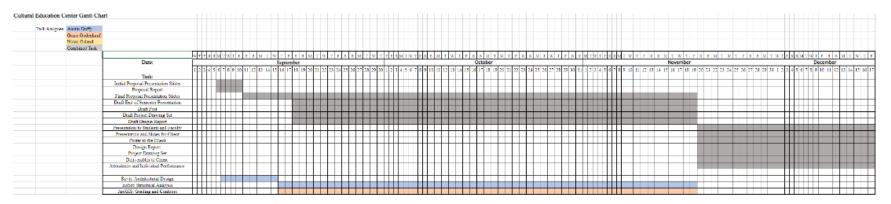
For the design of the foundation, the soil data was determined based of the Iowa Web Soil Survey for our site location. Since the bedrock began at a depth of 14 to 18" below the ground level, the foundation was designed for bedrock, which is limestone in northeast Iowa. From Table 1806.2 from the IBC, the load-bearing values and coefficient of friction for sedimentary rock were determined. The bearing pressure for the square pier foundations and the continuous foundation around the building were determined using Vesic's method with the applied loads.

4. Retaining Wall Design

The cantilever retaining wall was designed based on ACI 318-02 using an Excel sheet that checks for overturning, soil bearing capacity, flexure capacity, and shear capacity. The retaining wall was designed for a surcharge load of 175 psf, which accounts for the pavement surcharge and vehicle access.

5. Site Design

The line work for the site was completed using a SU-23 Shuttle bus design vehicle. This vehicle will be used by the camp staff to transport the campers to and from the site. The 23 ft long design vehicle can get in and out of the site with a three-point turn. The site design also had to accommodate for a 30 ft firetruck to get in and out of the site. A SU-30 design vehicle was used to resemble the firetruck and this vehicle can turnaround by completing a five-point turn.


The site was graded using the criteria presented in chapter 8 of the SUDAS design manual, Appendix E. All slopes within the pavement are under 5% with a target of 1.5%. All the water that lands on the pavement will drain to the east. Additionally, everything drains away from the cultural education center. Adjacent to the pavement are a 1 ft and 2 ft soft 5% slope of grass until the retaining wall begins. This was designed to provide more safety for the campers. A cross section of this design is shown in Appendix D on the C-201 sheet.

The cultural education center also needed water and electric lines running to the building. The utilities run along the West side of the pavement with the electric and water at a 2ft and 4ft offset, respectively. The water line is designed by be 5' under the FG elevations, while the electric line should be placed 3' under the FG.

Section VII Engineer's Cost Estimate

The cost estimate was divided into three major categories including structural materials, finishing materials, and site design costs. These costs consider general contractor's overhead and profit, contingencies, and administrative costs. By utilizing the 2011 RSMeans Handbook and accounting for inflation, the total structural material cost was determined to be \$214,000. The major structural material costs include \$63,000 for the retaining wall and \$44,000 for the metal stud framing. For the finishing materials, the total cost is \$360,000. The main costs associated with these non-structural materials include \$115,000 for the store front windows, \$92,000 for the mullions, and \$45,000 for the limestone veneer. Finally, the site design cost was estimated by employing the Iowa DOT awarded contract unit prices, 2019 RSMeans, and 2019 National Construction Estimator. The total site design cost was \$120,000. The primary costs for the site design were \$73,000 for earthwork, \$38,000 for pavement, \$7,000 for utilities, and \$2,000 for erosion control. The overall total cost for the cultural education center is estimated at \$700,000.

Appendix B -Gantt Chart

Cultural Education Center Gantt Chart

Task Assi	ignee: Austin Duffy	
	Grace Gudenkauf	
	Nolan Osland	
	Combined Task	
		Date:
		Task:
		Initial Proposal Presentation Slides
		Proposal Report
		Final Proposal Presentation Slides
		Draft End of Semester Presentation
		Draft Post
		Draft Project Drawing Set
		Draft Desgin Report
		Presentation to Students and Faculty
		Presentation and Slides for Client
		Poster to the Client
		Design Report
		Project Drawing Set
		Deliverables to Client
		Attendance and Individual Performance
		Revit: Architectural Design
		Robot: Structural Analysis
		ArcGIS: Grading and Contours

Appendix C –Cost Estimates

Architectural Multi-Category Material Takeoff																	
I akcoli											201						
											201	1					
									Mate	erial Cost				Tot	al Cost		
E	Material: Name	Material: Length (FT)	Material: Area (SF)	Material: Volume (CF)	Material: Unit weight	0											
Family and Type		Length (F 1)		. ,	18.10 b/ft	Count 4	Cost/LF	Cost/SF \$ 0.37	Cost/CF	Cost/Count	Cost \$ 125.43	Cost/LF	Cost/SF \$ 1.49	Cost/CF	Cost/Co	nnt S	Cost
Compound Ceiling: 2' x 4' ACT System	Acoustic Ceiling Tile 24 x 48		339 254	17.65 CF		· ·		• ••••					• • • • •				
Basic Walt Exterior - Limestone Insulated 2	Gypsum Wall Board	_		13.21 CF	68.67 b/th	4		\$ 0.89			•		\$ 1.26			\$	
Basic Walt Exterior - Wood Finish Alt. 2	Gypsum Wall Board		1349	56.21 CF	68.67 b/₽	5		\$ 0.89			\$ 1,200.61		\$ 1.26			\$	x30000111
Basic Walt Interior - 5 1/2" Partition (1-hr)	Gypsum Wall Board		1808	94.19 CF	68.67 b/tB	7		\$ 0.89			\$ 1,609.12 \$ 320.40		\$ 1.26 \$ 1.26			\$ \$	2,270.00
Basic Walt Interior - 9" Partition	Gypsum Wall Board		360	18.75 CF	68.67 b/iP			\$ 0.89			¢ 520.40		\$ 1.20				100100
Basic Roof Wood Rafter 8" - Tin - Insulated	Aluminum Sheet Panels		2426	50.55 CF		2		\$ 1.14			\$ 2,765.64		\$ 2.52			\$	0,110.02
Basic Roof Wood Rafter 8" - Tin - Insulated	Rigid Insulation		2426	50.55				\$ 0.28			\$ 679.28		\$ 0.54			\$	19010101
Basic Walt Exterior - Limestone Insulated 2	Limestone Veneer		507	406.99 CF		4		\$ 48.00			\$ 24,336.00		\$ 52.59			\$	
Basic Walt Exterior - Limestone Insulated 2	Metal Furring		254	34.36 CF	490.06 b/ft ³	4		\$ 0.34			\$ 86.36		\$ 1.53			\$	000108
Basic Roof Wood Rafter 8" - Tin - Insulated	Plywood		2426	126.37 CF	34.46 b/fP	2		\$ 0.82			\$ 1,989.32		\$ 1.29			\$	3,129.54
Basic Walt Exterior - Wood Finish Alt. 2	Plywood		1349	84.32 CF	34.46 b/fP	5		\$ 0.82			\$ 1,106.18		\$ 1.39			\$	1,075.11
Basic Wall: Exterior - Limestone Insulated 2	Rigid insulation		254	63.43 CF	3.12 lb/fi ^s	4		\$ 0.28			\$ 71.12		\$ 0.54			\$	201120
Basic Wall: Exterior - Wood Finish Alt. 2	Vapor Retarder		1353	0.00 CF		5		\$ 1.19			\$ 1,610.07		\$ 10.49			\$	14,192.97
Basic Wall: Exterior - Wood Finish Alt. 2	Fiber Cement Siding		1350	337.29 CF		5		\$ 1.04			\$ 1,404.00		\$ 2.66			\$	3,591.00
Floor: Wood Joist 1.5" - Oak Wood Finish 2	Oak Flooring		1650	103.15 CF	42.01 b/fb	2		\$ 4.49			\$ 7,408.50		\$ 6.52			\$	10,758.00
Floor: Wood Joist 1.5" - Oak Wood Finish 2	Plywood		1650	103.15 CF	34.46 b/ft	2		\$ 0.82			\$ 1,353.00		\$ 1.29			\$	2,128.50
Door-Curtain-Wall-Double-Storefront: Door-Curtain-Wall-Double-Storefront						1				\$ 1,200.00	\$ 1,200.00				\$ 1,2	57.50 \$	1,257.50
Door-Exterior-Double-Full Glass-Wood Clad: 72" x 80"						1				\$ 1,200.00	\$ 1,200.00				\$ 1,2	57.50 \$	1,257.50
Door-Interior-Single-2 Panel-Wood: 36" x 84"						2				\$ 410.00	\$ 820.00				\$ 4	53.00 \$	926.00
Door-Interior-Single-Full Glass-Wood: 32" x 80"						2				\$ 410.00	\$ 820.00				\$ 4	53.00 \$	926.00
Door-Double-Sliding: 68" x 80"						1				\$ 885.00	\$ 885.00				\$ 1,0	57.00 \$	1,057.00
Rectangular Mullion: 2.5" x 5" rectangular	Aluminum		763	51.86 CF	169.18 b/ft ³	91		\$ 63.00			\$ 48,069.00		\$ 71.60			\$	54,630.80
Fascia-Flat 1x12		271	543	15.89 CF		1		\$ 5.95			\$ 3,230.85		\$ 8.80			\$	4,778.40
Guiter: Guiter - Bevel 5" x 5"		68.25	154 SF	0.81 CF		1	\$ 2.58				\$ 176.09	\$ 6.02				\$	410.87
System Panet Glazed	Glass		968			26		\$ 62.00			\$ 60,016.00		\$ 70.05			\$	67,808.40
Toilet	Laminate					2				\$ 520.00	\$ 1,040.00				\$ 5	56.50 \$	1,113.00
Sink Vanity-Square: 20" x 18"	Porcelain					2				\$ 405.00	\$ 810.00				\$ 5	77.00 \$	1,154.00
2.5 Ton 16 Seer Air Conditioning System w/ Electric Heating						1				\$ 3,150.00						2.00 \$,
Water Heater						1				\$ 935.00	,					50.00 \$	-,
						-	I	Materia	l Cost T	-	\$ 168,643.03		Tot	tal Cost			\$215,525.63

Architectural Multi-Category Material Takeoff																
Takcon							2021 0	· .								
							2021 C	onversion								
					Mater	ial Cost				Tota	al Cost		a 1a . .	Total Pro	ject cost	
													General Contractors	Contingency (5%-	Administrative Fees	
Family and Type	Material: Name	Inflation	Cost/LF	Cost/SF	Cost/CF	Cost/Count	Cost	Cost/LF	Cost/SF	Cost/CF	Cost/Count	Cost	Overhead and Profit (5% - 10%)	10%)	(3% - 5%)	Total Cost
Compound Ceiling 2' x 4' ACT System	Acoustic Ceiling Tile 24 x 48	33.3%		\$ 0.49			\$ 167.1		\$ 1.99		\$	673.21	((· · · · · · · · · · · · · · · · · · ·	
Basic Wall: Exterior - Limestone Insulated 2	Gypsum Wall Board	33.3%		\$ 1.19			\$ 301.2	9	\$ 1.68		\$	426.55	\$ 42.65	\$ 42.65	\$ 21.33	\$ 533,19
Basic Wall: Exterior - Wood Finish Alt. 2	Gypsum Wall Board	33.3%		\$ 1.19			\$ 1,600.1	7	\$ 1.68		\$	2,265.41	\$ 226.54	\$ 226.54	\$ 113.27	\$ 2,831.77
Basic Wall: Interior - 5 1/2" Partition (1-hr)	Gypsum Wall Board	33.3%		\$ 1.19			\$ 2,144.6	1	\$ 1.68		\$	3,036.23	\$ 303.62	\$ 303.62	\$ 151.81	\$ 3,795.28
Basic Wall: Interior - 9" Partition	Gypsum Wall Board	33.3%		\$ 1.19			\$ 427.0	3	\$ 1.68		\$	604.56	\$ 60.46	\$ 60.46	\$ 30.23	\$ 755.70
Basic Roof. Wood Rafter 8" - Tin - Insulated	Aluminum Sheet Panels	33.3%		\$ 1.52			\$ 3,686.0	1	\$ 3.36		\$	8,148.10	\$ 814.81	\$ 814.81	\$ 407.40	\$ 10,185.12
Basic Roof. Wood Rafter 8" - Tin - Insulated	Rigid Insulation	33.3%		\$ 0.37			\$ 905.3	1	\$ 0.72		\$	1,746.02	\$ 174.60	\$ 174.60	\$ 87.30	\$ 2,182.53
Basic Wall: Exterior - Limestone Insulated 2	Limestone Veneer	33.3%		\$ 63.97			\$ 32,435.0	2	\$ 70.09		\$	35,536.62	\$ 3,553.66	\$ 3,553.66	\$ 1,776.83	\$ 44,420.77
Basic Wall: Exterior - Limestone Insulated 2	Metal Furring	33.3%		\$ 0.45			\$ 115.1)	\$ 2.04		\$	517.95	\$ 51.80	\$ 51.80	\$ 25.90	\$ 647.44
Basic Roof Wood Rafter 8" - Tin - Insulated	Plywood	33.3%		\$ 1.09			\$ 2,651.3	7	\$ 1.72		5	4,171.05	\$ 417.11	\$ 417.11	\$ 208.55	\$ 5,213.81
Basic Wall: Exterior - Wood Finish Alt. 2	Plywood	33.3%		\$ 1.09			\$ 1,474.3	2	\$ 1.85		\$	2,499.15	\$ 249.91	\$ 249.91	\$ 124.96	\$ 3,123.93
Basic Wall: Exterior - Limestone Insulated 2	Rigid insulation	33.3%		\$ 0.37			\$ 94.7	9	\$ 0.72		\$	182.81	\$ 18.28	\$ 18.28	\$ 9.14	\$ 228.51
Basic Wall: Exterior - Wood Finish Alt. 2	Vapor Retarder	33.3%		\$ 1.59			\$ 2,145.9)	\$ 13.98		\$	18,916.39	\$ 1,891.64	\$ 1,891.64	\$ 945.82	\$ 23,645.49
Basic Wall: Exterior - Wood Finish Alt. 2	Fiber Cement Siding	33.3%		\$ 1.39			\$ 1,871.2	5	\$ 3.55		\$	4,786.08	\$ 478.61	\$ 478.61	\$ 239.30	\$ 5,982.61
Floor: Wood Joist 1.5" - Oak Wood Finish 2	Oak Flooring	33.3%		\$ 5.98			\$ 9,874.0	5	\$ 8.69		\$	14,338.26	\$ 1,433.83	\$ 1,433.83	\$ 716.91	\$ 17,922.83
Floor: Wood Joist 1.5" - Oak Wood Finish 2	Plywood	33.3%		\$ 1.09			\$ 1,803.2	8	\$ 1.72		\$	2,836.86	\$ 283.69	\$ 283.69	\$ 141.84	\$ 3,546.08
Door-Curtain-Wall-Double-Storefront: Door-Curtain-Wall-Double-Storefront		33.3%				\$ 1,599.36	\$ 1,599.3	5			\$ 1,676.00 \$	1,676.00	\$ 167.60	\$ 167.60	\$ 83.80	\$ 2,095.00
Door-Exterior-Double-Full Glass-Wood Clad: 72" x 80"		33.3%				\$ 1,599.36	\$ 1,599.3	5			\$ 1,676.00 \$	1,676.00	\$ 167.60	\$ 167.60	\$ 83.80	\$ 2,095.00
Door-Interior-Single-2 Panel-Wood: 36" x 84"		33.3%				\$ 546.45	\$ 1,092.9)			\$ 617.09 \$	1,234.17	\$ 123.42	\$ 123.42	\$ 61.71	\$ 1,542.72
Door-Interior-Single-Full Glass-Wood: 32" x 80"		33.3%				\$ 546.45	\$ 1,092.9	>			\$ 617.09 \$	1,234.17	\$ 123.42	\$ 123.42	\$ 61.71	\$ 1,542.72
Door-Double-Sliding: 68" x 80"		33.3%				\$ 1,179.53	\$ 1,179.5	3			\$ 1,408.77 \$	1,408.77	\$ 140.88	\$ 140.88	\$ 70.44	\$ 1,760.96
Rectangular Mullion: 2.5" x 5" rectangular	Akminum	33.3%		\$ 83.97			\$ 64,066.3	5	\$ 95.43		\$	72,811.93	\$ 7,281.19	\$ 7,281.19	\$ 3,640.60	\$ 91,014.91
Fascia: Fascia-Flat 1x12		33.3%		\$ 7.93			\$ 4,306.0	3	\$ 11.73		\$	6,368.65	\$ 636.87	\$ 636.87	\$ 318.43	\$ 7,960.81
Gutter: Gutter - Bevel 5" x 5"		33.3%	\$ 3.44				\$ 234.6	\$ 8.02			\$	547.60	\$ 54.76	\$ 54.76	\$ 27.38	\$ 684.50
System Panel: Glazed	Glass	33.3%		\$ 82.63			\$ 79,989.3	2	\$ 93.36		\$	90,375.04	\$ 9,037.50	\$ 9,037.50	\$ 4,518.75	\$ 112,968.79
Toilet	Laminate	33.3%				\$ 693.06	\$ 1,386.1	1			\$ 741.70 \$	1,483.41	\$ 148.34	\$ 148.34	\$ 74.17	\$ 1,854.26
Sink Vanity-Square: 20" x 18"	Porcelain	33.3%				\$ 539.78	\$ 1,079.5	7			\$ 769.03 \$	1,538.05	\$ 153.81	\$ 153.81	\$ 76.90	\$ 1,922.56
2.5 Ton 16 Seer Air Conditioning System w/ Electric Heating		33.3%				\$ 4,198.32	\$ 4,198.3	2			\$ 4,414.23 \$	4,414.23	\$ 441.42	\$ 441.42	\$ 220.71	\$ 5,517.79
Water Heater		33.3%				\$ 1,246.17	\$ 1,246.1	7			\$ 1,799.28 \$	1,799.28	\$ 179.93	\$ 179.93	\$ 89.96	\$ 2,249.10
			Γ	Materia	Cost To	otal	\$224,767.42		Tot	al Cost	\$	287,252.55	Т	otal Project Cos	t	\$ 359,065.69

terial Takeo	ff RSMeans																			
															2011					-
												Material C	Cost					Total	Cost	
Category	Family and Type	Material: Name	Material: Area SF	Material: Volume CF	Material: Unit weight	Length (ft)	Length (in)	Count	Cost/CY	Cost/SY	Cost/LF	Cost/Ton	Cost/Count	Cost	Cost/CY	Cost/SY	Cost/LF	Cost/Ton	Cost/Count	Cost
Walk	Basic Walk Retaining - 12" Concrete	Concrete, Cast-in-Place gray	811	810.66	150.28 Ib/R*			1						s -						s
Floors	Floor: 5" Concrete	Concrete, Cast-in-Place gray	1799	749.64	150.28 lb/lt*			1						s -						s
Structural Foundations	Wall Foundation: Bearing Footing - 90" x 12"	Concrete, Cast-in-Place gray	1382	603	150.28 lb/ll*			1	\$ 136.00					\$ 3,037.33	\$ 243.43	3				\$ 5,43
Walls	Basic Wall Retaining - 12" Concrete	Concrete, Cast-in-Place gray	475	468.32	150.28 lb/ft ^s			1						s -						s
Structural Foundations	Wall Foundation: Bearing Footing - 90" x 12"	Concrete, Cast-in-Place gray	805	348.31	150.28 lb/R*			1	\$ 136.00					\$ 1,754.45	\$ 243.43	3				\$ 3,14
Floors	Floor: 5" Concrete	Concrete, Cast-in-Place gray	379	157.73	150.28 lb/ft*			1						s -						s
Walls	Basic Walk Retaining - 12" Concrete	Concrete, Cast-in-Place gray	125	119.84	150.28 lb/lP			1						s -						s
Floors	Floor: 5" Concrete	Concrete, Cast-in-Place gray	273	113.75	150.28 lb/fP			1						S -						S
Walls	Basic Wall: Exterior - 8" Concrete	Concrete, Cast-in-Place gray	170	113.54	150.28 lb/R*			1	\$ 136.00					\$ 571.91	\$ 243.43	3				\$ 1,02
Walls	Basic Wall: Exterior - 8" Concrete	Concrete, Cast-in-Place gray	147	97.88	150.28 lb/ft*			1	\$ 136.00					\$ 493.03	\$ 243.43	3				\$ 88
Structural Foundations	Wall Foundation: Bearing Footing - 36" x 12"	Concrete, Cast-in-Place gray	352	94.99	150.28 lb/ll*			1	\$ 136.00					\$ 478.47	\$ 243.43	3				\$ 85
Structural Foundations	Wall Foundation: Bearing Footing - 90" x 12"	Concrete, Cast-in-Place gray	218	89.49	150.28 lb/ft*			1	\$ 136.00					\$ 450.76	\$ 243.43	3				\$ 80
Structural Foundations	Wall Foundation: Bearing Footing - 36" x 12"	Concrete, Cast-in-Place gray	312	83.9	150.28 lb/ft*			1	\$ 136.00					\$ 422.61	\$ 243.43	3				\$ 75
Walls	Basic Wall Retaining - 12* Concrete	Concrete, Cast-in-Place gray	81	80.99	150.28 lb/ft*			1	\$ 136.00					\$ 407.95	\$ 1,296.5	4				\$ 3,88
Walls	Basic Wall: Exterior - 8" Concrete	Concrete, Cast-in-Place gray	117	77.97	150.28 lb/ft*			1	\$ 136.00					\$ 392.74	\$ 243.43	3				\$ 70
Structural Foundations	Wall Foundation: Bearing Footing - 36" x 12"	Concrete, Cast-in-Place gray	244	65.5	150.28 lb/ll*			1	\$ 136.00					\$ 329.93						\$ 59
Structural Foundations	Wall Foundation: Bearing Footing - 90" x 12"	Concrete, Cast-in-Place gray	151	60.16	150.28 lb/ft ^s			1	\$ 136.00					\$ 303.03		3				\$ 54
Floors	Floor: 5" Concrete	Concrete, Cast-in-Place gray	86	35.76	150.28 lb/ft*			1	\$ 136.00					\$ 180.12						\$
Walls	Basic Wall: Exterior - 8" Concrete	Concrete, Cast-in-Place gray	35	23.33	150.28 lb/ft*			1						s -	\$ 243.43					\$ 21
Structural Foundations	Wall Foundation: Bearing Footing - 36" x 12"	Concrete, Cast-in-Place gray	77	20	150.28 lb/ll*			1	\$ 136.00					S 100.74						\$ 18
Structural Foundations	Wall Foundation: Bearing Footing - 36" x 12"	Concrete, Cast-in-Place gray	69	17.54	150.28 lb/ft*			1	\$ 136.00					\$ 88.35						\$ 15
Walls	Basic Walt Exterior - 8" Concrete	Concrete, Cast-in-Place gray	23	15.66	150.28 lb/R*			1	\$ 136.00					S 78.88						\$ 14
Structural Foundations	Wall Foundation: Bearing Footing - 36" x 12"	Concrete, Cast-in-Place gray	37	8	150.28 lb/ft*			2	\$ 136.00					\$ 40.30						\$ 7
Walls	Basic Wall: Exterior - 8" Concrete	Concrete, Cast-in-Place gray	5	3.11	150.28 lb/lt*			2	\$ 136.00					\$ 15.67						\$ 2
Roof	Floor: 1.5B-36, Grade 50, 1.5* Roof Metal Deck	Metal Deck	1332	166.55	490.06			1		\$ 1.02				\$ 1,358.64		\$ 1.35				\$ 1,79
Roof	Floor: 1.5B-36, Grade 50, 1.5* Roof Metal Deck	Metal Deck	452	56.46	490.06			1		\$ 1.02	2			S 461.04		\$ 1.35				\$ 610

terial Takeof	ff RSMeans																	
								2021 C	onversior	า								
						Material	Cost					Total C	Cost			Total	Project cost	
Category	Family and Type	Inflation	Cost/CY	Cost/SY	Cost/LF	Cost/Ton	Cost/Count	Cost	Cost/CY	Cost/SY	Cost/LF	Cost/Ton	Cost/Count	Cost	General Contractors Overhead and Profit (5% - 10%)	Contingency (5% - 10%)	Administrative Fees (3% - 5%)	Total Cost
Walk	Basic Wall: Retaining - 12" Concrete		s -					s -	\$ 1,296.54				\$	38,927.89	\$ 3,892,79	\$ 3,892,79	\$ 1.946.39 \$	48.659
Floors	Floor: 5"Concrete		s -					s -		\$ 58.61			s	11,715.49	\$ 1.171.55	\$ 1,171.55	\$ 585.77 \$	14,644.
Structural Foundations	Wall Foundation: Bearing Footing - 90" x 12"	33.3%	\$ 181.26	i .				\$ 4,048.16	\$ 324.44				s	7,245.90	\$ 724.59	\$ 724.59	\$ 362.30 \$	9,057.3
Walls	Basic Wall: Retaining - 12" Concrete		s -					s -	\$ 1,296.54				s	22,488.73	\$ 2,248.87	\$ 2,248.87	\$ 1.124.44 \$	28,110.
Structural Foundations	Wall Foundation: Bearing Footing - 90" x 12"	33.3%	\$ 181.26	i l				\$ 2,338.33	\$ 324.44				S	4,185.44	\$ 418.54	\$ 418.54	\$ 209.27 \$	5,231.3
Floors	Floor: 5"Concrete		s -					s -		\$ 58.61			s	2,468.13	\$ 246.81	\$ 246.81	\$ 123.41 \$	3,085.1
Walls	Basic Wall: Retaining - 12" Concrete		s -					s -	\$ 1,296.54				s	5,754.72	\$ 575.47	\$ 575.47	\$ 287.74 \$	7,193.4
Floors	Floor: 5"Concrete		s -					s -		\$ 58.61			\$	1,777.84	\$ 177.78	\$ 177.78	\$ 88.89 \$	2,222.3
Walk	Basic Wall: Exterior - 8" Concrete	33.3%	\$ 181.26	5				\$ 762.24	\$ 324.44				S	1,364.35	\$ 136.43	\$ 136.43	\$ 68.22 \$	1,705.4
Walls	Basic Wall: Exterior - 8" Concrete	33.3%	\$ 181.26	5				\$ 657.10	\$ 324.44				S	1,176.17	\$ 117.62	\$ 117.62	\$ 58.81 \$	1,470.2
Structural Foundations	Wall Foundation: Bearing Footing - 36" x 12"	33.3%	\$ 181.26	5				\$ 637.70	\$ 324.44				S	1,141.44	\$ 114.14	\$ 114.14	\$ 57.07 \$	1,426.8
Structural Foundations	Wall Foundation: Bearing Footing - 90" x 12"	33.3%	\$ 181.26	5				\$ 600.78	\$ 324.44				\$	1,075.35	\$ 107.53	\$ 107.53	\$ 53.77 \$	1,344.1
Structural Foundations	WallFoundation: Bearing Footing - 36" x 12"	33.3%	\$ 181.26	5				\$ 563.25	\$ 324.44				S	1,008.18	\$ 100.82	\$ 100.82	\$ 50.41 \$	1,260.2
Walk	Basic Wall: Retaining - 12" Concrete	33.3%	\$ 181.26	5				\$ 543.72	\$ 1,728.03				S	5,183.45	\$ 518.34	\$ 518.34	\$ 259.17 \$	6,479.3
Walls	Basic Wall: Exterior - 8" Concrete	33.3%	\$ 181.26	;				\$ 523.44	\$ 324.44				S	936.92	\$ 93.69	\$ 93.69	\$ 46.85 \$	1,171.1
Structural Foundations	Wall Foundation: Bearing Footing - 36" x 12"	33.3%	\$ 181.26	5				\$ 439.73	\$ 324.44				S	787.08	\$ 78.71	\$ 78.71	\$ 39.35 \$	983.8
Structural Foundations	Wall Foundation: Bearing Footing - 90" x 12"	33.3%	\$ 181.26	i .				\$ 403.88	\$ 324.44				\$	722.91	\$ 72.29	\$ 72.29	\$ 36.15 \$	903.6
Floors	Floor: 5"Concrete							\$ 180.12		\$ 58.61			\$	560.05	\$ 56.01	\$ 56.01	\$ 28.00 \$	700.0
Walls	Basic Wall: Exterior - 8" Concrete	33.3%	\$ -					s -	\$ 324.44				\$	280.34	\$ 28.03	\$ 28.03	\$ 14.02 \$	350.4
Structural Foundations	Wall Foundation: Bearing Footing - 36" x 12"	33.3%	\$ 181.26	;				\$ 134.27	\$ 324.44				\$	240.33	\$ 24.03	\$ 24.03	\$ 12.02 \$	300.4
Structural Foundations	Wall Foundation: Bearing Footing - 36" x 12"	33.3%	\$ 181.26	5				\$ 117.75	\$ 324.44				\$	210.77	\$ 21.08	\$ 21.08	\$ 10.54 \$	263.4
Walls	Basic Wall: Exterior - 8" Concrete	33.3%	\$ 181.26	;				\$ 105.13	\$ 324.44				\$	188.18	\$ 18.82	\$ 18.82	\$ 9.41 \$	235.2
Structural Foundations	Wall Foundation: Bearing Footing - 36" x 12"	33.3%	\$ 181.26	;				\$ 53.71	\$ 324.44				s	96.13	\$ 9.61	\$ 9.61	\$ 4.81 \$	120.1
Walk	Basic Wall: Exterior - 8" Concrete	33.3%	\$ 181.26	;				\$ 20.88	\$ 324.44				s	37.37	\$ 3.74	\$ 3.74	\$ 1.87 \$	46.7
Roof	Floor: 1.5B-36, Grade 50, 1.5"Roof MetalDeck	33.3%		\$ 1.36				\$ 1,810.80		\$ 1.80			\$	2,396.64	\$ 239.66	\$ 239.66	\$ 119.83 \$	2,995.8
Roof	Floor: 1.5B-36, Grade 50, 1.5"Roof MetalDeck	33.3%		\$ 1.36				\$ 614.47		\$ 1.80			\$	813.27	\$ 81.33	\$ 81.33	\$ 40.66 \$	1,016.5
									s					112,783.06			S	140,978,82

															2011				
												Materia	l Cost				Total	Cost	
6.4					Material: Volume CF					0	C	6 m	6 JF	6.1				6	Cost
Category ructural Columns	Family and Type ClarkDictrich-SFIA-S-Column 600S162-68(50)	Material: Name Steel ASTM A500, Grade B		Material: Area SF	0.00 CF	Material: Unit weight 490.00 b/ft	Length (ft)	Length (in) 9.875	Count	Cost/CY	Cost/SY	Cost/LF Cost/To \$ 6.90	a Cost/Count	Cost 5.68	Cost/CY Cost	SY Cost/L \$ 13		Cost/Count	S
uctural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50)	Steel ASTM A500, Grade B		3 SF	0.01 CF	490.00 lb/ll*	0	10.125	2			\$ 6.90		\$ 11.64		\$ 13			s
ructural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	Steel ASTM A500, Grade B		3 SF	0.01 CF	490.00 lb/ll*	0	10.25	2			\$ 6.90		\$ 11.79		\$ 13			s
ructural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	Steel ASTM A500, Grade B		1 SF	0.00 CF	490.00 lb/ft*	0	10.375	1			\$ 6.90		\$ 5.97		\$ 13	70		s
ructural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	Steel ASTM A500, Grade B		19 SF	0.04 CF	490.00 lb/ll*	0	10.5	13			\$ 6.90		\$ 78.49		\$ 13	.70		s
ructural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	Steel ASTM A500, Grade B		2 SF	0.00 CF	490.00 lb/ft*	0	11	1			\$ 6.90		\$ 6.33		\$ 13			s
ructural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	Steel ASTM A500, Grade B		2 SF	0.00 CF	490.00 lb/ll*	0	11.125	1			\$ 6.90		\$ 6.40		\$ 13			S
ructural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	Steel ASTM A500, Grade B		2 SF	0.00 CF	490.00 lb/ft*	0	11.625	1			\$ 6.90		\$ 6.68		\$ 13			\$
ructural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50)	Steel ASTM A500, Grade B		137 SF	0.31 CF	490.00 lb/fb	3	6	23			\$ 6.90		\$ 555.45		\$ 13			s
ructural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50)	Steel ASTM A500, Grade B		43 SF	0.10 CF	490.00 lb/ll*	4	2.375	6			\$ 6.90		\$ 173.79			.70		5
ructural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50)	Steel ASTM A500, Grade B		8 SF	0.02 CF	490.00 B/B*	4	11	1			\$ 6.90		\$ 33.93		\$ 13			s
ructural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	Steel ASTM A500, Grade B		9 SF	0.02 CF	490,00 898	5	0.5	1			\$ 6.90		\$ 34.79		\$ 13			\$
ructural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50) ClarkDietrich-SFIA-S-Column: 600S162-68(50)	Steel ASTM A500, Grade B Steel ASTM A500, Grade B		9 SF 9 SF	0.02 CF 0.02 CF	490.00 lb/fl* 490.00 lb/fl*	5	3.5	1			\$ 6.90 \$ 6.90		\$ 35.65 \$ 36.51		\$ 13 \$ 13			2
nuctural Columns	ClarkDetrich-SFIA-S-Colume 600S162-68(50) ClarkDetrich-SFIA-S-Colume 600S162-68(50)	Steel ASTM A500, Grade B Steel ASTM A500, Grade B		9 SF 9 SF	0.02 CF	490.00 lb/ll*	5	5.5	1			\$ 6.90	-	\$ 36.51 \$ 37,38		\$ 13		-	* \$
ructural Columns	ClarkDietrich-SFIA-S-Colume 600S162-68(50)	Steel ASTM A500, Grade B Steel ASTM A500, Grade B		9 SF	0.02 CF	490.00 B/B	5	6.5	1			\$ 6.90	-	\$ 37.36		\$ 13			5
ructural Columns	ClarkDictrich-SFIA-S-Column 6008162-68(50)	Steel ASTM A500, Grade B		13 SF	0.02 CF	490.00 lb/lb	7	9	1			\$ 6.90		\$ 53.48		\$ 13			s
uctural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	Steel ASTM A500, Grade B		13 SF	0.03 CF	490.00 lb/ll*	7	10.5	1			\$ 6.90		\$ 54.34		\$ 13			s
ructural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	Steel ASTM A500, Grade B		14 SF	0.03 CF	490.00 lb/fl*	8	0	1			\$ 6.90		\$ 55.20		\$ 13			s
ructural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	Steel ASTM A500, Grade B		660 SF	1.50 CF	490.00 lb/ll*	10	6	37			\$ 8.05		\$ 3,127.43		\$ 14			s
ructural Columns	ClarkDictrich-SFIA-S-Column: 600S162-68(50)	Steel ASTM A500, Grade B		206 SF	0.47 CF	490.00 lb/fl*	n	0	- 11			\$ 8.05		\$ 974.05		\$ 14			\$
ructural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	Steel ASTM A500, Grade B		50 SF	0.11 CF	490.00 lb/ll*	14	6.875	2			\$ 13.50		\$ 393.47		\$ 23	80		s
ructural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50)	Steel ASTM A500, Grade B		250 SF	0.57 CF	490.00 lb/ft*	14	8.375	10			\$ 13.50		\$ 1,984.22		\$ 23	.80		s
ructural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	Steel ASTM A500, Grade B		25 SF	0.06 CF	490.00 lb/ll*	14	9.25	1			\$ 13.50		\$ 199.41		\$ 23	80		s
ructural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50)	Steel ASTM A500, Grade B		25 SF	0.06 CF	490.00 lb/ft*	14	9.625	1			\$ 13.50		\$ 199.83		\$ 23	.80		s
ructural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	Steel ASTM A500, Grade B		25 SF	0.06 CF	490.00 lb/ll*	14	9.75	1			\$ 13.50		\$ 199.97		\$ 23			s
ructural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	Steel ASTM A500, Grade B		51 SF	0.11 CF	490.00 lb/ft*	14	10.75	2			\$ 13.50		\$ 402.19		\$ 23			\$
ructural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	Steel ASTM A500, Grade B		25 SF	0.06 CF	490.00 lb/fP	14	11.875	1			\$ 13.50		\$ 202.36		\$ 23			s
ructural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50)	Steel ASTM A500, Grade B		26 SF	0.06 CF	490.00 lb/ll*	15	0.125	1			\$ 13.50		\$ 202.64		\$ 23			\$
ructural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	Steel ASTM A500, Grade B		26 SF	0.06 CF	490.00 lb/lb	15	2.5	1			\$ 13.50		\$ 205.31		\$ 23			s
ructural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50)	Steel ASTM A500, Grade B		26 SF	0.06 CF	490.00 lb/ll*	15	3	1			\$ 13.50		\$ 205.88		\$ 23			5
ructural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	Steel ASTM A500, Grade B		27 SF	0.06 CF	490.00 lb/ll*	10	11.75	1			\$ 13.50 \$ 13.50		\$ 215.72		\$ 23 \$ 23			5
ructural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	Steel ASTM A500, Grade B Steel ASTM A500, Grade B		27 SF	0.06 CF	490.00 lb/ll*	16	2	1			. 19:00		\$ 218.25					5
ructural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50) ClarkDietrich-SFIA-S-Column 600S162-68(50)	Steel ASTM A500, Grade B Steel ASTM A500, Grade B		28 SF 28 SF	0.06 CF 0.06 CF	490.00 lb/ft* 490.00 lb/ft*	16	3.375	1			\$ 13.50 \$ 13.50		\$ 219.80 \$ 220.78		\$ 23 \$ 23			5
nctural Columns	ClarkDietrich-SFIA-S-Column 6005162-68(50)	Steel ASTM A500, Grade B		28 SF	0.06 CF	490.00 8/8*	16	4.25	1			\$ 13.50 \$ 13.50		\$ 220.78 \$ 221.48		\$ 23			<u>s</u>
ructural Columns	ClarkDictrich-SFIA-S-Colume 600S162-68(50)	Steel ASTM A500, Grade B Steel ASTM A500, Grade B		26 SF 28 SF	0.06 CF	490.00 B/E	16	4.875	1			\$ 13.50 \$ 13.50		\$ 222.61		\$ 23			8
ructural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	Steel ASTM A500, Grade B		28 SF	0.06 CF	490.00 15/8*	16	6.25	1			\$ 13.50		\$ 223.03		\$ 23			5
nuctural Columns	ClarkDietrich-SFIA-S-Column 6008162-68(50)	Steel ASTM A500, Grade B		28 SF	0.06 CF	490.00 B/P	16	7.5	1			\$ 13.50		\$ 224.44		\$ 23			5
ructural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50)	Steel ASTM A500, Grade B		28 SF	0.06 CF	490.00 lb/ll*	16	7.75	ì			\$ 13.50		\$ 224.72		\$ 23			s
ructural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	Steel ASTM A500, Grade B		28 SF	0.06 CF	490.00 lb/fP	16	9	1			\$ 13.50		\$ 226.13		\$ 23			s
ructural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	Steel ASTM A500, Grade B		28 SF	0.06 CF	490.00 Ib/IP	16	9.25	1			\$ 13.50		\$ 226.41		\$ 23			s
ructural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	Steel ASTM A500, Grade B		29 SF	0.06 CF	490.00 lb/ll*	16	10.5	1			\$ 13.50		\$ 227.81		\$ 23	80		s
ructural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	Steel ASTM A500, Grade B		29 SF	0.07 CF	490.00 lb/ft*	16	10.625	1			\$ 13.50		\$ 227.95		\$ 23	80		s
ructural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	Steel ASTM A500, Grade B		29 SF	0.07 CF	490.00 lb/ll*	17	0	1			\$ 13.50		\$ 229.50		\$ 23	80		s
ructural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	Steel ASTM A500, Grade B		29 SF	0.07 CF	490.00 lb/ft*	17	0.125	1			\$ 13.50		\$ 229.64		\$ 23	80		s
ructural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	Steel ASTM A500, Grade B		58 SF	0.13 CF	490.00 lb/ll*	17	1.5	2			\$ 13.50		\$ 462.38		\$ 23	80		s
ructural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	Steel ASTM A500, Grade B		59 SF	0.13 CF	490.00 lb/ft*	17	2.875	2			\$ 13.50		\$ 465.47		\$ 23			s
ructural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	Steel ASTM A500, Grade B		89 SF	0.20 CF	490.00 lb/lP	17	4.5	3			\$ 13.50		\$ 703.69		\$ 23	80		s
			Total	2329 SF	5.28 CF				151					\$ 14,528.25			_		\$
ructural Columns	HSS-Hollow Structural Section-Column: HSS3X3X3/8	Steel ASTM A500, Grade B		34 SF	0.5	490	10' - 6 3/4"		2			\$ 6,500					\$ 6,500.0		
ructural Columns	HSS-Hollow Structural Section-Column: HSS3X3X3/8	Steel ASTM A500, Grade B		37 SF	0.53	490	11' - 3 3/4*		2			\$ 6,500	.00 \$ 186.00			_	\$ 6,500.0	0 \$ 259.50	\$
			Total	71 SF	1.03 CF				4					\$ 744.00		_	-		5
ructural Columns	HSS-Hollow Structural Section-Column: HSS4X4X1/4	Steel ASTM A500, Grade B		113 SF	1.1	490	15' - 8 1/8"		3			\$ 6,500				_	\$ 6,500.0		
ructural Columns	HSS-Hollow Structural Section-Column: HSS4X4X1/4	Steel ASTM A500, Grade B	+	39 SF	0.38	490	16' - 0 7/8"		1			\$ 6,500		\$ 186.00		_	\$ 6,500.0		
ructural Columns	HSS-Hollow Structural Section-Column: HSS4X4X1/4	Steel ASTM A500, Grade B		83 SF	0.8	490	17 - 13/8*		2			\$ 6,500		\$ 372.00			\$ 6,500.0		5
ructural Columns	HSS-Hollow Structural Section-Column: HSS4X4X1/4	Steel ASTM A500, Grade B	-	42 SF	0.41	490	17 - 6 7/8*	-	1		-	\$ 6,500					\$ 6,500.0		3
ructural Columns	HSS-Hollow Structural Section-Column HSS4X4X1/4	Steel ASTM A500, Grade B	T-4-1	132 SF	1.28 3.96 CF	490	18' - 2 1/2"		3			\$ 6,500	00 \$ 186.00	\$ 558.00 \$ 1,860.00			\$ 6,500.0	0 \$ 259.50	3
	100 II. Anno Street and Street on Column 1000 March 10	Steel ASTM A500 Grade B	Total	409 SF	3.96 CF	490	10' - 1"	-	10			\$ 6500	00 \$ 305.00				\$ 6500.0	0 \$ 384.00	3
ructural Columns	HSS-Hollow Structural Section-Column: HSS6X6X5/8	Steel ASTM AS00, Grade B		00.04	1:04	170	10 - 1-	-				\$ 6,500	a 305.00	a 010.00			5 6,500.0	v s 384.00	3
			Total	68 SF	1.64 CF	490.00 lb/ft ³			2		1			\$ 610.00					3

					1	Material C	`oet	2021 0	onversior	n		Total Co	ost			Total 1	Project cost	
						viateriai C						Total C	051		Overhead and Profit		Administrative Fees	
Category	Family and Type	Inflation	Cost/CY	Cost/SY	Cost/LF	Cost/Ton	Cost/Count	Cost	Cost/CY	Cost/SY	Cost/LF	Cost/Ton	Cost/Count	Cost	(5%-10%)	10%)	(3%-5%)	Total Co
uctural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	33.3%		1	9.20		\$	7.57			\$ 18.26			\$ 15.03	\$ 1.50	\$ 1.50	\$ 0.75	s
uctural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50)	33.3%		5			5	15.52			\$ 18.26			\$ 30.81	\$ 3.08	\$ 3.08	\$ 1.54	\$
uctural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	33.3%		5			5	15.71			\$ 18.26			\$ 31.19	\$ 3.12	\$ 3.12	\$ 1.56	\$
uctural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	33.3%		1	9.20		\$	7.95	-		\$ 18.26			\$ 15.79	\$ 1.58			
uctural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	33.3%		5			\$				\$ 18.26			\$ 207.70	\$ 20.77			
uctural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50)	33.3%		5			5				\$ 18.26			\$ 16.74	\$ 1.67			
uctural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	33.3%		1	9.20		5				\$ 18.26			\$ 16.93	\$ 1.69			
uctural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	33.3%		8			5				\$ 18.26			\$ 17.69	\$ 1.77			
uctural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50)	33.3%		8	, , , , , , ,		5	14050			\$ 18.26 \$ 18.26			\$ 1,469.88 \$ 459.91	\$ 146.99			
uctural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50)	33.3%		3	9.20		5				\$ 10.20			•	\$ 45.99			
uctural Columns uctural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50)	33.3%		1	9.20 9.20		3	45.22						\$ 89.78 \$ 92.06	\$ 8.98			
uctural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50) ClarkDietrich-SFIA-S-Column: 600S162-68(50)	33.3%			9.20		د د	47.51			\$ 18.26 \$ 18.26			\$ 92.06 \$ 94.34	\$ 9.21 \$ 9.43			
uctural Columns	ClarkDictrich-SFIA-S-Column: 600S162-68(50) ClarkDictrich-SFIA-S-Column: 600S162-68(50)	33.3%					5				\$ 18.26			\$ 96.62				
uctural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	33.3%		5	9.20		5	49.81			\$ 18.26			\$ 98.90	\$ 9.89	+		
uctural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50)	33.3%		1			5				\$ 18.26			\$ 101.19	\$ 10.12			
uctural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50)	33.3%		8			5				\$ 18.26			\$ 141.51	\$ 14.15			
uctural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	33.3%		8			5			-	\$ 18.26			\$ 143.79	\$ 14.38			
uctural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	33.3%		5			\$				\$ 18.26 \$ 19.79			\$ 146.07 \$ 7689.22	\$ 14.61			
uctural Columns uctural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	33.3%		3	10.15		\$.,			¥ 17.57			\$ 7,689.22 \$ 2,394.84	\$ 768.92 \$ 220.48		\$ 384.46	
uctural Columns uctural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50) ClarkDietrich-SFIA-S-Column: 600S162-68(50)	33.3%	-		10.73 17.99		5	1,298.21		-	\$ 19.79 \$ 31.72			\$ 2,394.84 \$ 924.52	\$ 239.48 \$ 92.45		\$ 119.74 \$ 46.23	
uctural Columns uctural Columns	ClarkDetrich-SFIA-S-Column: 600S162-68(50) ClarkDietrich-SFIA-S-Column: 600S162-68(50)	33.3%		3			5		-	-	\$ 31.72 \$ 31.72			\$ 924.52 \$ 4,662.27	\$ 92.45 \$ 466.23			
uctural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	33.3%					5	-,			\$ 31.72			\$ 468.54	\$ 46.85	•		
uctural Columns	Clark Dietrich-SFIA-S-Column: 6008162-68(50)	33.3%					5				\$ 31.72			\$ 469.53	\$ 46.95	φ 10100		
uctural Columns	ClarkDictrich-SFIA-S-Column: 6005162-68(50)	33.3%					5		-		\$ 31.72			\$ 469.86	\$ 46.99			
uctural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50)	33.3%			17.99		5			-	\$ 31.72			\$ 945.01	\$ 94.50			
uctural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50)	33.3%					s				\$ 31.72			\$ 475.48	\$ 47.55			
uctural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50)	33.3%		5	17.99		\$	270.08			\$ 31.72			\$ 476.14	\$ 47.61	\$ 47.61		
uctural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50)	33.3%		5	17.99		\$	273.64			\$ 31.72			\$ 482.42	\$ 48.24			
uctural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	33.3%		5	17.99		5	274.39			\$ 31.72			\$ 483.74	\$ 48.37	\$ 48.37	\$ 24.19	\$
uctural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50)	33.3%		5	17.99		\$	287.51			\$ 31.72			\$ 506.87	\$ 50.69	\$ 50.69	\$ 25.34	\$
uctural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50)	33.3%		5	17.99		\$	290.88			\$ 31.72			\$ 512.82	\$ 51.28	\$ 51.28	\$ 25.64	\$
uctural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50)	33.3%		1	17.99		\$	292.95			\$ 31.72			\$ 516.45	\$ 51.65	\$ 51.65	\$ 25.82	\$
uctural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50)	33.3%		5	17.99		\$	294.26	i		\$ 31.72			\$ 518.76	\$ 51.88		\$ 25.94	\$
uctural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50)	33.3%		5	17.99		5	295.19			\$ 31.72			\$ 520.42	\$ 52.04	\$ 52.04	\$ 26.02	\$
uctural Columns	ClarkDietrich-SFIA-S-Column 600S162-68(50)	33.3%		8			\$				\$ 31.72			\$ 523.06	\$ 52.31			
uctural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50)	33.3%		8			\$		-		\$ 31.72			\$ 524.05	\$ 52.41			
uctural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50)	33.3%		5	1.37		\$	277.13			\$ 31.72			\$ 527.36	\$ 52.74			
uctural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50)	33.3%		1			5	277.51			\$ 31.72			\$ 528.02	\$ 52.80			
uctural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50)	33.3%		5	17.99		\$	301.38			\$ 31.72			\$ 531.32	\$ 53.13			
uctural Columns	ClarkDietrich-SFIA-S-Column 6008162-68(50)	33.3%		8	17.99		\$	301.75			\$ 31.72			\$ 531.98	\$ 53.20			
uctural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50) ClarkDietrich-SFIA-S-Column: 600S162-68(50)	33.3% 33.3%		3	17.99 17.99		5	303.63			\$ 31.72 \$ 31.72			\$ 535.29 \$ 535.62	\$ 53.53 \$ 53.55			
uctural Columns uctural Columns		33.3%			. 1.57		5	565388			• • • • • •			\$ 535.62 \$ 539.25	\$ 53.56 \$ 53.03			
uctural Columns uctural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50) ClarkDietrich-SFIA-S-Column: 600S162-68(50)	33.3%		5	17.99 17.99		5				\$ 31.72 \$ 31.72			\$ 539.25 \$ 539.58	\$ 53.93 \$ 53.96			
uctural Columns uctural Columns	ClarkDietrich-SFIA-S-Column: 600S162-68(50) ClarkDietrich-SFIA-S-Column: 600S162-68(50)	33.3%		3			5				\$ 31.72 \$ 31.72			\$ 539.58 \$ 1,086.43	\$ 53.96 \$ 108.64			
uctural Columns	ClarkDictrich-SFIA-S-Column 600S162-68(50)	33.3%			17.99		5				\$ 31.72			\$ 1,080.43	\$ 108.04 \$ 109.37			
uctural Columns	ClarkDietrich-SFIA-S-Column: 6005162-68(50)	33.3%			17.99		5				\$ 31.72			\$ 1,653.44	\$ 165.34	4 105101		
				'										\$ 34,951.92	÷ 100.04	φ 100.34	÷ 02.07	÷
uctural Columns	HSS-Hollow Structural Section-Column: HSS3X3X3/8	33.3%					\$ 247.90 \$						\$ 345.86	5 51,52	\$ 69.17	\$ 69.17	\$ 34.59	\$
uctural Columns	HSS-Hollow Structural Section-Column: HSS3X3X3/8	33.3%					\$ 247.90 \$	495.80					\$ 345.86		\$ 69.17			
									-					\$ 1,383.45	÷ 57.17	- 57.17	- 34.37	-
uctural Columns	HSS-Hollow Structural Section-Column HSS4X4X1/4	33.3%					\$ 247.90 \$		-		s -	\$ 8,663.20			\$ 103.76	\$ 103.76	\$ 51.88	\$
uctural Columns	HSS-Hollow Structural Section-Column HSS-44/4/4 HSS-Hollow Structural Section-Column HSS4X4X1/4	33.3%					\$ 247.90 \$	247.90				\$ 8,663.20		•	\$ 34.59	\$ 34.59		
uctural Columns	HSS-Hollow Structural Section-Column HSS4X4X1/4	33.3%					\$ 247.90 \$	495.80	-		•	\$ 8,663.20			\$ 69.17			
uctural Columns	HSS-Hollow Structural Section-Column HSS4X4X1/4 HSS-Hollow Structural Section-Column HSS4X4X1/4	33.3%					\$ 247.90 \$	247.90				\$ 8,663.20 \$ 8,663.20			\$ 34.59			
uctural Columns	HSS-Hollow Structural Section-Column HSS4X4X1/4	33.3%					\$ 247.90 \$	743.70	-			\$ 8,663.20			\$ 103.76			
	The second						1 24/30		-					\$ 3,458.62	. 105.70	. 105.70	- 51.00	-
uctural Columns	HSS-Hollow Structural Section-Column: HSS6X6X5/8	33,3%					\$ 406.50 \$				s -	\$ 8,663.20			\$ 102.36	\$ 102.36	\$ 51.18	8
								813.01		-				\$ 1,023.59	÷ 102.50	÷ 102.50	- 51.16	•
							•	\$ 23,646.87		-				\$ 40,817.57				\$

terial Takeof	ff RSMeans																			
															2011					
											М	laterial C	ost					Total (Cost	
Category	Family and Type	Material: Name		Material: Area SF	Material: Volume CF	Material: Unit weight	Length (ft)	Length (in)	Count Cost/CY	Cost/SY	Cost/LF (Cost/Ton	Cost/Count	Cost	Cost/CY	Cost/SY	Cost/LF	Cost/Ton	Cost/Count	Cost
Structural Framing	W Shapes: W12X26	Steel ASTM A992		24 SF	0.31 CF	490.00 lb/8*	6	4.5	1		\$ 32.00		\$ 451.38	\$ 204.00			\$ 36.85		\$ 451.38 \$	234
Structural Framing	W Shapes: W12X26	Steel ASTM A992		40 SF	0.52 CF	490.00 B/B*	10	3.125	1		\$ 32.00		\$ 584.05	\$ 328.33			\$ 36.85		\$ 584.05 \$	378
Structural Framing	W Shapes: W12X26	Steel ASTM A992		140 SF	1.80 CF	490.00 lb/lb*	17	6	2		\$ 32.00		\$ 1,093.00	\$ 560.00			\$ 36.85		\$ 1,093.00 \$	1,289
Structural Framing	W Shapes: W12X26	Steel ASTM A992		146 SF	1.88 CF	490.00 lb/ll*	18	0.875	2		\$ 32.00		\$ 1,093.00	\$ 578.33			\$ 36.85		\$ 1,093.00 \$	1,331
Structural Framing	W Shapes: W12X26	Steel ASTM A992		187 SF	2.41 CF	490.00 lb/ft ^s	23	2.125	2		\$ 32.00		\$ 1,093.00	\$ 741.67			\$ 36.85		\$ 1,093.00 \$	1,708
Structural Framing	W Shapes: W12X26	Steel ASTM A992		97 SF	1.25 CF	490.00 lb/@*	24	0.5	1		\$ 32.00		\$ 1,093.00	\$ 769.33			\$ 36.85		\$ 1,093.00 \$	885
Structural Framing	W Shapes: W12X26	Steel ASTM A992		303 SF	3.90 CF	490.00 lb/lb*	25	0	3		\$ 32.00		\$ 1,053.00	\$ 800.00			\$ 36.85		\$ 1,053.00 \$	2,763
Structural Framing	K-series Bar Joist-Angle Web 10K1				0.27	490	18	0.8125	7		\$ 3.19 \$	6,000.00		\$ 403.45			\$ 7.91	\$ 6,000.00	\$	1,000.
Structural Framing	K-series Bar Joist-Angle Web 10K1				0.15	490	10	6.0625	7		\$ 3.19 \$	6,500.00		\$ 234.58			\$ 7.91	\$ 6,500.00	\$	581.
Structural Framing	K-series Bar Joist-Angle Web 10K1				0.25	490	16	10.875	11		\$ 3.19 \$	6,500.00		\$ 593.24			\$ 7.91	\$ 6,500.00	\$	1,471.
Structural Framing	K-series Bar Joist-Angle Web 10K1				0.23	490	15	10.125	11		\$ 3.19 \$	6,500.00		\$ 555.96			\$ 7.91	\$ 6,500.00	\$	1,378.
			Total	937 SF	12.07 CF				12					\$ 5,768.90					\$	13,024.2
			Grand Total	1909 SF	14.93 CF				56					\$ 5,768.90					\$	13,024.24
										Μ	aterial C	Cost		\$ 23,511.15			Total (Cost	5	43,649.66

aterial Takeof	ff RSMeans																					
										2021 C	onversio	n										
							Materia	al Cost							Total C	ost			Total	Project cost		
																		General Contractors				
		Material: Name	Inflation							Cost	Cost/CY							Overhead and Profit	Contingency (5% -			
Category	Family and Type			Cost/CY	Cost/SY	Cost/LF				0001	000001	Cost/SY	Cost/		Cost/Ton	Cost/Count	Cost	(5%-10%)	10%)	(3%-5%)		Total Cost
Structural Framing	W Shapes: W12X26	Steel ASTM A992	33.8%			\$ 42.8			03.95 \$	272.95			-	49.31 \$	-	\$ 603.95						392.9
Structural Framing	W Shapes: W12X26	Steel ASTM A992	33.8%			\$ 42.8			81.46 S	439.31				49.31 S		\$ 781.46						632.37
Structural Framing	W Shapes: W12X26	Steel ASTM A992	33.8%			\$ 42.8	2 \$	- \$ 1,4	62.43 \$	749.28			S 4	49.31 \$	-	\$ 1,462.43	\$ 1,725.69					2,157.1
Structural Framing	W Shapes: W12X26	Steel ASTM A992	33.8%			\$ 42.8	2 \$	- \$ 1,4	62.43 \$	773.81	s -		S /	49.31 \$		\$ 1,462.43	\$ 1,782.18	\$ 178.22	\$ 178.22	\$ 89.11	s	2,227.7
Structural Framing	W Shapes: W12X26	Steel ASTM A992	33.8%			\$ 42.8	2 \$	- \$ 1,4	62.43 S	992.35	s -		S /	49.31 S	-	\$ 1,462.43	\$ 2,285.51	\$ 228.55	\$ 228.55	\$ 114.28	s	2,856.88
Structural Framing	W Shapes: W12X26	Steel ASTM A992	33.8%			\$ 42.8	2 \$	- \$ 1,4	62.43 S	1,029.37	s -		S /	49.31 S	-	\$ 1,462.43	\$ 1,185.38	\$ 118.54	\$ 118.54	\$ 59.27	s	1,481.73
Structural Framing	W Shapes: W12X26	Steel ASTM A992	33.8%			\$ 42.8	2 \$	- \$ 1,4	08.91 \$	1,070.40	s -		S /	49.31 \$		\$ 1,408.91	\$ 3,697.90	\$ 369.79	\$ 369.79	\$ 184.89	s	4,622.37
Structural Framing	K-series Bar Joist-Angle Web 10K1		33.8%			\$ 4.2	7 \$ 8,028	.00 S	- S	539.82	s -		S	10.58 \$	8,028.00	s -	\$ 1,338.55	\$ 133.85	\$ 133.85	\$ 66.93	s	1,673.18
Structural Framing	K-series Bar Joist-Angle Web 10K1		33.8%			\$ 4.2	7 \$ 8,697	.00 \$	- S	313.87	s -		S	10.58 \$	8,697.00	s -	\$ 778.28	\$ 77.83	\$ 77.83	\$ 38.91	s	972.85
Structural Framing	K-series Bar Joist-Angle Web 10K1		33.8%			\$ 4.2	7 \$ 8,697	.00 \$	- S	793.76	s -		S	10.58 \$	8,697.00	s -	\$ 1,968.22	\$ 196.82	\$ 196.82	\$ 98.41	s	2,460.27
Structural Framing	K-series Bar Joist-Angle Web 10K1		33.8%			\$ 4.2	7 \$ 8,697	.00 \$	- S	743.87	s -		S I	10.58 \$	8,697.00	S -	\$ 1,844.52	\$ 184.45	\$ 184.45	\$ 92.23	s	2,305.65
									\$	7,718.78							\$ 17,426.43				s	21,783.03
									\$	7,718.78							\$ 17,426.43					
					N	lateria	l Cost			\$ 31,365.66			Tota	al Cos	st		\$ 171,027.06	Tot	al Project C	ost	\$	213,783.82

					Mate	erial Cost			T	otal Cost		Total per iten
Material	Material Length, LF	Material Area, SF	Material Volume, CY	\$/LF	\$/SF	\$/CY	\$/Each	\$/LF	\$/SF	\$/CY	\$/Each	
Earthwork												
Cut			425							34.	3	14577.
Fill			860							41.2	1	35440.0
Grading		5000									2021	202
Clearning and Grubbing											5000	5000
Pavement												
5" PCC Pavement		3500			1	.9			6	.34		2219
Base Material		3500			1.5	6			1	.56		5460
PCC Sidewalk		370							5	.55		2053.:
Utilities												
6" Water Line	73	;		47.5	5			60.	25			4398.2
Electric Line	75	5						13.	31			998.2
Erosion Control												
Silt Fence	210)						1.	56			327.0
Erosion Control Blanket											500	500

Camp Couragous - Cu	ltural Educa	ation Center E	ngineering Cost				
	UIS Engine e	ering, Inc					
	Budget Su	mmary					
Task Description	Hours	Hourly Salary	Multiplier for Overhead and Profit	Total			
Site Visits	25	30	3	\$ 2,250			
Proposal Report and Presentation	35	30	3	\$ 3,150	Cost Item		Cost
Collecting existing data	20	30	3	\$ 1,800	Site	\$	96,000
Development of articultural design	50	30	3	\$ 4,500	Site		50,000
Completing structural analysis	50	30	3	\$ 4,500	Material	\$	288,000
Development of site design	50	30	3	\$ 4,500	Structural	ė	171 200
Preparation of Prelimiary Plan Sheets	50	30	3	\$ 4,500	Structural	\$	171,200
Preparation of Final Design Plan Sheets	50	30	3	\$ 4,500		\$	560,000
Design Presentation	35	30	3	\$ 3,150	Contononau		100/
Design Report	50	30	3	\$ 4,500	Contengency		10%
Presentation to client	8	30	3	\$ 720	Overhead and Profit		10%
					Administrative Fees		5%
Total Billable Hours				423			
Cost per hour				\$ 90.0	Total Design to Cost	<u> </u>	700.000
Total Cost				\$ 38,070	Total Project Cost	\$	700,000

Appendix D – Bibliography

- 1.5B-36/1.5Bi-36/1.5PLB-36 Roof Decks Grade 50 Steel ASD. (n.d.). Retrieved November 27, 2021, from https://vulcraft.com/catalogs/Deck/RoofDeck/ASD-1.5B-36-1.5PLB-36_GR50_Roof_Deck.pdf.
- American Institute of Steel Construction. (2017). *Steel Construction Manual*. American Institute of Steel Construction.
- American Society of Civil Enginers. (2017). *Minimum design loads and associated criteria for buildings and other structures : Asce/Sei 7-16.* American Society of Civil Engineers.
- ClarkDietrich Building Systems. (n.d.). Retrieved November 27, 2021, from <u>https://www.clarkdietrich.com/sites/default/files/imce/pdf/SupportTools/Catalogs/Structural/CD_Structural_al_Design_Guide_08-13-21.pdf</u>.
- *Contracts*. Tabulation of Construction and Material Bids | Iowa DOT. (n.d.). Retrieved December 2, 2021, from https://iowadot.gov/contracts/historical-completed-lettings/bid-tabs.
- International Code Council, Inc. (2020). International Building Code. International Code Council, Inc.
- Iowa Statewide Urban Design and Specifications. (n.d.). Retrieved November 27, 2021, from <u>https://iowasudas.org/</u>.
- Nrcs. (n.d.). Web soil survey home. Retrieved November 27, 2021, from https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm.
- Plotner, S. C. (2019). Building construction costs with Rsmeans data 2019. Gordian RSMeans Data.
- Pray, R. (2018). National Construction Estimator. Craftsman Book Company.
- *Steel joists and steel deck load tables and design tools.* New Millennium Building Systems. (n.d.). Retrieved November 27, 2021, from <u>https://www.newmill.com/design-tools/load-tables.html</u>.
- Waier, P. R. (2010). Building Construction Cost Data 2011. R.S. Means Co.

Appendix E – Structural Calculations

CEC Preliminary Load Calculations

Summary

 $w_{roof} := 49.115 \text{ psf}$ $w_{greenRoof} := 82.715 \text{ psf}$ $w_{roofDrifiArea} := 76.715 \text{ psf}$ $w_{floor} := 168.4 \text{ psf}$ $w_{wallWind} := 15.128 \text{ psf}$

Dead Loads:

Roof Framing SDL: $w_{metalRoof} := 3 \ psf$ $w_{waterproofingMem} := 0.7 \ psf$ $w_{rigidInsulation} := 0.75 \ psf$ $w_{OSB} := 3 \ psf$ $w_{mep} := 4 \ psf$ $w_{woodFurringSusSys} := 2.5 \ psf$ $w_{extensiveGreenRoof} := 28 \ psf$ $w_{roofSDL} := w_{metalRoof} + w_{waterproofingMem} + w_{rigidInsulation} + w_{OSB} + w_{mep} + w_{woodFurringSusSys} = 13.95 \ psf$ $w_{roofSDL} GreenRoof := w_{roofSDL} + w_{extensiveGreenRoof} = 41.95 \ psf$

Floor SDL:

 $w_{woodFlooring} := 4 \text{ psf}$ $w_{subfloor} := 3 \text{ psf}$ $w_{floorSDL} := w_{woodFlooring} + w_{subfloor} = 7 \text{ psf}$

Live Loads:

 $w_{LRoof} \coloneqq 20 \text{ psf}$ $w_{LFloor} \coloneqq 100 \text{ psf}$ $w_{LDeck} \coloneqq 100 \text{ psf}$

Snow Loads:

(i) From Table 1.5-1 establish risk category for the structure. Risk Category II

(ii) From Table 1.5-2 determine importance factor for snow loading, Is $I_s := 1.00$

(iii) Determine ground snow load pg from maps in Figure 7.2-1 and Table 7.2-1, ..., 7.2-8. Also Table C7.2-1 contains numerical values of pg (2% annual probability) for selected US cities. $p_g := 25$

(iv) Use Section 26.7.2 and photographs in Figure C26.7-5 and 6 to establish surface roughness category for the site of the structure.

Surface Roughness B

(v) Use Table 7.3-1 to determine exposure factor Ce based on the surface roughness category and wind exposure. $C_c := 1.0$ (partially exposed)

(vi) Use Table 7.3-2 to determine thermal factor Ct based on the thermal conditions of the structure. $C_t := 1.0$

(vii) Determine uniform snow load for flat roofs. pf = 0.7 Ce Ct Is pg $p_f = 0.7 \cdot C_e \cdot C_t \cdot I_s \cdot p_g = 17.5$

(viii) For roofs with slopes less than 15°, the uniformly distributed load on the roof is as follows. ps = Max[pf, Is Min(pg, 20)]

(ix) For roofs with slopes greater than 15° the uniform snow load is determined on the horizontal projection of the roof surface as follows. ps = Cs pf

sloped roof (balanced) snow load, in lb/ft2

$$pitch := \frac{1}{12} \quad slope := \operatorname{atan} (pitch) \cdot \frac{180}{\pi} = 4.764$$
$$C_s := 1$$

Sloped roof (balanced) snow load (psf): $p_s := \max (p_f, I_s \cdot \min (p_g, 20)) = 20$

Unbalanced Snow Load: 16 ft width of unbalanced snow load onto lower roof $\gamma := 0.13 \cdot p_g + 14 = 17.25$ $h_b := \frac{p_s}{\gamma} = 1.159$ $h_c := 10 + h_b = 11.159$ $\frac{h_c}{h_b} = 9.625$ > 0.2 drift load required

$$l_{ulceward} := 46.83$$

$$h_{dlceward} := 2$$

$$p_{dlceward} := h_{dlceward}, h_{dWindward} = 2$$

$$w := (4 \cdot h_d) ft = 8 ft$$

$$p_{dlceward} := h_d \cdot \gamma = 34.5$$

$$l_{uWindward} := 2$$

$$p_{dlceward} := h_{dlceward}, h_{dWindward} = 2$$

$$w := (4 \cdot h_d) ft = 8 ft$$
Summary of Snow Load:
$$w_{snow} := 20 p_{sf} (= p_{-s})$$

 $b_{drift} := 18 ft$ $\frac{\left(\frac{34.5 \cdot 8}{2}\right)}{8} = 17.25 \quad \text{(convert triangular drift load to uniform)}$ $w_{snowDriftArea} := w_{snow} + (17.25 \text{ psf}) = 37.25 \text{ psf} \quad \text{for } w := 8 \text{ ft}$

Wind Loading: (i) From Table 1.5-1 establish risk category for the structure. Risk Category: II

(ii) From the wind hazard maps given in Section 26.5 determine wind speed V for the location of the structure. V = 106 mph

(iii) Use Sections 26.7.2, 26.7.3, and photographs in Figure C26.7-5 and 6 to establish wind exposure category for the site of the structure.

Surface Roughness B: "Urban and suburban areas, wooded areas, or other terrain with numerous, closely spaced

obstructions that have the size of single-family dwellings or larger."

Exposure B: "For buildings or other structures with a **mean roof height less than or equal to 30 ft** (9.1 m), Exposure B shall apply where the ground surface roughness, as **defined by Surface Roughness B**, prevails in the upwind direction for a distance greater than 1,500 ft (457 m)." -See figure C26.7-1

(iv) From Table 26.6-1 determine the wind directionality factor Kd. $K_d := 0.85$

(v) From Figure 26.8-1 determine the topographic factor Kzt for the site of the structure. $K_{zt} = 1.0$

(vi) From Table 26.9-1 determine the ground elevation factor Ke. $z_g := 1200$ $K_e := e^{-0.0000362 \cdot z_g} = 0.957$

(vii) From the structure plan dimensions compute ratio L/B where B = dimension perpendicular to wind direction; L = dimension along the wind direction. Determine mean height of the roof h and compute ratio h/L. $B_{EW} \coloneqq 63.5$ (wind parallel to the E-W) $L_{EW} \coloneqq 45.75$ $B_{NS} \coloneqq 45.75$ (wind parallel to the N-S) $L_{NS} \coloneqq 63.5$ **B is always the face perpendicular to the wind loading.**

(viii) From Table 26.10-1 determine the wind velocity pressure coefficients Kz for all height (z) values needed for the structure. Use linear interpolation to determine Kz coefficient for the mean height h of the roof. This value of the coefficient is called Kh.

$$a := 7.0$$

 $z_g := 1200$ (ft) (Table 26.11-1, Exposure B)
 $z_{15} := 15$
 $z_{roof} := 18.5$
 $z_h := \frac{z_{15} + z_{roof}}{2} = 16.75$
For $15' < z < zg$:
 $K_z := 2.01 \cdot \left(\frac{z_{15}}{z_g}\right)^{\frac{2}{a}} = 0.575$

For z < 15':

$$K_h \coloneqq 2.01 \cdot \left(\frac{z_h}{z_g}\right)^a = 0.593$$

2

(ix) Compute wind velocity pressure coefficient for each Kz value and for the coefficient Kh. $q_z := 0.00256 \cdot K_z \cdot K_{zt} \cdot K_d \cdot K_e \cdot V^2 = 13.454$ $q_h := 0.00256 \cdot K_h \cdot K_{zt} \cdot K_d \cdot K_e \cdot V^2 = 13.885$

(x) Determine the wind gust factor G based on equations given in Section 26.11.

"The gust-effect factor for a **rigid building** or other structure is permitted to be taken as 0.85." G := 0.85 (xi) From Figure 26.13-1 determine the internal pressure coefficient GCpi for the structure. $GC_{pi} := 0.18$ (+/-)

Wind Pressures for the Main Force Resisting System (Directional Procedure):

Wall pressure coefficients:

$$\frac{L_{EW}}{B_{EW}} = 0.72 \qquad \frac{L_{NS}}{B_{NS}} = 1.388$$

$$C_{pWindwardWall} := 0.8$$

$$C_{pLeewardWallEW} := -0.5$$

$$C_{pLeewardWallNS} := \frac{1.388 - 1}{2 - 1} \cdot (-0.3 - 0.5) + -0.5 = -0.422$$

$$C_{nSidewall} := -0.7$$

Roof pressure coefficients:

$$h/L = \frac{z_h}{L_{EW}} = 0.366$$
 $h/L = \frac{z_h}{L_{NS}} = 0.264$

$$pitch := \frac{1}{12} \quad slope := \operatorname{atan} (pitch) \cdot \frac{180}{\pi} = 4.764$$
$$\theta_{roof} := 4.764$$

Wind direction normal and parallel to ridge:

 $\frac{z_h}{L_{EW}} = 0.366$ $\frac{z_h}{L_{NS}} = 0.264$ h/L < 0.5 for E/W and N/S

Windward Wall Pressures:

 $\begin{array}{l} p_{windwardWallPos} \coloneqq q_z \bullet G \bullet C_{pWindwardWall} - q_z \bullet \left(GC_{pi}\right) = 6.727 \\ p_{windwardWallNeg} \coloneqq q_z \bullet G \bullet C_{pWindwardWall} + q_z \bullet \left(GC_{pi}\right) = 11.571 \end{array}$

Leeward Wall Pressures:

E/W:

 $\begin{array}{l} p_{leewardWallEWPos} \coloneqq q_{h} \bullet G \bullet C_{pLeewardWallEW} - q_{h} \bullet \left(GC_{pi}\right) = -8.401 \\ p_{leewardWallEWNeg} \coloneqq q_{h} \bullet G \bullet C_{pLeewardWallEW} + q_{h} \bullet \left(GC_{pi}\right) = -3.402 \end{array}$

N/S:

 $\begin{aligned} p_{leewardWallNSPos} &\coloneqq q_h \cdot G \cdot C_{pLeewardWallNS} - q_h \cdot \left(GC_{pi}\right) = -7.485 \\ p_{leewardWallNSNeg} &\coloneqq q_h \cdot G \cdot C_{pLeewardWallNS} + q_h \cdot \left(GC_{pi}\right) = -2.486 \end{aligned}$

Sidewall Pressures:

 $\begin{array}{l} p_{sidewallPos} \coloneqq q_h \bullet G \bullet C_{pSidewall} - q_h \bullet \left(GC_{pi}\right) = -10.761\\ p_{sidewallNeg} \coloneqq q_h \bullet G \bullet C_{pSidewall} + q_h \bullet \left(GC_{pi}\right) = -5.762 \end{array}$

Wind Roof Pressures (Normal and parallel to ridge): sec 1: 0 to h/2: sec 1 1: $p_{roofSec1_1Pos} \coloneqq q_h \cdot G \cdot C_{pRoofSec1_1} - q_h \cdot (GC_{pi}) = -13.122$ $p_{roofSec1_INeg} \coloneqq q_h \cdot G \cdot C_{pRoofSec1_I} + q_h \cdot \left(GC_{pi} \right) = -8.123$ sec 1 2: $p_{roofSec1_2Pos} := q_h \cdot G \cdot C_{pRoofSec1_2} - q_h \cdot (GC_{pi}) = -4.624$ $p_{roofSec1_2Neg} \coloneqq q_h \cdot G \cdot C_{pRoofSec1_2} + q_h \cdot (GC_{pi}) = 0.375$ sec 2: h/2 to h: sec 2 1: $p_{roofSec2}$ $_{IPos} := q_h \cdot G \cdot C_{pRoofSec2} - q_h \cdot (GC_{pi}) = -13.122$ $p_{roofSec2_INeg} \coloneqq q_h \cdot G \cdot C_{pRoofSec2_I} + q_h \cdot \left\langle GC_{pi} \right\rangle = -8.123$ sec 2 2: $p_{roofSec2_2Pos} \coloneqq q_h \cdot G \cdot C_{pRoofSec2_2} - q_h \cdot (GC_{pi}) = -4.624$ $p_{roofSec2_2Neg} \coloneqq q_h \cdot G \cdot C_{pRoofSec2_2} + q_h \cdot (GC_{pi}) = 0.375$ sec: 3: h to 2h: sec 3 1: $p_{roofSec3_lPos} \coloneqq q_h \cdot G \cdot C_{pRoofSec3_l} - q_h \cdot (GC_{pi}) = -8.401$ $p_{roofSec3_INeg} \coloneqq q_h \cdot G \cdot C_{pRoofSec3_I} + q_h \cdot \langle GC_{pi} \rangle = -3.402$ sec 3 2: $p_{roofSec3_2Pos} \coloneqq q_h \cdot G \cdot C_{pRoofSec3_2} - q_h \cdot (GC_{pi}) = -4.624$ $p_{roofSec3_2Neg} \coloneqq q_h \cdot G \cdot C_{pRoofSec3_2} + q_h \cdot (GC_{pi}) = 0.375$ sec 4: >2h: sec 4 1: $p_{roofSec4} | Pos := q_h \cdot G \cdot C_{pRoofSec4} | - q_h \cdot (GC_{pi}) = -6.04$ $p_{roofSec4_INeg} \coloneqq q_h \cdot G \cdot C_{pRoofSec4_I} + q_h \cdot (GC_{pi}) = -1.041$ sec 4 2: $p_{roofSec4_2Pos} \coloneqq q_h \cdot G \cdot C_{pRoofSec4_2} - q_h \cdot (GC_{pi}) = -4.624$ $p_{roofSec4_2Neg} \coloneqq q_h \cdot G \cdot C_{pRoofSec4_2} + q_h \cdot (GC_{pi}) = 0.375$

Net Wind Pressures:

Wall E/W:

$p_{wallNetEWPos} \coloneqq p_{windwardWallPos} - p_{leewardWallEWPos} = 15.128$	
$p_{wallNetEWNeg} := p_{windwardWallNeg} - p_{leewardWallEWNeg} = 14.973$	5

Wall N/S:

$p_{wallNetNSPos} := p_{windwardWallPos} - p_{leewardWallNSPos} = 14.212$	2
$p_{wallNetNSNeg} := p_{windwardWallNeg} - p_{leewardWallNSNeg} = 14.05$	7

14 212

Sidewall:

 $p_{sidewallPos} = -10.761$ $p_{sidewallNeg} = -5.762$

Roof (wind normal and parallel to ridge): From 0 to h/2:

$p_{roofSec1_1Pos} = -13.122$	$p_{roofSec1_2Pos} = -4.624$
$p_{roofSec1_INeg} = -8.123$	$p_{roofSec1_2Neg} = 0.375$

From h/2 to h:

 $p_{roofSec2_1Pos} = -13.122$ $p_{roofSec2_2Pos} = -4.624$

$p_{roofSec2_INeg} = -8.123$	$p_{roofSec2_2Neg} = 0.375$
From h to 2h:	

FIOH II to 2h.	
$p_{roofSec3_{IPos}} = -8.401$	$p_{roofSec3_2Pos} = -4.624$
$p_{roofSec3_INeg} = -3.402$	$p_{roofSec3_2Neg} = 0.375$

For >2h:

 $p_{roofSec4_1Pos} = -6.04$ $p_{roofSec4_2Pos} = -4.624$ $p_{roofSec4_1Neg} = -1.041$ $p_{roofSec4_2Neg} = 0.375$

Maximum Net Wall Wind Pressure: $w_{wallWind} := 15.128 \text{ psf}$ Maximum Positive Roof Wind Pressure: $w_{roofWind} := 0.375 \text{ psf}$

Load Combinations:

Factored Roof Load:

$$\begin{split} w_{roof2} &:= 1.2 \cdot w_{roofSDL} + 1.6 \cdot w_{LRoof} = 48.74 \ \text{psf} \\ w_{roof3} &:= 1.2 \cdot w_{roofSDL} + 1.6 \cdot (w_{snow}) + 1.0 \cdot (w_{roofWind}) = 49.115 \ \text{psf} \\ w_{roof4} &:= 1.2 \cdot w_{roofSDL} + 1.0 \cdot (w_{roofWind}) + 1.0 \cdot (w_{LRoof}) + 0.5 \cdot (w_{snow}) = 47.115 \ \text{psf} \\ w_{roof} &:= \max (w_{roof2}, w_{roof3}, w_{roof4}) = 49.115 \ \text{psf} \end{split}$$

Factored Roof Load with Green Roof:

$$\begin{split} & w_{roof2} := 1.2 \cdot w_{roofSDLGreenRoof} + 1.6 \cdot w_{LRoof} = 82.34 \ \text{psf} \\ & w_{roof3} := 1.2 \cdot w_{roofSDLGreenRoof} + 1.6 \cdot (w_{snow}) + 1.0 \cdot (w_{roofWind}) = 82.715 \ \text{psf} \\ & w_{roof4} := 1.2 \cdot w_{roofSDLGreenRoof} + 1.0 \cdot (w_{roofWind}) + 1.0 \cdot (w_{LRoof}) + 0.5 \cdot (w_{snow}) = 80.715 \ \text{psf} \\ & w_{greenRoof} := \max (w_{roof2}, w_{roof3}, w_{roof4}) = 82.715 \ \text{psf} \end{split}$$

Factored Roof Load for Drift Area:

$$\begin{split} w_{roof2} &\coloneqq 1.2 \cdot w_{roofSDL} + 1.6 \cdot w_{LRoof} = 48.74 \ \textit{psf} \\ w_{roof3} &\coloneqq 1.2 \cdot w_{roofSDL} + 1.6 \cdot (w_{snowDriftArea}) + 1.0 \cdot (w_{roofWind}) = 76.715 \ \textit{psf} \\ w_{roof4} &\coloneqq 1.2 \cdot w_{roofSDL} + 1.0 \cdot (w_{roofWind}) + 1.0 \cdot (w_{LRoof}) + 0.5 \cdot (w_{snowDriftArea}) = 55.74 \ \textit{psf} \\ w_{roofDriftArea} &\coloneqq \max (w_{roof2}, w_{roof3}, w_{roof4}) = 76.715 \ \textit{psf} \end{split}$$

Factored Floor Load:

 $w_{floor} \coloneqq 1.2 \cdot w_{floorSDL} + 1.6 \cdot w_{LFloor} = 168.4 \text{ psf}$

Deflection load combinations:

$$\begin{split} & w_{STDeflection} \coloneqq w_{roofSDL} + w_{LRoof} = 33.95 \ \textit{psf} \\ & w_{LTDeflection} \coloneqq w_{roofSDL} + 0.5 \cdot w_{LRoof} = 23.95 \ \textit{psf} \\ & w_{STDeflectionGR} \coloneqq w_{roofSDLGreenRoof} + w_{LRoof} = 61.95 \ \textit{psf} \\ & w_{LTDeflectionGR} \coloneqq w_{roofSDLGreenRoof} + 0.5 \cdot w_{LRoof} = 51.95 \ \textit{psf} \end{split}$$

Summary (use for structural calculations):

 $w_{roof} = 49.115 \text{ psf}$ $w_{greenRoof} = 82.715 \text{ psf}$ $w_{roofDriftArea} = 76.715 \text{ psf}$ $w_{floor} = 168.4 \text{ psf}$ $w_{wallWind} = 15.128 \text{ psf}$ CEC Member Sizing

Summary: Roof Beam Size: W12x26 Main Building Columns: HSS 4x4x1/2 Viewing Area Columns: HSS 3x3x3/8 South Viewing Area Floor Beam Size: W12x26 Steel Pier Size: HSS 6x6x5/8

Factored Loading:

 $w_{roof} := 49.115 \ psf$ $w_{floor} := 168.4 \ psf$

 $w_{roofdl} := 13.95 \ psf$ $w_{roofll} := 20 \ psf$

 $w_{roofSTDeflection} := w_{roofdl} + w_{roofll} = 33.95 \text{ psf}$

 $w_{roofLTDeflection} := w_{roofdl} + 0.5 \cdot w_{roofll} = 23.95 \text{ psf}$

Column Lengths:

$L_I := 17.7083 \ ft$	$L_2 := L_I$	$L_3 := L_1$	
$L_4 := 17.083 \ ft$			
$L_5 := 16.625 \ ft$	$L_6 := L_5$		
L ₇ := 15.5 ft			
$L_8 := 15.1667 \ ft$	$L_g := L_g$	$L_{10} := L_8$	
L ₁₁ :=9.25 ft	$L_{12} := L_{11}$	$L_{13} := L_{11}$	$L_{I4} \coloneqq L_{II}$

Roof metal deck self-weight (22 gauge): w_{roofDeck} := 1.6 psf

Roof truss loading:

$$L_{eastRoofTruss} := 16.906 ft$$
 $L_{westRoofTruss} :=$

 $= 15.8437 \, ft$ $L_{VARoofTrues} := 18.05 \, ft$

$$t_b := 4 ft$$
 $t_{bExt} := 2 ft$

 $w_{roofTruss} := (w_{roof} + w_{roofDeck}) \cdot t_b = 202.86 \ plf$

 $w_{extRoofTruss} := (w_{roof} + w_{roofDeck}) \cdot t_{bExt} = 101.43 \ plf$

$$\begin{split} P_{eastTruss} &:= \frac{L_{eastRoofTruss} \cdot w_{roofTruss}}{2} = 1.715 \ \textit{kip} \\ P_{westTruss} &:= \frac{L_{westRoofTruss} \cdot w_{roofTruss}}{2} = 1.607 \ \textit{kip} \\ P_{VATruss} &:= \frac{L_{VARoofTruss} \cdot w_{roofTruss}}{2} = 1.831 \ \textit{kip} \\ P_{extEastTruss} &:= \frac{L_{eastRoofTruss} \cdot w_{extRoofTruss}}{2} = 0.857 \ \textit{kip} \\ P_{extWestTruss} &:= \frac{L_{westRoofTruss} \cdot w_{extRoofTruss}}{2} = 0.804 \ \textit{kip} \\ P_{extVATruss} &:= \frac{L_{VARoofTruss} \cdot w_{extRoofTruss}}{2} = 0.915 \ \textit{kip} \end{split}$$

Serviceability loading for short-term and long-term deflection:

$$w_{roofTrussST} \coloneqq \left(w_{roofSTDeflection} + w_{roofDeck} \right) \cdot t_b = 142.2 \ plf$$
$$w_{extRoofTrussST} \coloneqq \left(w_{roofSTDeflection} + w_{roofDeck} \right) \cdot t_{bExt} = 71.1 \ plf$$
$$w_{roofTrussLT} \coloneqq \left(w_{roofLTDeflection} + w_{roofDeck} \right) \cdot t_b = 102.2 \ plf$$

 $w_{extRoofTrussLT} \coloneqq \left(w_{roofLTDeflection} + w_{roofDeck} \right) \bullet t_{bExt} = 51.1 \ \textit{plf}$

Short-Term Loading:

$$\begin{split} P_{eastTrussST} &\coloneqq \frac{L_{eastRoofTruss} \cdot w_{roofTrussST}}{2} = 1.202 \ \textit{kip} \\ P_{westTrussST} &\coloneqq \frac{L_{westRoofTruss} \cdot w_{roofTrussST}}{2} = 1.126 \ \textit{kip} \\ P_{VATrussST} &\coloneqq \frac{L_{VARoofTruss} \cdot w_{roofTrussST}}{2} = 1.283 \ \textit{kip} \\ P_{extEastTrussST} &\coloneqq \frac{L_{eastRoofTruss} \cdot w_{extRoofTrussST}}{2} = 0.601 \ \textit{kip} \\ P_{extWestTrussST} &\coloneqq \frac{L_{westRoofTruss} \cdot w_{extRoofTrussST}}{2} = 0.563 \ \textit{kip} \\ P_{extVATrussST} &\coloneqq \frac{L_{VARoofTruss} \cdot w_{extRoofTrussST}}{2} = 0.642 \ \textit{kip} \\ \end{split}$$

Long-Term Loading:

$$P_{eastTrussLT} \coloneqq \frac{L_{eastRoofTruss} \cdot w_{roofTrussLT}}{2} = 0.864 \ kip$$

$$P_{westTrussLT} \coloneqq \frac{L_{westRoofTruss} \cdot w_{roofTrussLT}}{2} = 0.81 \ kip$$

$$P_{VATrussLT} \coloneqq \frac{L_{VARoofTruss} \cdot w_{roofTrussLT}}{2} = 0.922 \ kip$$

$$P_{extEastTrussLT} \coloneqq \frac{L_{eastRoofTruss} \cdot W_{extRoofTrussLT}}{2} = 0.432 \ kip$$

$$P_{extWestTrussLT} \coloneqq \frac{L_{westRoofTruss} \cdot W_{extRoofTrussLT}}{2} = 0.405 \ kip$$

$$P_{extVATrussLT} \coloneqq \frac{L_{VARoofTruss} \cdot W_{extRoofTrussLT}}{2} = 0.461 \ kip$$

East Beam and Center Beam:

Bending moment check:

W12 x 26

$$Z_{x_{-1}2x26} := 37.2 \text{ in}^3$$
 $F_y := 50 \text{ ksi}$
 $\phi_b := 0.9$
 $\phi_v := 0.9$
 $E_s := 29000 \text{ ksi}$
 $M_p := Z_{x_{-1}2x26} \cdot F_y = 155 \text{ ft} \cdot \text{kip}$
 $\phi_b \cdot M_p = 139.5 \text{ ft} \cdot \text{kip}$
 $M_u := M_{maxNeg} = 23.2 \text{ ft} \cdot \text{kip}$

$$DCR_b \coloneqq \frac{M_u}{\phi_b \cdot M_p} = 0.166$$

Check for shear:

$$h := \left(10 + \left(\frac{1}{8}\right)\right) in = 10.125 in \qquad t_w := 0.23 in \qquad \frac{h}{t_w} = 44.022 \qquad < \qquad 2.45 \cdot \sqrt{\frac{E_s}{F_y}} = 59.004$$

No web instability.

$$A_{w} := h \cdot t_{w} = 2.329 \ in^{2} \qquad V_{u} := V_{max} = 5.518 \ kip$$

$$V_{n} := 0.6 \cdot F_{y} \cdot A_{w} = 69.863 \ kip \qquad \phi_{v} \cdot V_{n} = 62.876 \ kip$$

$$DCR_{v} := \frac{V_{u}}{\phi_{v} \cdot V_{n}} = 0.088$$

Deflection check:

$$\delta_a := \frac{23.14 \cdot 12 \text{ in}}{240} = 1.157 \text{ in}$$

West Beam:

$$\begin{split} M_{maxPos} &:= 12.3 \ ft \cdot kip & M_{maxNeg} := 17.2 \ ft \cdot kip & V_{max} := 4.8740 \ kip \\ R_{1west} &:= 0.5185 \ kip & R_{2west} := 8.3734 \ kip & R_{3west} := 8.969 \ kip & R_{4west} := 1.5178 \ kip \\ \delta_{maxST} &:= 0.115 \ in & \delta_{maxLT} := 0.08273 \ in \\ M_u &:= M_{maxNeg} = 17.2 \ ft \cdot kip \\ \end{split}$$

$$DCR_b \coloneqq \frac{M_u}{\phi_b \cdot M_p} = 0.123$$

Check for shear:

 $V_u := V_{max} = 4.874 \ kip$

$$DCR_v := \frac{V_u}{\phi_v \cdot V_n} = 0.078$$

Deflection check:

$$\delta_a := \frac{24 \cdot 12 \text{ in}}{240} = 1.2 \text{ in}$$

North Viewing Area Beam:

$M_{maxPos} := 12.4 \ ft \cdot kip$	$M_{maxNeg} \coloneqq 23.6 \ ft \cdot kip$	V _{max} := 5.7108 kip
$R_{Inorth} := 5.7108 \ kip$	$R_{2north} := 5.2742 \ kip$	
$\delta_{maxST} \coloneqq 0.09613$ in	$\delta_{maxLT} \coloneqq 0.06909$ in	

$$M_u := M_{maxNeg} = 23.6 \, ft \cdot kip$$

$$DCR_b \coloneqq \frac{M_u}{\phi_b \cdot M_p} = 0.169$$

Check for shear:

$$V_u := V_{max} = 5.711 \ kip$$
$$DCR_v := \frac{V_u}{\phi_v \cdot V_n} = 0.091$$

Deflection check:

$$\delta_a \coloneqq \frac{25 \cdot 12 \text{ in}}{480} = 0.625 \text{ in}$$

Column Sizing:

Main Building Columns: Design for maximum loading: HSS 4x4x0.5

$$\begin{split} L &:= L_{6} = 16.625 \ ft \qquad P_{u} := R_{2east} = 10.985 \ kip \\ \phi_{c} &:= 0.85 \qquad K := 0.8 \qquad r_{x} := 1.41 \ in \qquad A_{g} := 6.02 \ in^{2} \qquad L_{cx} := K \cdot L = 13.3 \ ft \\ F_{ex} &:= \frac{\pi^{2} \cdot E_{g}}{\left(\frac{L_{cx}}{r_{x}}\right)^{2}} = (2.234 \cdot 10^{4}) \ psi \qquad F_{e} := F_{ex} \\ F_{cr} := if \ \frac{F_{y}}{F_{e}} \le 2.25 \\ & \left\| \left(0.658^{\left(\frac{F_{y}}{F_{e}}\right)} \right) \cdot F_{y} \right\| \\ else if \ \frac{F_{y}}{F_{e}} > 2.25 \\ & \left\| 0.877 \cdot F_{e} \right\| \\ \end{split}$$

$$\phi_c P_n := 0.85 \cdot F_{cr} \cdot A_g = 100.262 \ kip$$
 $P_u = 10.985 \ kip$

$$DCR_c \coloneqq \frac{P_u}{\phi_c P_n} = 0.11$$

Viewing Area Columns:

$$\begin{aligned} L := L_{ij} = 9.25 \ ft \qquad P_u := R_{inorth} = 5.711 \ kip \\ \phi_c := 0.85 \qquad K := 0.65 \qquad r_s := 1.06 \ in \qquad A_g := 3.39 \ in^2 \qquad L_{cs} := K \cdot L = 6.013 \ ft \\ F_{cs} := \frac{\pi^2 \cdot E_s}{\left(\frac{L_{cs}}{r_s}\right)^2} = \left(6.178 \cdot 10^4\right) \ psi \qquad F_e := F_{esc} \end{aligned}$$

$$\begin{aligned} F_{cr} := if \ \frac{F_v}{F_e} \leq 2.25 \\ & \left\| \left(0.658 \left(\frac{F_v}{F_e} \right) \right) \cdot F_y \\ else if \ \frac{F_v}{F_e} > 2.25 \\ & \left\| 0.877 \cdot F_e \right\| \end{aligned}$$

$$\phi_c P_n := 0.85 \cdot F_{cr} \cdot A_g = 102.676 \ kip \qquad P_u = 5.711 \ kip \\ DCR_c := \frac{P_u}{\phi_c P_n} = 0.056 \\ \hline Viewing Area South Floor Beam Size: \\ L_{VAFloorTrass} := 10.5 \ ft \qquad t_b := 4 \ ft \qquad t_{bExt} := 2 \ ft \qquad w_c := 150 \ pcf \qquad t_{slab} := 6 \ in \\ w_{slab} := w_c \cdot t_{slab} = 75 \ psf \\ w_{VAFloorTrass} := (w_{slab} + w_{floor}) \cdot t_b = 973.6 \ plf \\ w_{VAFloorTrass} := (w_{slab} + w_{floor}) \cdot t_{bExt} = 486.8 \ plf \\ w_{VAFloorTrass} := \frac{L_{VAFloorTrass} \cdot (w_{VAFloorTrass} + w_{VAFloorTrassSet/Weight)}{2} = 5.136 \ kip \\ P_{VAFloorTrass} := \frac{L_{VAFloorTrass} \cdot (w_{VAFloorTrass} \cdot (w_{VAFloorTrassSet/Weight)} = 4.807 \ kip \\ R_{1000h} := 16.032 \ kip \\ R_{1000h} := 14.807 \ kip \end{aligned}$$

Bending Moment Check:

$$\begin{split} M_u &:= M_{maxNeg} = 66.2 \ ft \cdot kip \\ DCR_b &:= \frac{M_u}{\phi_b \cdot M_p} = 0.475 \\ \text{Check for shear:} \\ V_u &:= V_{max} = 16.032 \ kip \\ DCR_v &:= \frac{V_u}{\phi_v \cdot V_n} = 0.255 \\ \text{Serviceability Check:} \\ w_{sdl} &:= 7 \ psf \\ w_{floord} &:= w_{sdl} + w_{slab} = 82 \ psf \\ w_{floord} &:= w_{sdl} + w_{slab} = 82 \ psf \\ w_{floord} &:= w_{floordl} + w_{floortl} = 182 \ psf \\ w_{floorsTDeflection} &:= w_{floordl} + 0.5 \cdot w_{floortl} = 132 \ psf \\ P_{STDeflection} &:= \frac{L_{VAFloorTruss} \cdot (w_{floorSTDeflection} \cdot t_b + w_{VAFloorTrussSelfWeight)}{2} = 3.846 \ kip \\ P_{STDeflection} &:= \frac{L_{VAFloorTruss} \cdot (w_{floorSTDeflection} \cdot t_b + w_{VAFloorTrussSelfWeight)}{2} = 1.935 \ kip \\ P_{LTDeflection} &:= \frac{L_{VAFloorTruss} \cdot (w_{floorLTDeflection} \cdot t_b + w_{VAFloorTrussSelfWeight)}{2} = 1.41 \ kip \\ \delta_{maxST} &:= 0.2881 \ in \\ \delta_{maxLT} &:= 0.2095 \ in \\ Deflection \ check: \\ \delta_a &:= \frac{25 \cdot 12 \ in}{480} = 0.625 \ in \\ \end{split}$$

Steel Pier Size:

HSS 6x6x5/8

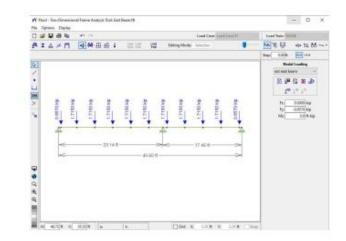
 $L_{pier} \coloneqq 9.5 \ ft \qquad L_{southFloorBeam} \coloneqq 25 \ ft \qquad L_{EWVABeam} \coloneqq 18.052 \ ft$ $w_{column13} \coloneqq 12.17 \ plf \qquad w_{12x26} \coloneqq 26 \ plf \qquad ($

$$P_{u} := R_{Isouth} + R_{Inorth} + (L_{I3} \cdot w_{columnI3}) + (w_{I2x26} \cdot \frac{L_{southFloorBeam}}{2}) + (w_{I2x26} \cdot \frac{L_{EWVABeam}}{2}) = 22.415 \ kip$$

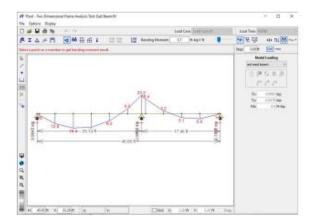
$$\phi_{c} := 0.85 \qquad K := 0.65 \qquad r_{x} := 2.17 \ in \qquad A_{g} := 11.7 \ in^{2} \qquad L_{cx} := K \cdot L = 6.013 \ ft$$

$$F_{ex} := \frac{\pi^{2} \cdot E_{s}}{\left(\frac{L_{cx}}{r_{x}}\right)^{2}} = (2.589 \cdot 10^{5}) \ psi \qquad F_{e} := F_{ex}$$

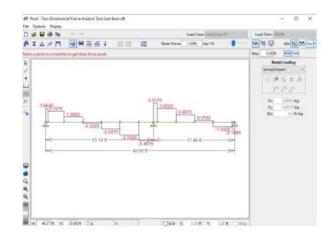
$$F_{cr} \coloneqq \text{if } \frac{F_y}{F_e} \le 2.25 \qquad = (4.612 \cdot 10^4) \text{ psi}$$
$$\left\| \begin{pmatrix} 0.658^{\left(\frac{F_y}{F_e}\right)} \end{pmatrix} \cdot F_y \\ \text{else if } \frac{F_y}{F_e} > 2.25 \\ 0.877 \cdot F_e \end{cases} \right\|$$

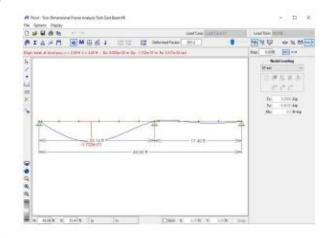

 $\phi_c P_n := 0.85 \cdot F_{cr} \cdot A_g = 458.639 \ kip$ $P_u = 22.415 \ kip$

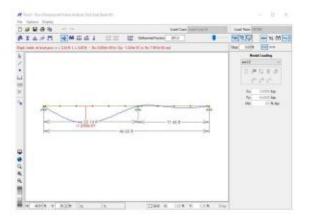
$$DCR_c \coloneqq \frac{P_u}{\phi_c P_n} = 0.049$$


Foundation Design Loads: $w_{HSS6x6} \coloneqq 42.30 \ plf$ $P_{pierFoundation} \coloneqq P_u + (w_{HSS6x6} \cdot L_{pier}) = 22.817 \text{ kip}$

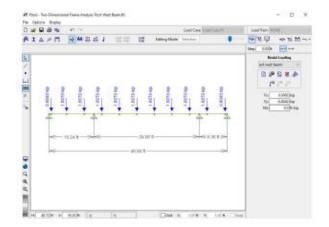
East Beam and Center Beam:


Loading:

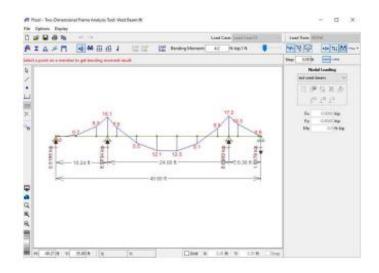

Bending Moment:


Shear:

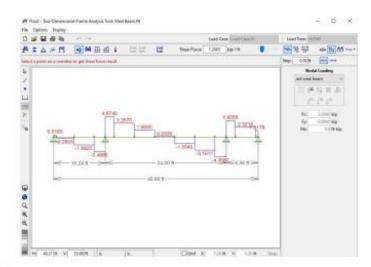
Short-Term Deflection:

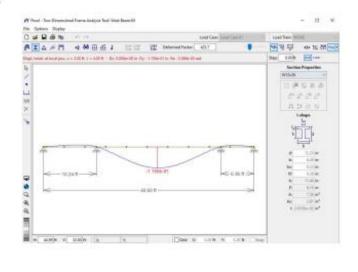


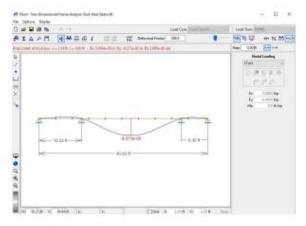
Long-Term Deflection:



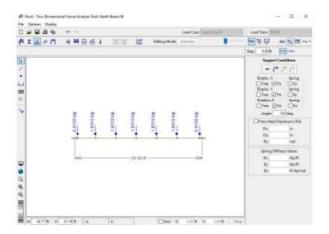
West Beam:


Loading:

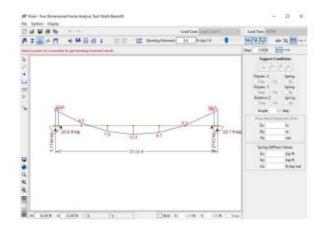

Bending moment:


Shear:

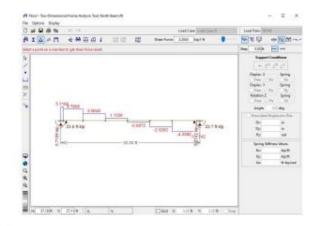
Short-Term Deflection:

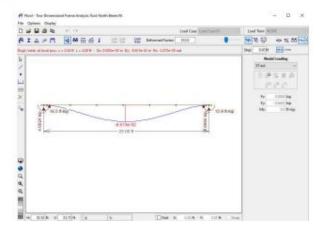


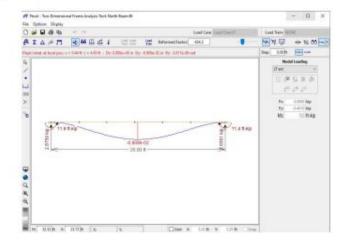
Long-Term Deflection:



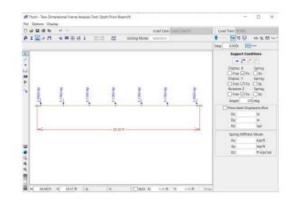
North and South Viewing Area Beams:


Loading:

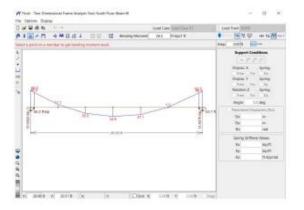



Shear:

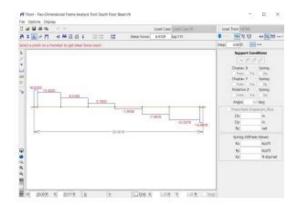
Short-Term Deflection:

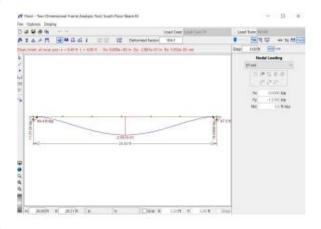


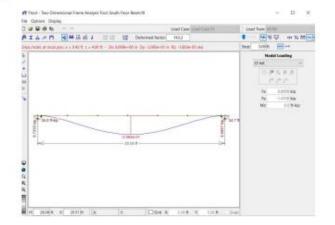
Long-Term Deflection:



South Viewing Area Floor Beam:


Loading:


Bending Moment:


Shear:

Short-Term Deflection:

Long-Term Deflection:

CEC Foundation Design

Summary:

Pier Square Foundation: B = 3', t_f = 8", t_stem = 8", D_f = 3.5' Continuous Foundation: B = 3', t_f = 8", t_stem = 8", D_f = 3.5'

Soil Data:

From Web Soil Survey:

Design for bedrock (Limestone)

Typical profile H1 - 0 to 5 inches: loam H2 - 5 to 8 inches: loam H3 - 8 to 14 inches: sitty clay loam H4 - 14 to 18 inches: bedrock

IBC:

TABLE 1906.2 PRESUMPTIVE LOAD-BEARING VALUES

CLASS OF MATERIALS	VERTICAL POUNDATION	LATERAL BEARING PRESSURE	LATERAL BLIDING RESISTANCE			
CLASS OF MATERIALS	PRESSURE (put)	(politi below natural grade)	Coefficient of friction ²	Convesion (Jsst) ²		
1. Crystaline bedrock	12.000	1,210	0.70	-		
2. Sedmentary and totated rock	4,000	400	0.05	-		
3. Sandy privel and privel (GW and GP)	3,000	200	0.05	-		
4. Band, sity sand, cayey sand, sity gravel and cayey gravel (8W, 8P, 8M, 8C, GM and GC)	2,000	180	0.20			
8. City, sandy clay, sity clay, clayey sit, sit and sandy sit (CL, ML, MH and CH)	1,500	100	-	130		

It 1 pound per request food = It IMPRIPEL 1 pound per seques front per food = It 10° KParts a. Coefficients for multiplied for the coeff load. b. Collegion value for the multiplied by the context anna, an implied by Section 1005.5.2

Bedrock data:

 $q_a := 4000 \ psf$ $q_a _b := 4000 \ plf$

Backfill data: 7backfill := 120 pcf

Pier Foundation Design: PpierFoundation == 22.817 kip

Bearing Capacity: Bearing pressure:

f = 0.35

 $B := 3 \ ft$ L := B $D_f := 3.5 \ ft$ $t_f := 8 \ in$ $w_c := 150 \ pcf$ $u_D := 0 \ psf$

 $A := B \cdot L = 9 ft^2$ $W_f := B \cdot L \cdot D_f \cdot w_c = 4.725 \ kip$

 $q := \frac{P_{pierFoundation} + W_f}{A} - u_D = 3060.222 \ psf < q_a = 4000 \ psf$

Continuous foundation footing:

 $L_{wallMax} := 17.7083 ft$ $t_{stem} := 8$ in

$$t_{slab} := 6$$
 in $b_{slabOnFooting} := \frac{t_{stem}}{2} = 4$ in

 $w_{studWall} \coloneqq \frac{2.36 \ plf \cdot L_{wallMax}}{2 \ ft} = 20.896 \ plf$

winsulation := 2.25 psf · LwallMax = 39.844 plf

wphywood := 1.2 psf · LwallMax = 21.25 plf

$$w_{siding} \coloneqq 1.5 \text{ psf} \cdot L_{wallMax} = 26.562 \text{ plf}$$

 $w_{wall} := w_{studWall} + w_{insulation} + w_{plywood} + w_{siding} = 108.552 \ \textit{plf}$

 $w_{slab} := w_c \cdot t_{slab} \cdot b_{slabOnFooting} = 25 \ plf$

$$P_b := w_{slab} + w_{wall} = 133.552 \ plf$$

$$B := 3 ft$$
 $D_f := 3.5 ft$ $t_f := 8 in$ $w_c := 150 pcf$ $u := 0 psf$

 $W_{f_{-}}b := B \cdot D_{f} \cdot w_{c} = (1.575 \cdot 10^{3}) plf$

$$q := \frac{P_{-}b + W_{f_{-}}b}{B} - u = 569.517 \ psf$$
 < $q_a = 4000 \ psf$

Building surcharge on retaining wall:

$$w_{floor} := 168.4 \ psf$$
 $w_{slab} := t_{slab} \cdot w_c = 75 \ psf$

 $q_s := w_{floor} + w_{slab} = 243.4 \text{ psf}$

Retaining Wall Design

$$w_{c} := 150 \ pcf \qquad t_{pavement} := 6 \ in \qquad H_{w} := 10 \ ft \qquad B := 0.75 \cdot H_{w} = 7.5 \ ft$$

$$\gamma_{backfill} := 120 \ pcf \qquad \phi' := 30 \ deg = 0.524 \qquad \beta := 0 \ rad \qquad \phi'_{w} := \left(\frac{2}{3}\right) \cdot \phi' = 0.349$$

$$F := 3$$

$$K_{a} := 0.2973$$

$$G_{b} := \gamma_{backfill} \cdot K_{a} \cdot \cos(\phi'_{w}) = 33.524 \ pcf$$

$$K_{p} := \left(\tan\left(\frac{\pi}{4} + \frac{\phi'}{2}\right)\right)^{2} = 3$$

$$P_{p,b} := \frac{\gamma_{backfill} \cdot H_{w}^{-2} \cdot K_{p} \cdot \cos(\beta)}{2} = (1.8 \cdot 10^{4}) \ plf$$
Excel Inputs:
$$f_{c} := 3000 \ psi \qquad \text{Type I concrete}$$

$$f_{y} := 60 \ ksi \qquad \text{Rebar yield stress}$$

$$P_{a} := G_{b} = 33.524 \ pcf$$

$$P_{p,b} := \left(1.8 \cdot 10^{4}\right) \ plf$$

$$w_{s} := 100 \ psf + w_{c} \cdot t_{pavement} = 175 \ psf$$

$$\mu_{backfill} := 0.3 \qquad \mu_{bedrock} := 0.35$$
(car parking, pavement surcharge)

Q_a:=4 ksf (From IBC for limestone bedrock)

Footing Dimensions: using 'rule of thumb' from Coduto textbook

$$t_t \coloneqq \frac{H_w}{10} = 12 \text{ in}$$
$$t_b \coloneqq \frac{H_w}{10} = 12 \text{ in}$$

 $L_T := 0.25 \cdot B = 1.875 \text{ ft}$ $L_H := B - L_T - t_t = 4.625 \text{ ft}$

$$H_T := \frac{H_w}{2} = 5 \text{ ft}$$
 $H_B := \frac{H_w}{2} = 5 \text{ ft}$ $h_f := \frac{H_w}{10} = 12 \text{ in}$

$$h_k := 0$$
 in $h_p := 24$ in

Daniel T. Li		CT :	Cultura	I Educa	ation Cer	nter		PAGE	-
Engineering International	CLIE JOB N					DATE :	11/8/2021	DESIGN BY REVIEW BY	
Retaining Wall Design I	Based on	ACI 3	18-02						
								tı	
INPUT DATA & DESI								<u> </u>	ws (psf)
CONCRETE STRENGTH	t,	-	3	ksi				111	
REBAR YIELD STRESS	fy		60	ksi					
ATER SOIL PRESSURE	P.,				uivalent flui	d pressure	e)		
PASSIVE PRESSURE	Pp			psf / ft				11	<u>ب</u> م. ±
SURCHARGE WEIGHT	w _a		411.8	psf					— As,1 [—]
FRICTION COEFFICIENT	μ		0.3						
ALLOW SOIL PRESSURE	Qa / tt		4 12	ksf					
THICKNESS OF TOP STEM THICKNESS OF KEY & STI			12	in					
TOE WIDTH	EM 00	- 21		ft				19/	— As,2
HEEL WIDTH	LH		4.625	ft					± ده_
HEIGHT OF TOP STEM	Нт			ft			. * *		/~~~
HEIGHT OF BOT, STEM	Нв		5	ft			₽Ĺ		
FOOTING THICKNESS	hr		12	in					<u> </u>
KEY DEPTH	hk		0	in			As,4	- L.	É
SOIL OVER TOE	hp	-	24	in				LT [tb]	LH
TOP STEM REINF. (A _{a,1})	1	#	6		16	in o.c., at	middle	_	•
BOT. STEM REINF. (As,2)	2	#	7	0	8	in o.c., at	each face		
TOP REINF.OF FOOTING (A _{a.3})	#	6	0	10	in			
BOT. REINF.OF FOOTING	(A _{a,4})	#	5	0	14	in	[THE WAL	L DESIGN IS ADEQ	UATE.]
$\begin{array}{l} {\sf Hb} = \ 0.5 \ {\sf Pa} \ ({\sf H} \\ {\sf Hs} = \ {\sf ws} \ {\sf Pa} \ ({\sf Hr} \\ {\sf Hp} = \ 0.5 \ {\sf Pp} \ ({\sf hr} \\ {\sf Ws} = \ {\sf ws} \ ({\sf LH} + \\ {\sf Wb} = \ [{\sf HT} \ ({\sf LH} + \\ {\sf Wb} = \ [{\sf HT} \ ({\sf LH} + \\ {\sf Wr} = \ {\sf hr} \ ({\sf LH} + \\ {\sf Ww} = \ {\sf hr} \ ({\sf LH} + \\ {\sf Ww} = \ {\sf hr} \ ({\sf LH} + \\ {\sf Ww} = \ {\sf hr} \ ({\sf LH} + \\ {\sf Ww} = \ {\sf hr} \ ({\sf LH} + \\ {\sf Ww} = \ {\sf hr} \ ({\sf LH} + \\ {\sf Ww} = \ {\sf hr} \ ({\sf LH} + \\ {\sf Ww} = \ {\sf hr} \ ({\sf LH} + \\ {\sf Ww} = \ {\sf hr} \ ({\sf LH} + \\ {\sf Hb} = \ {\sf hr} \ ({\sf LH} + \\ {\sf Hs} = \\ {\sf Ww} = \ {\sf hr} \ ({\sf LH} + \\ {\sf Hs} = \ {\sf hr} \ ({\sf H} + \\ {\sf Hs} = \ {\sf hr} \ ({\sf H} + \\ {\sf Hs} = \ {\sf hr} \ ({\sf H} + \\ {\sf Hs} = \ {\sf hr} \ ({\sf H} + \\ {\sf Hs} = \ {\sf hr} \ ({\sf H} + \\ {\sf Hs} = \ {\sf hr} \ ({\sf Hs} + \ {\sf hr} \ ({\sf hr} \ ({\sf hr} + \ {\sf hr} \ ({\sf hr} \ ({\sf hr} \ ({\sf hr} + \ {\sf hr} \ ({\sf hr} \ ({\sf$	= = = = = kips kips kips kips kips kips	2.03 1.52 81.00 4.63 1.13 0.00 0.75 0.75	kips kips kips kips kips kips kips	н	омент 	ww.i и и и и и и и и и и и и и и и и и и и	γH y 11.90		
yWk = 1.2 Wk	-	0.00			Hs	1.52	2.43	5.50 8.35	13.36
yWw,t = 1.2 W		0.90			Σ	3.55	5.67	15.79	25.26
γWw,b = 1.2 W		0.90			-				
RESISTING MOMENT									
N	N 1	W	x	W x	γW x				
Ws 1.	90 3	.05	5.19	9.88	15.81				
Wb 4.	63 5	.55	5.19	23.99	28.79		OVERTUR	NING FACTOR OF	SAFETY
	13 1	.35	3.75	4.22	5.06		ΣИ	Vx	
		.00	2.38	0.00	0.00		$SF = \frac{\Delta H}{\Sigma H}$	$\frac{1}{I_{11}} = 2.64$	
		.90	2.38	1.78	2.14		20	ly [Satisfac	ctory]
		.90	2.38	1.78	2.14				
Σ 9.	15 1	1.75		41.65	53.94				

CHECK SOIL BEARING CAPACITY (ACI 318-02 SEC.15	2 2)							
				LΣ	$W_X - \Sigma H$	v		
$L = L_T + t_b + L_H = 7.50 \text{ ft}$			<i>e</i> =	2	$\frac{Wx - \Sigma H_{j}}{\Sigma W}$		0.92 ft	
$q_{MAX} = \begin{cases} \frac{\Sigma W \left(1 + \frac{6e}{L}\right)}{BL}, & for \ e \le \frac{L}{6} \\ \frac{\Sigma W}{3B(0.5L - e)}, & for \ e > \frac{L}{6} \end{cases}$	=	2.12	ksf	۲	Q.	[Sat	isfactory]	
CHECK FLEXURE CAPACITY, A5,1 & A5,2, FOR STEM (ACI 31	18-02 SEC	.15.4.2, 10.2,	10.5.4, 7	.12.2, 12.2	, & 12.5)		
		At top sr	om		At base o	f bottom	etem	
$M_{u} = \gamma \left(\frac{P_{a}y^{3}}{6} + \frac{P_{a}y^{2}w_{s}}{2\gamma_{b}} \right)$	=	3.88				ft-kips	Stern	
$P_u = \gamma W_w$	=	0.90	kips ,		1.80	kips		
$\phi_{M_{u}} = \phi \left[A_{s} f_{y} \left(d - \frac{A_{s} f_{y} - P_{u}}{1.7 b f_{u}} \right) \right]$	=	6.57	ft-kips ,		24.72	ft-kips		
		>	Mu			>	Mu	
uboro d	_	6.00	[Satisfactory]		8.70		isfactory]	
where d	÷.	12	in, in,		12	in in		
	÷.	0.7			0.7	m		
× A	-	0.33			0.9	in ²		
		0.005			0.009			
$\rho_{MAX} = 0.75 \left(\frac{0.85\beta_1 f_c}{f_y} \frac{87}{87 + f_y} \right)^{-1}$	-	0.016	ρ		0.016	>	ρ	
t			[Satisfactory]	1		[Sat	isfactory]	
$\rho_{MN} = 0.0018 \frac{T}{d}$	-	0.004		-	0.002			
d		<	ρ			<	ρ	
			[Satisfactory]	1		[Sat	isfactory]	
CHECK SHEAR CAPACITY FOR STEM (ACI 318-02 SEC	15.5	2 11 1 3	1 & 11 3)					
		At top st			At base o	f bottom	stem	
$V = \gamma \left(\frac{P_a y^2}{2} + \frac{w_s P_a y}{\gamma_b} \right)$	=	1.77	kips ,		4.89	kips		
$V_{allowable} = 2\phi b d \sqrt{f_c}$	=	5.92	kips ,		8.58	kips		
		>	v			>	v	
			[Satisfactory]	1		[Sat	isfactory]	
where $\phi = 0.75$ (ACI 318-02, Sect	ion 9.3	3.2.3)						
CHECK HEEL FLEXURE CAPACITY, A _{5,3} , FOR FOOTIN	G (AC	I 318-02 S	EC.15.4.2, 10	0.2, 10.5.	4, 7.12.2, 1	2.2, & 12	2.5)	
$\rho_{MAX} = 0.75 \left(\frac{0.85 \beta_1 f_c}{f_y} \frac{87}{87 + f_y} \right)$	=	0.016		$ ho_{_{MIN}}$	$=\frac{0.001}{2}$	$\frac{8}{d} \frac{h_f}{d}$	= 0.00	1

$$\begin{split} M_{u,3} = \begin{cases} \frac{L_H}{2} \left(\gamma_{W_4} + \gamma_{W_5} + \frac{L_H}{L} \gamma_{W_f} \right) - \frac{(q_{u,3} + 2q_{u,kel}) b_{L_H}^2}{6}, & \text{for } e_u \leq \frac{L}{6} \\ \frac{L_H}{2} \left(\gamma_{W_4} + \gamma_{W_5} + \frac{L_H}{L} \gamma_{W_f} \right) - \frac{q_{u,2} bS^2}{6}, & \text{for } e_u > \frac{L}{6} \end{cases} \\ p = \frac{0.85 f_1^2 \left(1 - \sqrt{1 - \frac{M_{u,3}}{0.383 bd^2 f_c^2}} \right)}{f_y} = 0.005 \\ \text{where } d = 8.63 \text{ in } q_{u,1w} = 1.60 \text{ ksf} \\ e_u = 1.31 \text{ ft } q_{u,3w} = 0.97 \text{ ksf} \end{cases} \\ (A_{u,3})_{uqawd} = 0.51 \text{ in}^2/\text{ ft } < A_{u,3} = 0.97 \text{ ksf} \end{cases} \\ (A_{u,3})_{uqawd} = 0.51 \text{ in}^2/\text{ ft } < A_{u,3} = 0.97 \text{ ksf} \end{cases} \\ \mathcal{O}_{MAX} = 0.75 \left(\frac{0.85 f_1 f_c}{f_y} \frac{87}{87 + f_y} \right) = 0.016 \qquad \rho_{MN} = MIN \left(\frac{4}{3} \rho, \frac{0.0018}{2} \frac{h_f}{d} \right) = 0.001 \\ M_{u,4} = \left(\frac{q_{u,4} + 2q_{u,3w}}{6} \right) \frac{bL_c^2}{f_y} - \frac{L_f^2}{2L} \gamma_{W_f} = 2.26 \text{ ft kips} \end{aligned} \\ where d = 8.69 \text{ in } q_{u,4} = 1.19 \text{ ksf} \\ p = \frac{0.85 f_v^2 \left(1 - \sqrt{1 - \frac{M_{u,4}}{0.383 bd^2 f_c^2}} \right)}{f_y} = 0.001 \\ M_{u,4} = \frac{(q_{u,4} + 2q_{u,3w}) bL_c^2}{f_y} - \frac{L_f^2}{2L} \gamma_{W_f} = 2.26 \text{ ft kips} \end{aligned} \\ where d = 8.69 \text{ in } q_{u,4} = 1.19 \text{ ksf} \\ p = \frac{0.85 f_v^2 \left(1 - \sqrt{1 - \frac{M_{u,4}}{0.383 bd^2 f_c^2}} \right)}{f_y} = 0.001 \\ 1.5 (\text{th } \text{ th}) = 5.32 \text{ kips} < H_0 + \mu \Sigma W = 83.75 \text{ kips} \\ 1.6 (\text{the H}) = 5.32 \text{ kips} < H_0 + \mu \Sigma W = 83.75 \text{ kips} \\ 1.4 \text{ ADV Williams: "Structural Engineering Reference Manual", Professional Publications, Inc, 2001. \\ 2. \text{ Ant Williams: "Structural Engineering License Review Problems and Solution", Oxford University Press, 2003. \\ \end{array}$$

Appendix F – Civil Sheets

CULTURAL EDUCATION CENTER

MONTICELLO, IOWA

UTILITY NOTE

THE LOCATIONS OF THOSE BURIED AND ABOVE GROUND UTILITES SHOWN ARE APPROXIMATE, ARE SHOWN FOR CONTRACTOR INFORMATIONAL USE ONLY, AND ARE NOT TO BE REFERENCED OF THE OWNER AND AND AND ADDRESS AND AND ADDRESS AND

UTILITIES

Sheet List Table										
Sheet Number	Sheet Title									
C-000	COVER									
C-100	NOTES-DETAILS & LEGEND									
C-200	SITE LAYOUT									
C-201	OVERALL SITE WITH SECTION									
C-300	GRADING PLAN									
C-301	EROSION CONTROL PLAN									
C-40D	CIVIL DETAILS									

DEVELOPER/OWNER CAMP COURAGEOUS 12007 190TH ST. MONTICELLO, IOWA 52310 CHARLIE BECKER - CEO PH: 319-465-5916 (WORK) PH: XXX-XXXXX (CELL)

MAP PROVIDED BY BING

GENERAL NOTES

- ALL IMPROVEMENTS SHOWN ON THESE ENGINEERING PLANS SHALL COMPLY WITH THE CITY OF MONTRCELLD DESIGN AND SPECIFICATIONS, LATEST EDITION, AND THE STANDARDS OF THE IOWA DEPARTMENT OF NATURAL RESOURCES, LATEST EDITION.
- UNDERGROUND FACILITIES. STRUCTURES AND UTILITIES HAVE BEEN PLOTTED UNDERWOOND PACIFIES, STRUCTURES AND UTILITIES TAVE BEEN FLOTTED FROM AVAILABLE SURVEYS, RECORDS, AND PIELD INVESTIGATION. THEIR LOCATIONS MUST BE CONSIDERED APPROXIMATE ONLY. IT IS POSSIBLE THERE MAY BE OTHERS, THE EXISTENCE OF WHICH PRESENTLY NOT KNOWN ON SHOWN, IT IS THE CONTRACTOR'S RESPONSIBILITY TO DETERMINE THERE EXISTENCE AND EXACT LOCATION AND TO AVOID DAMAGE THERETO.
- ALL DEBRIS RESULTING FROM CONSTRUCTION OPERATIONS SHALL BE PROPERLY DISPOSED OF OFF-SITE UNLESS NOTED.
- THE CONTRACTOR SHALL EXERCISE PROPER CAUTION TO PROTECT THE EXISTING IMPROVEMENTS. THE CONTRACTOR SHALL BE RESPONSIBLE FOR REPAIRING ANY DAMAGE
- PORTLAND CEMENT CONCRETE. CONCRETE SHALL HAVE THE FOLLOWING PROPERTIES. COMPRESSING STRENGTH SHALL BE 4000PSI IN 14 DAYS. AIR PROPERTIES COMPRESSING STRENGT SHALL BE 4000F31 M Y LATS, AN ENTRANMENT SHALL BE ENTRENES 5 % AND B% AND SLUME SHALL BE 4 NO.ESC OR LESS ALL AS MERSURED BY THE APPROPRIATE ASTM METHODS. REINFORCING STELE SHALL BE ASTM CERTIFIED GROST TENSELS STRENGTH HANDRALS, BOLLARDS, AND OTHER APPLITENNCES SHALL BE INSTALLED PER PLAN AND MERSULARDS, AND OTHER APPLITENNCES SHALL BE INSTALLED PER PLAN AND MERSURE JURISDICTIONS DECUMENTS.

CLEANUP AND FINAL INSPECTION. WORK BROKEN OR DAMAGED BY CONTRACTOR ACTIVITY SHALL BE REPARED OR REPLACED AT THE CONTRACTOR'S EXPENSE. ALL WASTE MATERIAL, CONCRETE WASHOUT, LANDSCAPE WASTE AND BUILDING MATERIAL, SHALL BE REMOVED. SOL SHALL BE REMOVED FROM PAVED AREAS AND THE PROJECT SHALL BE LEFT IN A CLEAN AND WORKMANLER. MANNER.

GRADING NOTES

- ALL EARTHWORK OPERATIONS SHALL BE IN ACCORDANCE WITH THE GEOTECHNICAL REPORT
- ALL ELEVATIONS SHOWN ARE TO FLOWLINE FINISHED GRADE OR TOP OF PAVEMENT UNLESS OTHERWISE STATED.
- PROVIDE POSITIVE DRAINAGE AT ALL TIMES WITHIN THE CONSTRUCTION AREAS. DO NOT ALLOW WATER TO POND ON PROPERTY.
- PRIOR TO PLACEMENT OF ANY FILL, THE STRIPPED SITE SHALL BE SCARIFIED TO A DEPTH OF 9 INCHES AND RE-COMPACTED TO 69% DENSITY. ANY UNSUITABLE SOLS FOUND AT THIS TIME SHALL BE DRIED AND RECOMPACTED OR REMOVED ID REQUIRED COMPACTION CANNOT BE OBTAINED. CUT AREAS SHALL ALSO BE SCARIFIED TO A DEPTH OF 9 INCHES AND RE-COMPACTED TO 95% DENSITY
- ALL FILL MATERIAL SHALL CONSIST OF APPROVED, SUITABLE SOILS PLACED IN LOOSE UFTS OF WOHES OR LESS AND COMPACTED TO AT LEAST DRVG OF THE MATERIAL'S MAXIMUM STANADARS PROCTOR OR YO ENSITY (ASTM DAGIN ALL PAVEMENT, BUILDING ADDITION AND ATHLETC FIELD AREAS. THE COMPACTION WILL BE FIELD TESTED BY A SOLS BEINGREFRING CONSULTAINT REPRESENTING WILL BE FIELD TESTED BY A SOLS BEINGREFRING CONSULTAINT REPRESENTING THE OWNER
- PROJECT WILL BE COVERED BY A GENERAL PERMIT REGULATING RUNOFF FROM CONSTRUCTION SITES. IT IS THE CONTRACTOR'S RESPONSIBILITY TO PERFORM THE REQUIRED MONITORING, INSPECTION AND MAINTENANCE AS REQUIRED BY THE PERMIT.
- ALL DISTURBED EMBANKMENTS GREATER THAN 3:1 SLOPES SHALL BE SEEDED ACCORDING TO A RECOMMENDED SEEDING MIX BY THE LANDSCAPER AND ACCORDING TO A RECOMMENDED SEEDING MIX BY THE LANDSCAPER AND COVERED WITH EROSION CONTROL BLANKETS OR AS DIRECTED BY PLAN
- CONTRACTOR SHALL ADHERE TO THE CITY OF MONTICELLO EROSION AND SEDIMENT CONTROL REGULATIONS AND THE STATE OF IOWA CONSTRUCTION SITE EROSION CONTROL MANUAL
- ALL AREAS TO BE GREENSPACE AT PROJECT COMPLETION SHALL BE LEFT WITH 9 INCHES OF TOPSOIL WHEN MASS GRADING ACTIVITIES ARE COMPLETE.

EROSION CONTROL NOTES EROSION CONTROL SHALL BE INSTALLED PRIOR TO ANY GRADING OPERATIONS WHERE POSSIBLE.

CONSTRUCTION ENTRANCE SHALL BE MAINTAINED TO PREVENT OFF-SITE TRACKING OF SEDIMENT ONTO PUBLIC ROADMAYS. ANY SEDIMENT DEPOSITED ON PUBLIC ROADS SHALL BE REMOVED BY SHOVELING OR STREET CLEANING BEFORE THE END OF EACH WORKING DAY.

- SHOWN LOCATION OF SILTATION CONTROL IS APPROXIMATE. ACTUAL LOCATIONS TO BE DETERMINED IN THE FIELD AT THE TIME OF CONSTRUCTION. WATER PUMPED DURING CONSTRUCTION OPERATIONS SHALL BE FILTERED.
- ONCE CONSTRUCTION HAS BEEN COMPLETED, OR TEMPORARILY SUSPENDED

4.

6.

8.

٥.

10.

12

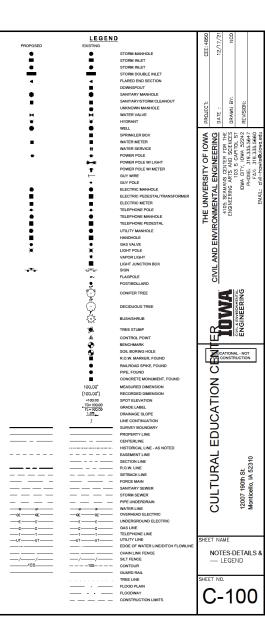
13.

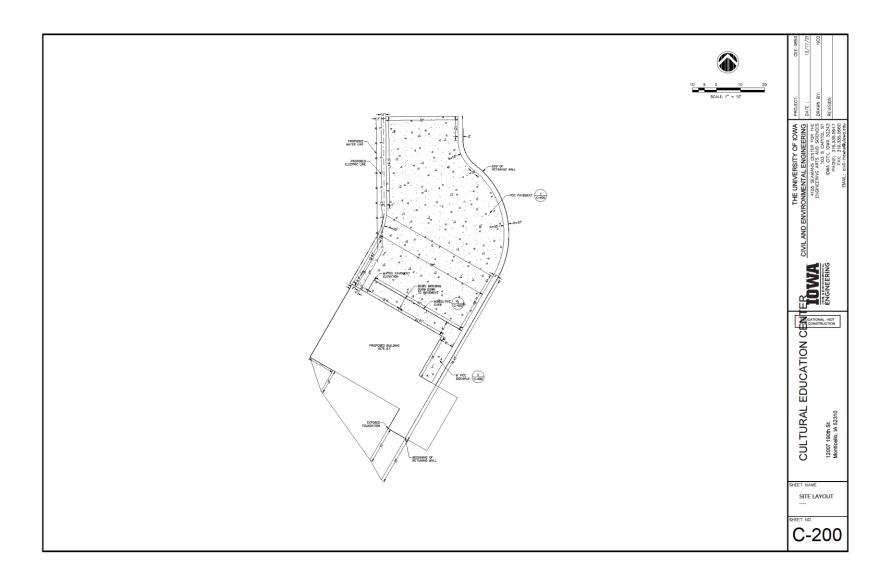
CONTRACTOR SHALL ADHERE TO THE IOWA CONSTRUCTION SITE EROSION CONTROL MANUAL

ALL EROSION CONTROL MEASURES MUST BE INSTALLED (WHERE POSSIBLE) PRICE TO THE COMMENCEMENT OF ANY EARTH DISTURBING OPERATIONS. THE REMAINING REGISION CONTROL MEASURES SHALL BE ENTATLED DA SOOK AS REASONARY POSSIEL AFTER INDURYS OPERATIONS BEGIN DURISSION OTCOSES AND SMALL THEOROGY SOUTHINGT THAYS SHALL BE UTILEZE UNIT. SLIT FENCE ON OTHER MEASURES MAY BE INSTALLED AND VEGETATION ESTALEMEND.

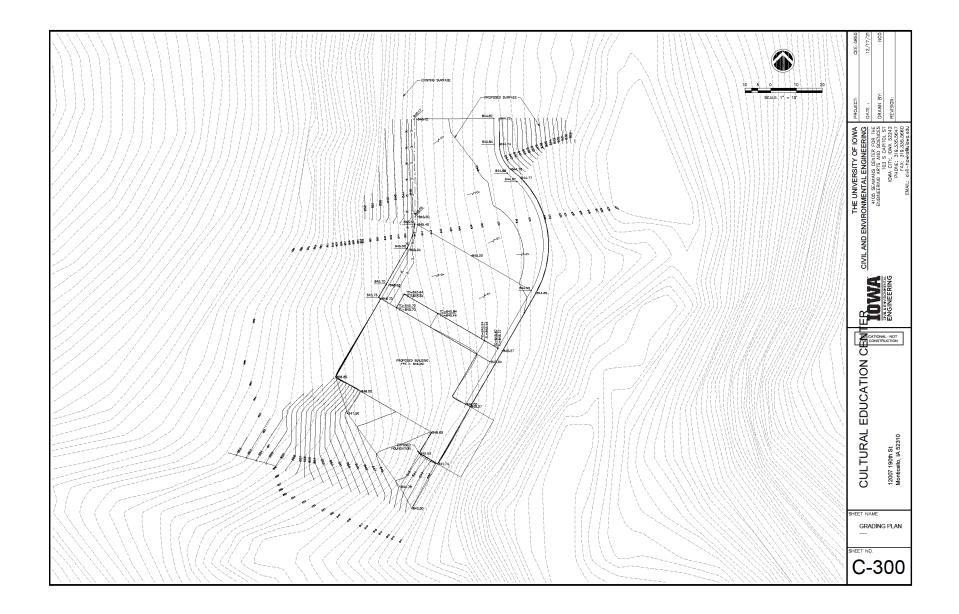
- EROSION CONTROL MEASURES SHALL BE INSPECTED WEEKLY AND AFTER EACH PRECIPITATION EVENT AND REPLACED OR REPAIRED AS NECESSARY.
- SILT FENCE AND SEDIMENT BASIN SHALL BE CLEANED OR REPLACED WHEN SILT BUILDS UP TO WITHIN ONE FOOT OF THE TOP OF THE SILT FENCE.
- PROJECT WILL BE COVERED BY A GENERAL PERMIT REGULATING RUNOFF FROM CONSTRUCTION SITES. IT IS THE CONTRACTOR'S RESPONSIBILITY TO PERFORM THE REQUIRED MONTORING, INSPECTION AND MAINTENANCE AS REQUIRED BY THE PERMIT.
- CONCRETE WASHOUT DEBRIS SHOULD BE HAULED OFF-SITE. WASHOUT SHOULD BE FILLED IN AND SEEDED.
- ALL AREAS DISTURBED BEYOND LIMITS SHOWN SHOULD BE SEEDED WITH ADJACENT SEED MIXTURE OR IN-KIND.
- THERE ARE NO EXPECTED DOWNSTREAM IMPACTS OTHER THAN THOSE ALLOWED PER ORDINANCE (2 YEAR, PRE-DEVELOPED RATE OF RELEASE)

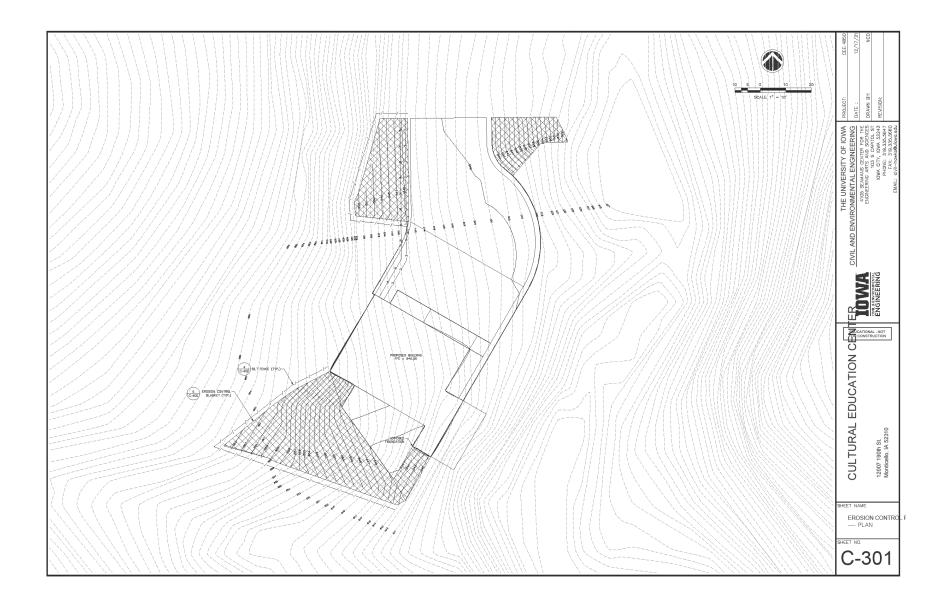
UTILITY NOTES

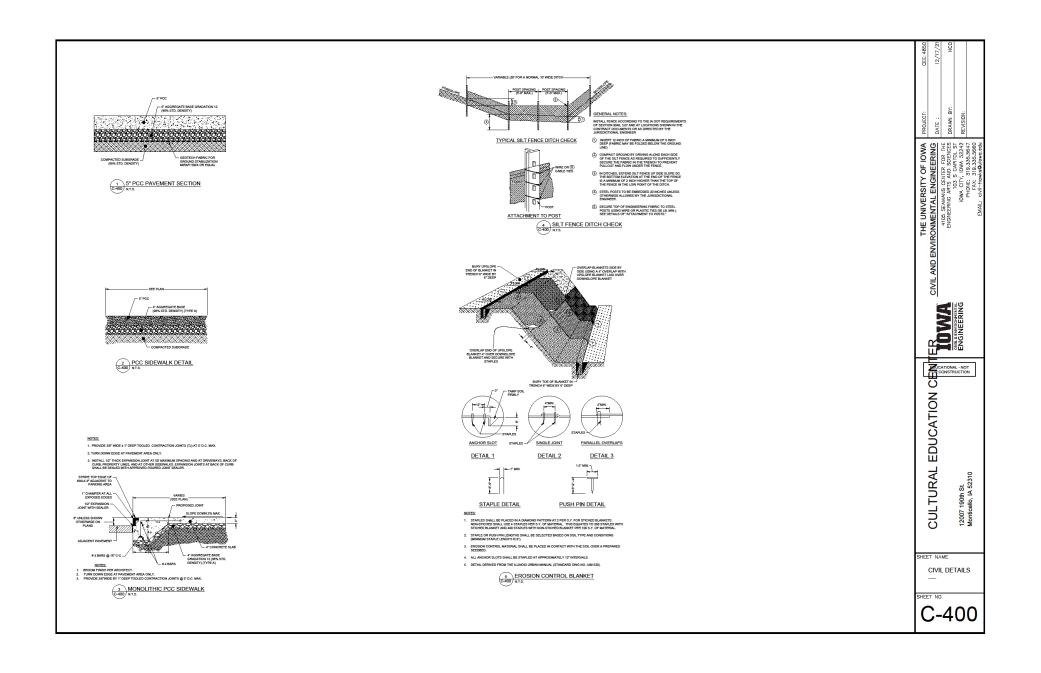

- IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO PROTECT ALL EXISTING UTLITIES AND PANED STREETS, INCLUMNS ANY NOT SHOWN ON PROFEND CONSTRUCTION AND NOTIFY THE ENGNEET RE AVOID CONTROL TO TRIGET DO CONSTRUCTION AND NOTIFY THE ENGNEET RE AVOID CONTROL TO THE DRAWINGS COCUR. ANY DAMAGE TO EXISTING UTLITES AND/OR PAVED STREETS CLUBED BY TERNICHING AND GRADING OPERATIONS SHALL BE REPARED AT THE CONTRACTOR'S EXPENSE EXISTING UTLITY LOCATIONS SHOWN ON THE DOWNINGS ARE APPROVED.
- ALL EXISTING UNDERGROUND UTLITIES SHOWN WERE LOCATED PARTIALLY IN THE FIELD AND PARTUALLY FROM REVIEW OF EXISTING PUBLIC RECORDS. IT IS THE RESPONSIBILTY OF THE CONTRACTOR TO CONTACT EACH UTLITY COMPANY FOR THE FIELD LOCATION OF THEIR EXISTING LINES IN OR NEARBY THE CONSTRUCTION AREA PRIOR TO BEGINNING ANY CONSTRUCTION.
- THE CONTRACTOR SHALL EXERCISE PROPER CAUTION TO PROTECT THE EXISTING IMPROVEMENTS. THE CONTRACTOR SHALL BE RESPONSIBLE FOR EXISTING IMPROVEMENTS REPAIRING ANY DAMAGE.
- 4. THE LOCATIONS OF THOSE BURIED AND ABOVE GROUND UTILITIES SHOWN ARE THE LOCATIONS OF THOSE BURED AND ABOVE GROUND UTLITES BIOWNA ARE APPROXIMEL, RES SHOWN FOR CONTRUCTION BIOMANDIAL, USE ONLY, AND APPROXIMEL, RES SHOWN FOR CONTRUCTION BIOMANDIAL, USE ONLY, AND APPROXIMEL, RES SHOWN FOR CONTRUCTION END AND ALL CONTRUCTION THE RESIDENCE ON A RESIDENCE OF UTLITES IS NOT TO BE CONSTITUED BY THE WORKER INVOLVED, CONTRUCTION END AND ALL CONTRUCTION DESCRIPTION AND AND ADDRESS AND ALL CONTRUCTION END AND ALL CONTRUCTION, END ADDRESS AND ALL CONTRUCTION DESCRIPTION AND AND AND ADDRESS AND ALL CONTRUCTION, END ADDRESS AND ALL CONTRUCTION, END ADDRESS AND ALL CONTRUCTION, AND ALL CONTRUCTION, DESCRIPTION AND AND AND ADDRESS AND ALL CONTRUCTION, END ADDRESS AND ALL CONTRUCTION, ASSOCIATED WITH BURED AND ADDRESS AND ALL CONTRUCTIONS OF MADATION ASSOCIATED WITH BURED AND ADDRESS AND ALL CONTRUCTIONS AND ALL CONTRUCTIONS ASSOCIATED WITH BURED AND ADDRESS AND ALL CONTRUCTIONS AND ALL CONTRUCTIONS ASSOCIATED WITH BURED AND ADDRESS AND ALL CONTRUCTIONS AND ALL CONTRUCTIONS ASSOCIATED WITH BURED AND ADDRESS AND ALL CONTRUCTIONS AND ALL CONTRUCTIONS ASSOCIATED WITH BURED AND ADDRESS AND ALL CONTRUCTIONS AND ALL CONTRUCTIONS ASSOCIATED WITH BURED AND ADDRESS AND ALL CONTRUCTIONS AND ALL CONTRUCTIONS ASSOCIATED WITH BURED AND ADDRESS AND ALL CONTRUCTIONS AND ALL CONTRUCTIONS ASSOCIATED WITH BURED AND ADDRESS AND ALL CONTRUCTIONS AND ALL CONTRUCTIONS ASSOCIATED WITH BURED AND ADDRESS AND ALL CONTRUCTIONS AND ALL CONTRUCTIONS ASSOCIATED WITH BURED AND ADDRESS AND ALL CONTRUCTIONS AND ALL CONTRUCTIONS ASSOCIATED WITH BURED AND ADDRESS AND ALL CONTRUCTIONS AND ALL CONTRUCTIONS ASSOCIATED WITH BURED AND ALL CONTRUCTIONS AND ALL CONTRUCTIONS AND ALL CONTRUCTIONS ASSOCIATED WITH BURED AND ALL CONTRUCTIONS AND ALL CON
- 5. WATER MAIN SHALL BE CONSTRUCTED IN ACCORDANCE WITH LOCAL WATER COMPANY STANDARD SPECIFICATIONS FOR WATER MAIN CONSTRUCTION. 6. ALL WATER MAIN SHALL HAVE A MINIMUM COVER OF 5 FEET.
- 7. MAINTAIN 18 INCHES VERTICAL SEPARATION (OUTER EDGE TO OUTER EDGE) BETWEEN WATER MAIN AND SEWER.
- 8. NITRILE GASKETS SHALL BE USED WHERE WATER MAIN CROSSES BELOW STORM SEWER.
- UTTO THEME ALL LIVES GUIL BE FEDERATIONE TO INCOMMANCE UNTIT HE UNFER MARKALLIVES TRECOMMENDIATION FOR THE ADDRESS THE ADDRESS INCLUDING BACKFEL MATTERAL AND MATTERAL DEPTIC, THE MATTERAL SMALL BE AS SPECTED ON THE FLANK ALL MATTERAL DEPTIC, THE MATTERAL SMALL BE AS SPECTED ON THE FLANK ALL MATTERAL DEPTIC, THE MATTERAL SMALL REST DEPENDENT OF THE LOCAL JURGECTION FOR STREAMS. MALL MEET AND ECONOMIC TREAMS TO THE LOCAL JURGECTION FOR STREAMS. THE REST DEPENDENT OF THE LOCAL JURGECTION FOR STREAMS. THE ADDRESS AND APPLICATIONAL SMALL BE ADJRESS TO OWNER OF THE FLANK AND APPLICATIONAL SMALL BE ADJRESS TO OWNER OF THE ADJRESS AND APPLICATIONALES SMALL BE ADJRESS TO OWNER OF THE ADJRESS AND APPLICATIONAL SMALL BE ADJRESS TO OWNER OF THE ADJRESS AND APPLICATIONAL SMALL DEFINITION OF THE OWNER AND ADJRESS AND APPLICATIONAL SMALL BE ADJRESS TO OWNER OF THE ADJRESS AND APPLICATIONAL SMALL BE ADJRESS TO OWNER OF THE ADJRESS AND APPLICATIONAL SMALL BE ADJRESS TO OWNER OF THE ADJRESS AND APPLICATIONAL SMALL BE ADJRESS TO OWNER OF THE ADJRESS AND APPLICATIONAL SMALL BE ADJRESS AND APPLICATIONAL SMALL BE ADJRESS AND APPLICATIONAL SMALL BE ADJRESS AND APPLICATIONAL ADJRESS AND APPLICATIONAL SMALL BE ADJRESS AND APPLICATIONAL SMALL AND ADJRESS AND APPLICATIONAL SMALL AND ADJRESS AND APPLICATIONAL SMALL AND ADJRESS AND APPLICATIONAL SMALL ADJRESS AND APPLICATIONAL SMALL ADJRESS AND APPLICATIONAL SMALL ADJRESS AND APPLICATIONAL ADJRESS AND ADJRESS AND APPLICATIONAL ADJRESS AND ADJRESS AND



ണ


Know what's below. Call before you dig.



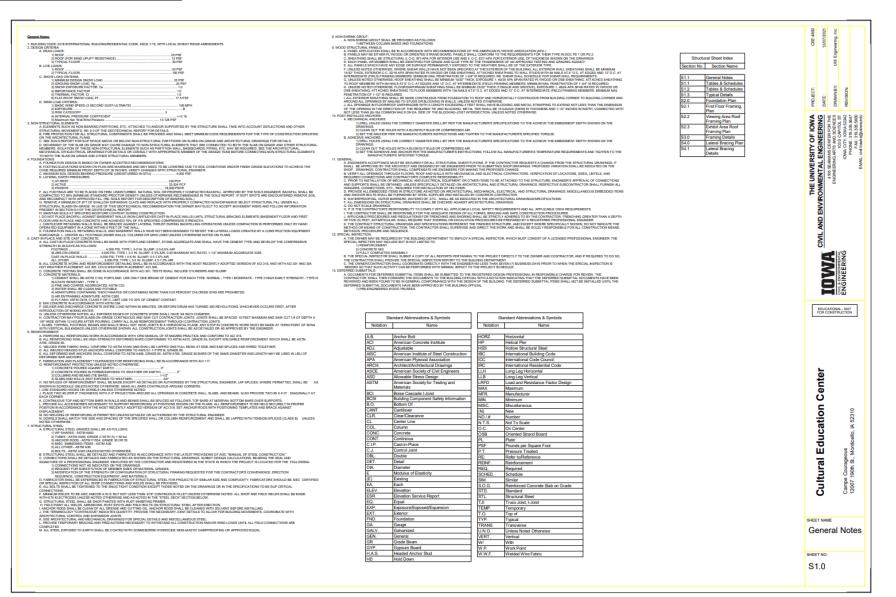


Appendix G – SUDAS Design Manual

Subgrade CBR	Surface Material	On 12" of Prep	ared Subgrade	On 12" of Prepared Subgrade with 4" Granular Subbase				
CBK	Material	Minimum	Desirable	Minimum	Desirable			
0	Rigid	5"	6"	4"	5"			
9	Flexible	5"	6"	4"	5"			
6	Rigid	5"	6"	4"	5"			
0	Flexible	5"	6"	4"	5"			
2	Rigid	5"	6"	4"	5"			
3	Flexible	6"	6"	5"	5"			

Table 8B-1.03: Pavement Thickness for Light Loads (Parking lots with 200 or less cars/day and/or 2 or less trucks/day or equivalent axle loads)

E. Drainage

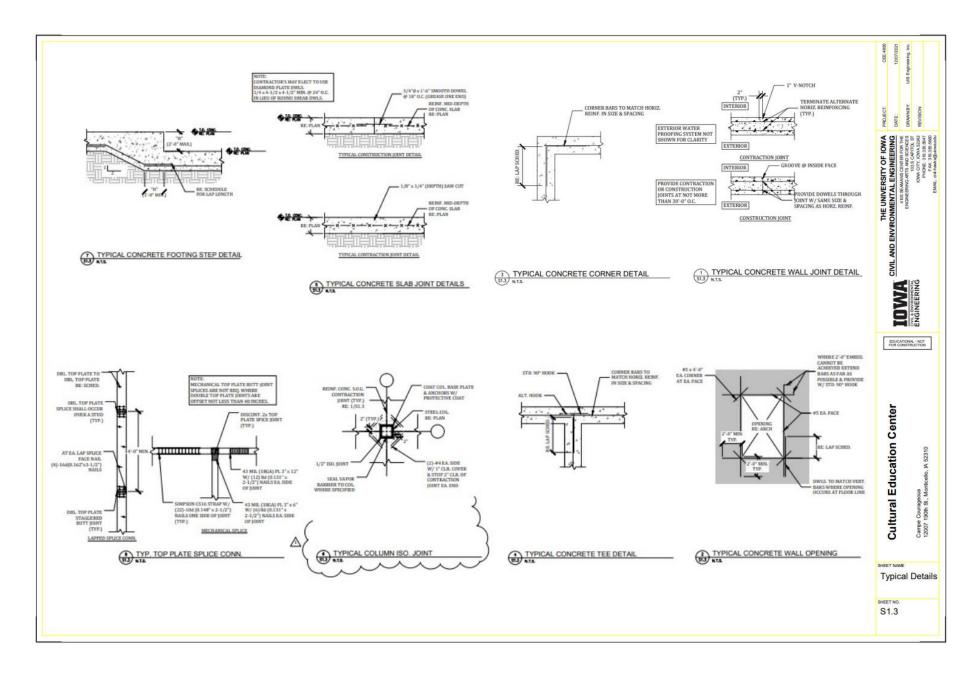

Internal parking lot drainage should be designed according to Chapter 2 - Stormwater.

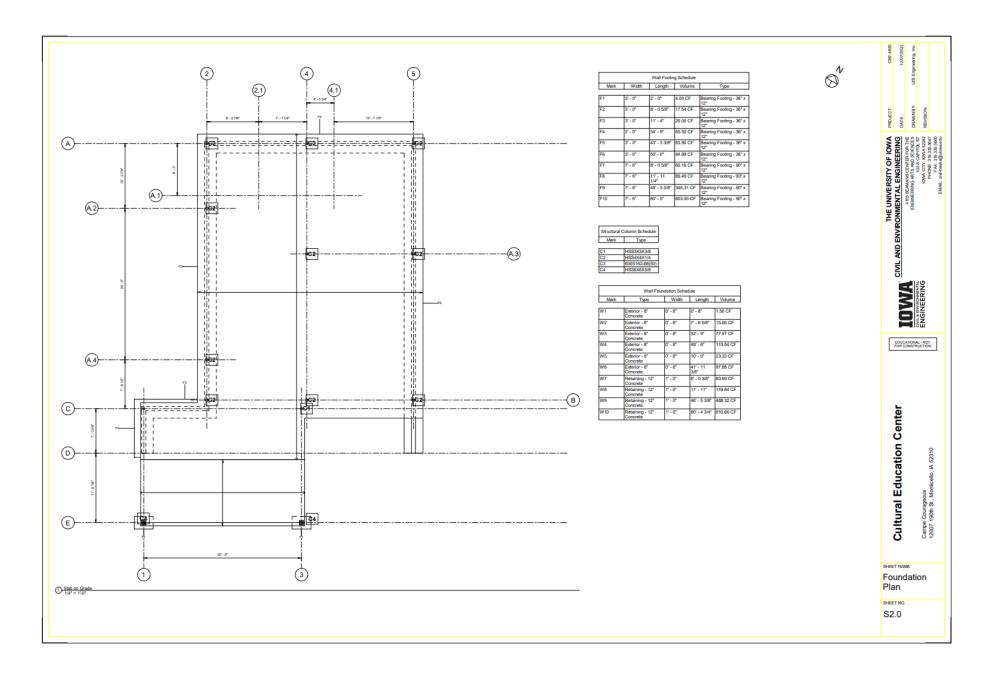
Stormwater runoff from parking lots serving other than single and two family dwellings should not be discharged directly into the street; such runoff should be collected internally or discharged to an adjacent drainage way. After providing detention, when required, the collected stormwater may be discharged to the public storm sewer, ditch, or other conveyance. Stormwater runoff discharged to the street over the back of the curb or through a parking lot entrance, should be minimized. Check with the local jurisdiction for their stormwater requirements.

Where narrow (less than 10 feet wide) raised islands are provided, their presence should generally be disregarded when determining the runoff coefficient or curve number for the parking lot as they provide little benefit in reducing runoff. Wider islands, or islands that are depressed to collect stormwater runoff, are encouraged and may be taken into consideration when determining the runoff potential.

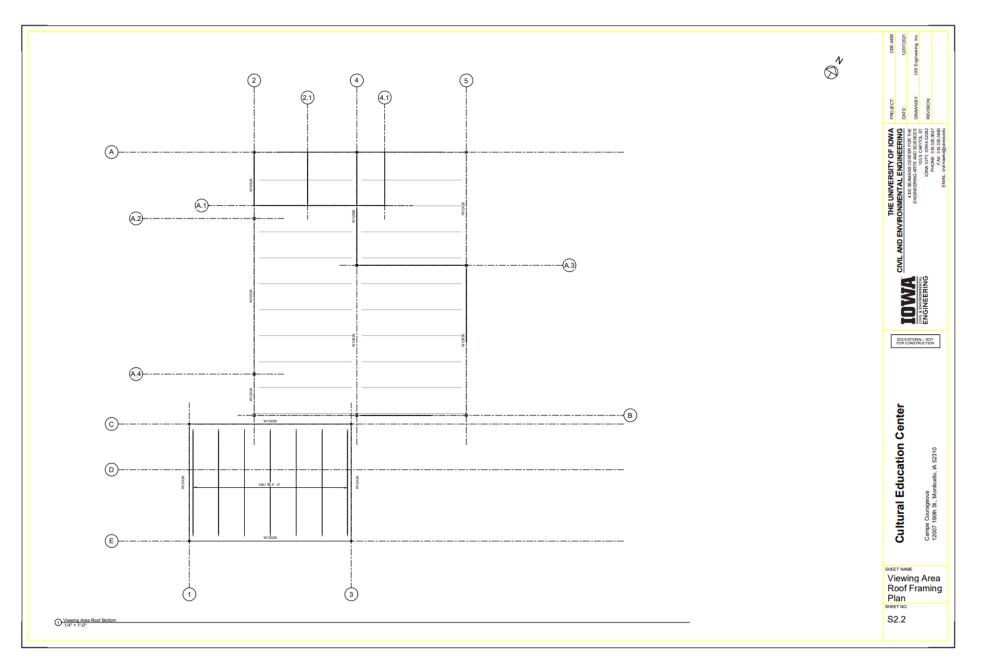
Pavement slopes of 1.5% should be provided to ensure proper drainage and eliminate standing water and icy conditions. Minimum pavement slopes of 0.6% may be used, however since the potential for flat areas is greater, additional measures to address drainage, such as slotted drains or pervious pavement, may be necessary. Slopes greater than 2% in areas between the parking lot destination and the accessible parking stalls should be avoided as they create a situation where constructing an accessible route is difficult. Slopes greater than 5% are discouraged.

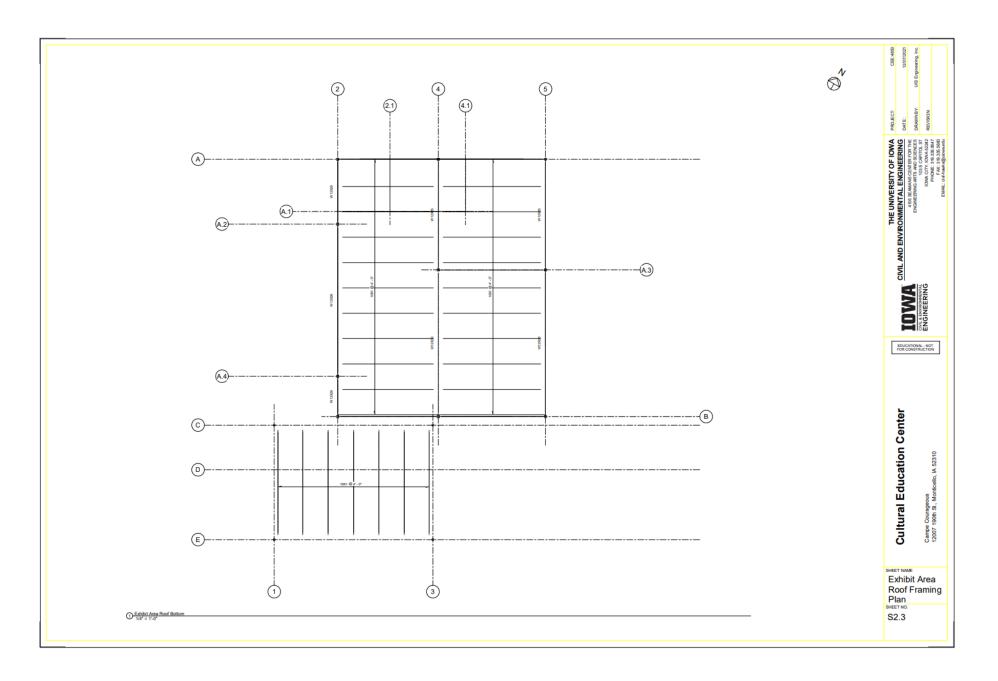
Appendix H – Structural Sheets

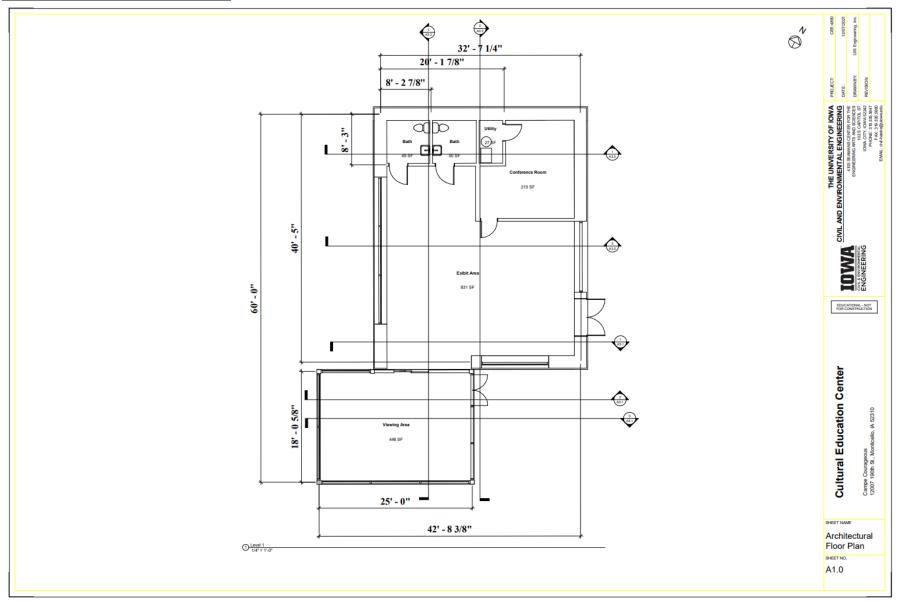

	ENING SCHEDULE ¹			
DESCRIPTION OF BUILDING ELEMENTS	E - 2304.10.1/IRC TABLE - R602.3(1)) NUMBER AND TYPE OF FASTENER	SPACING AND		
	ROOF ²			
1. BLOCKING BETWEEN CEILING JOISTS, RAFTERS OR TRUSSES TO TOP PLATE OR OTHER FRAMING BELOW	3 - 8d COMMON (0.131" x 2-1/2"); OR 3 - 10d BOX (0.128" x 3"); OR 3 - (0.131" x 3") NAILS; OR 3 - (14 GA. x 3") STAPLES; <u>35</u> " CROWN	EACH END, TOENAIL		
BLOCKING BETWEEN RAFTERS OR TRUSS NOT AT THE WALL TOP PLATE,	2 - 8d COMMON (0.131" x 2-1/2") 2- (0.131" x 3") NAILS 2 - (14 GA. x 3") STAPLES	EACH END, TOENAIL		
TO RAFTER OR TRUSS	2 - 16d COMMON (0.162" x 3-1/2") 3- (0.131" x 3") NAILS 3 - (14 GA. x 3") STAPLES	END NAIL		
FLAT BLOCKING TO TRUSS AND WEB FILLER	16d COMMON (0.162" x 3-1/2") @ 6" 0.C. (0.131" x 3") NAILS @ 6" 0.C. (14 GA. x 3") STAPLES @ 6" 0.C.	FACE NAIL		
2. CEILING JOISTS TO TOP PLATE	3 - 8d COMMON (0.131* x 2-1/2*); OR 3 - 10d BOX(0.128* x 3"); OR 3 - (0.131* x 3") NAILS; OR 3 - (14 GA. x 3") STAPLES, $\frac{2}{15}$ * CROWN	EACH JOIST, TOENAL		
3. CEILING JOIST NOT ATTACHED TO PARALLEL RAFTER, LAPS OVER PARTITIONS (NO THRUST)	3 - 16d COMMON (0.162" x 3-1/2"); OR 4 - 10d BOX (0.128" x 3"); OR 4 - (0.131" x 3") NAILS; OR 4 - (14 GA. x 3") STAPLES; ² / ₄₅ " CROWN	FACE NAIL		
4. CEILING JOIST ATTACHED TO PARALLEL RAFTER (HEEL JOINT)	PER TABLE 2308.7.3.1 OR R802.5.2	FACE NAIL		
5. COLLAR TIE TO RAFTER	3 - 10d COMMON (0.148" x 3"); OR 4 - 10d BOX (0.128" x 3"); OR 4 - (0.131" x 3") NAILS; OR 4 - (14 GA. x 3") STAPLES; 5% CROWN	FACE NAIL		
6. RAFTER OR ROOF TRUSS TO TOP PLATE	3 - 10d COMMON (0.148" x 3"); OR 3 - 16d BOX(0.135" x 3-1/2"); OR 4 - 10d BOX (0.128" x 3"); OR 4 - (0.131" x 3") NAILS; OR 4 - (14 GA. x 3") STAPLES, $\frac{1}{24}$ " CROWN	TOENAIL		
7. ROOF RAFTERS TO RIDGE VALLEY OR	2 - 16d COMMON (0.162" x 3-1/2"); OR 3 - 10d BOX (0.128" x 3"); OR 3 - (0.131" x 3") NAILS; OR 3 - (14 GA. x 3") STAPLES; ¹ / ₂ " CROWN	END NAIL		
HIP RAFTERS; OR ROOF RAFTER TO 2-INCH RIDGE BEAM	3 - 10d COMMON (0.148" x 3"); OR 4 - 16d BOX(0.135" x 3-1/2"); OR 4 - 10d BOX (0.128" x 3"); OR 4 - (0.131" x 3") NAILS; OR 4 - (14 GA. x 3") STAPLES, $\frac{7}{16}$ " CROWN	TOENAIL.		
	WALL			
	16d COMMON (0.162" x 3-1/2")	24" O.C. FACE NAIL		
8. STUD TO STUD (NOT AT BRACED WALL PANELS)	10d BOX (0.128" x 3"); OR (0.131" x 3") NAILS; OR 3 - (14 GA. x 3") STAPLES, ² / ₁₆ CROWN	16* O.C. FACE NAIL		
9. STUD TO STUD AND ABUTTING STUDS	16d COMMON (0.162" x 3-1/2"); OR	16* O.C. FACE NAIL		
AT INTERSECTING WALL CORNERS (AT BRACED WALL PANELS)	16d BOX (0.135" x 3-1/2"); OR	12* O.C. FACE NAIL		
	(0.131" x 3") NAILS; OR 3 - (14 GA. x 3") STAPLES, ² / ₁₅ " CROWN	12" O.C. FACE NAIL		
10. BUILT-UP HEADER (2" TO 2"	16d COMMON (0.162" x 3-1/2"); OR	16° O.C. EA. EDGE, FACE NAIL		
HEADER)	16d BOX (0.135" x 3-1/2"); OR	12" O.C. EA. EDGE, FACE NAIL		
11. CONTINUOUS HEADER TO STUD	4 - 8d COMMON (0.131" x 2-1/2"); OR 4 - 10d BOX(0.128" x 3"); OR	TOENAIL		
	16d COMMON (0.162" x 3-1/2"); OR 10d BOX (0.128" x 3"); OR	16° O.C. FACE NAIL		
12. TOP PLATE TO TOP PLATE	10d BOX (0.128" x 3"); OR (0.131" x 3") NAILS; OR (14 GA. x 3") STAPLES, 📅 CROWN	12" O.C. FACE NAIL		
13. TOP PLATE TO TOP PLATE, AT END JOINTS	8 - 16d COMMON (0.162" x 3-1/2"); OR 12 - 10d BOX (0.128" x 3"); OR 12 - (0.131" x 3") NAILS; OR 12 - (14 GA. x 3") STAPLES; $\frac{1}{10}$ " CROWN	EA. SIDE OF END JOINT, FACE NAIL (MIN. 24* LAP SPLICI LENGTH EA. SIDE OF END JOINT		
14. BOTTOM PLATE TO JOIST, RIM JOIST, BAND JOIST OR BLOCKING (NOT AT	16d COMMON (0.162" x 3-1/2"); OR	16" O.C. FACE NAIL		
BAND JOIST OR BLOCKING (NOT AT BRACED WALL PANELS)	16d BOX (0.135" x 3-1/2"); OR (0.131" x 3") NAILS; OR (14 GA. x 3") STAPLES, 7 CROWN	12" O.C. FACE NAIL		

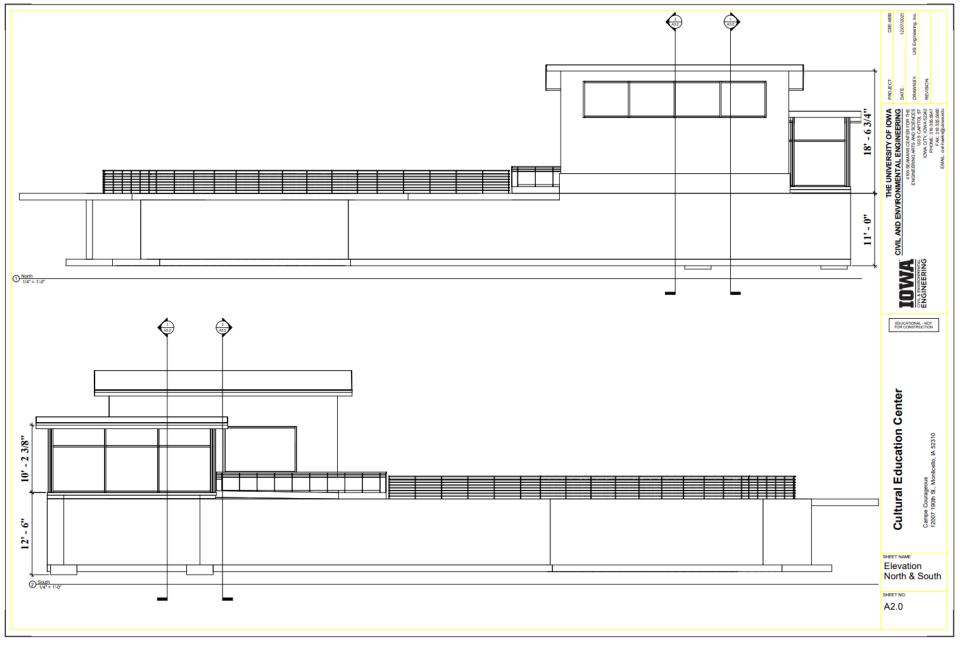

2 - 16d COMMON (0.162" x 3-1/2"); OR 3 - 16d BOX (0.135" x 3-1/2"); OR 4 - (0.131" x 3") NAILS; OR 4 - (14 GA. x 3") STAPLES, ² / ₁₆ CROWN	16" O.C. FACE NAIL		
4 - 8d COMMON (0.131" x 2-1/2"); OR 4 - 10d BOX (0.128" x 3"); OR 4 - (0.131" x 3") NAILS; OR	TOENAIL		
2 - 16d COMMON (0.162" x 3-1/2"); OR 3 - 10d BOX (0.128" x 3"); OR 3 - (0.131" x 3") NAILS; OR	END NAIL		
2 - 16d COMMON (0.162" x 3-1/2"); OR 3 - 10d BOX (0.128" x 3"); OR 3 - (0.131" x 3") NAILS; OR	FACE NAIL		
2 - 8d COMMON (0.131" x 2-1/2"); OR 2 - 10d BOX (0.128" x 3"); OR 2 - (0.131" x 3") NAILS; OR 2 - (14 GA. x 3") STAPLES, ¹ / ₁₅ CROWN	FACE NAIL		
2 - 8d COMMON (0.131" x 2-1/2"); OR	FACE NAIL		
3 - 8d COMMON (0.131" x 2-1/2"); OR	FACE NAIL		
3 - 10d BOX (0.128* x 3*)	rase ante		
FLOOR ²			
3 - 8d COMMON (0.131" x 2-1/2"); OR 3 - 10d BOX (0.126" x 3"); OR 3 - (0.131" x 3") NAILS; OR 3 - (14 GA. x 3") STAPLES, ⁴ / ₂ " CROWN	TOENAIL		
Bd COMMON (0.131" x 2-1/2"): OR 10d BOX (0.128" x 3"): OR (0.131" x 3") NAILS: OR (14 GA. x 3") STAPLES, ¹ / ₁₀ " CROWN	6" O.C. TOENAIL		
2 - 8d COMMON (0.131" x 2-1/2"); OR 2 - 10d BOX (0.128" x 3")	FACE NAIL		
2 - 16d GOMMON (0.162° x 3-1/2°); OR	FACE NAIL		
2 - 16d COMMON (0.162" x 3-1/2"); OR	EACH BEARING, FACE		
20d COMMON (0.192* x 4")	32° O.C., FACE NAIL AT TOP AND BOTTOM STAGGERED ON OPPOSITE SIDES		
10d BOX (0.128" x 3"); OR (0.131" x 3") NAILS; OR (14 GA. x 3") STAPLES, 72" CROWN	24" O.C., FACE NAIL AT TOP AND BOTTOM STAGGERED ON OPPOSITE SIDES		
2-20d COMMON (0.192" x 4"); OR 3-10d BOX (0.128" x 3"); OR 3-(0.131" x 3") NAILS; OR	ENDS AND AT EA. SPLICE, FACE NAIL		
3 - 16d COMMON (0.162" x 3-1/2"); OR 4 - 10d BOX (0.128" x 3"); OR 4 - (0.131" x 3") NAILS; OR 4 - (14 GA.x 3") STAPLES; 76" CROWN	EA. JOIST OR RAFTER FACE NAIL		
3 - 16d COMMON (0.162" x 3-1/2"); OR 4 - 10d BOX (0.128" x 3"); OR 4 - (0.131" x 3") NAILS; OR 4 - (14 GA. x 3") STAPLES, ² / ₁₀ " CROWN	END NAIL		
2 - 10d BOX (0.128" x 3"); OR 2 - (0.131" x 3") NAILS; OR 2 - (14 GA. x 3") STAPLES, ² / ₁₆ " CROWN	EACH END, TOENAIL		
L SHEATHING TO FRA	MING ³		
Bd COMMON OR DEFORMED (0.131*x2-1/2*)	6" O.C. EDGE 12" O.C. FIELD		
Bd COMMON (0.131"x2-1/2")	6" O.C. EDGE 12" O.C. FIELD		
SIDING TO FRAMING	pe ou riceo		
6d CORROSION-RESISTANT SIDING (0.106"x1-7/8") NAILS; OR 6d CORROSION-RESISTANT CASING	6" O.C. EDGE 12" O.C. FIELD		
(0.1997 x2) NAILS 8d CORROSION-RESISTANT SIDING (0.128°x2-3/8") NAILS; OR 8d CORROSION-RESISTANT CASING	6" 0.C. EDGE 12" 0.C. FIELD		
	4 - (0.131" x.3") NALE, OR 4 - (16 CA. 3") STAPLES, <u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>		

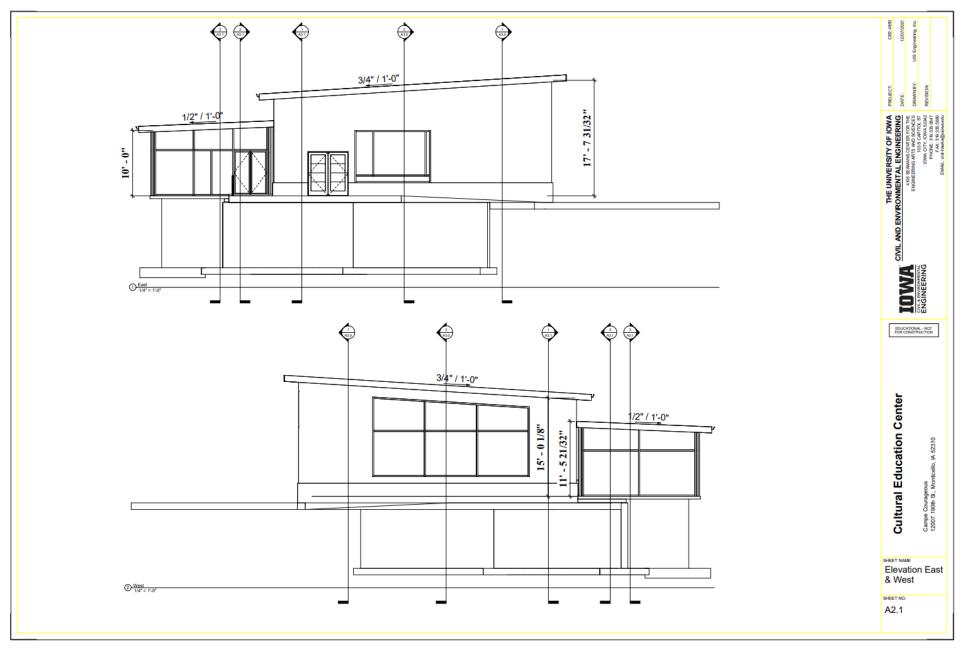

$\begin{array}{c c c c c c c c c c c c c c c c c c c $			REI	BAR S	CHEE	DULE			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			DEVEL	OPMEN	T LENG	THS - L	d		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ł	°c = 3000	PSI			F	c = 4000	PSI	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				SS B	BAR	STL). Ld	CL	ASS B
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SIZE TYP.	TOP	TYP.	TOP	SIZE	TYP.	TOP	TYP.	TOP
	#4 15*	19*	20"	25"	#4	13"	17"	17"	23"
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	#5 28*	36*	37"	47*	#5	24"	31"	32*	41"
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	#6 33*	43*	43"	56*	#6	29°	37"	38"	49"
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	#7 48"	63*	63"	82*	#7	42*	54"	55"	71"
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	#8 55"	72"	72"	94"	#8	48"	62"	63"	81"
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	#9 62"	81*	81"	106"	#9	54"	70*	71"	91"
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	#10 69*	90"	90"	117"	#10	60"	78"	78"	102*
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	#11 76*	98*	98"	128"	#11	66*	85"	86"	111"
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			S	TANDA	RD HOC)KS			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Fr - 2000	120			1	c=4000.	DCT	_
TYZE Ldh *A* *pr *C* STZE Ldh *A* *pr *S* StZE Ldh *A* *pr *stZE Ldh *S* St St<	HOOK DIMENSIONS		PAD	1000			SIONS		
44 6* 2-1/2* 6* 2* 84 6* 2-1/2* 6* 2* 85 107 2-1/2* 7.1/2* 2-1/2* 7.1/2* 2-1/2* 7.1/2* 2-1/2* 7.1/2* 2-1/2* 7.1/2* 2-1/2* 7.1/2* 2-1/2* 7.1/2* 2-1/2* 7.1/2* 2-1/2* 7.1/2* 2-1/2* 7.1/2* 2-1/2* 7.1/2* 2-1/2* 7.1/2* 2-1/2* 7.1/2* 2-1/2* 7.1/2* 2-1/2* 7.1/2* 2-1/2* 7.1/2* 2-1/2* 7.1/2* 3-1	SIZE Ldh					Ldh			
#5 10° 2-1/2° 7-1/2° 2-1/2° #5 9° 2-1/2° 7-1/2° 2-1/2° 66 12° 3° 9° 3° 66 10° 3° 9° 3° 3° 9° 3° <	#4 6"				#4	6*			
#6 127 37 #6 107 37 97 37 #7 147 31/27 107 37 107 31/27 107 31/27 107 31/27 107/27 31/27 107/27 31/27 107/27 31/27 107/27 31/27 107/27 31/27 107/27 31/27 107/27 31/27 107/27 31/27 107/27 31/27 10/27 31/27 10/27 31/27 10/27 31/27 10/27 31/27 10/27 31/27 10/27 31/27 10/27 31/27 10/27 31/27 10/27 31/27 10/27 31/27 10/27 31/27 10/27 31/27 10/27 31/27 10/27 31/27 10/27 31/27 10/27 55/1 10/4 10/27 55/1 10/4 10/27 55/1 10/4 10/27 55/1 10/4 10/27 5/1/4 10/27 10/27 10/27 10/27 10/27 10/27 10/27 10/27									2-1/2
#7 14* 3-1/2* 10-1/2* 3-1/2* #7 12* 3-1/2* 10-1/2* 3-1/2 #8 16* 4* 12* 4* 48 14* 4* 12* 4* 12* 4* 12* 4* 12* 4* 12* 4* 12* 4* 12* 4* 12* 4* 12* 4* 12* 4* 12* 14* 12* 5-5/8 #0 12* 5-5/8* #9 15* 4-1/2* 13-1/2* 5-5/8* #10 17* 5* 15* 15* 6-1/4* #10 17* 5* 15* 15* 6-1/4* #10 17* 5* 15* 15* 15* 15* 15* 15* 15* 15* 15*									
88 16* 4* 12* 4* 88 14* 4* 12* 4* 90 18* 4.1/2* 13/2* 5/8* 90 15* 13/1* 13/2* 5/8* 810 20* 5* 15* 6-1/4* #10 17* 5* 15* 6-1/4* 811 22* 5*/12* 16-1/2* 6-7/8* #11 19* 5*/12* 16-1/2* 6-7/8* 180 DEGREE HOOK 90 DEGREE HOOK 7 14* 15* 14* 14* 14* 14* 15* 14* 14* 14* 14* 14* 14* 14* 14* 14*		3-1/2"	10-1/2"	3.1/2"			3-1/2"	10-1/2"	3-1/2
#0 18* 4-1/2* 13-1/2* 55/8* #9 15* 4-1/2* 13-1/2* 55/8 #10 20* 5* 15* 6-1/4* #10 17* 5* 15* 6-1/4 #11 22* 5×1/2* 16-1/2* 6-7/8 #11 19* 5-1/2* 16-1/2* 6-7/8 180 DEGREE HOOK									
#10 207 5' 15' 6-1/4' #10 17' 5' 15' 6-1/4' #11 22' 5-1/2' 16-1/2' 6-7/8' #11 19' 5-1/2' 16-1/2' 6-7/8 180 DEGREE HOOK 90 DEGREE HOOK		4-1/2"	13-1/2*	5-5/8*			4-1/2"	13-1/2"	5-5/8
180 DEGREE HOOK 90 DEGREE HOOK	#10 20*	5"	15"		#10	17"	5"	15"	6-1/4
	#11 22*	5-1/2"	16-1/2"	6-7/8"	#11	19"	5-1/2"	16-1/2"	6-7/8
	180	DEGREE	HOOK			901	DEGREE F	IOOK	
	Sacrion		р h	P	CBTCAL	section	Db -	1-1-3	*

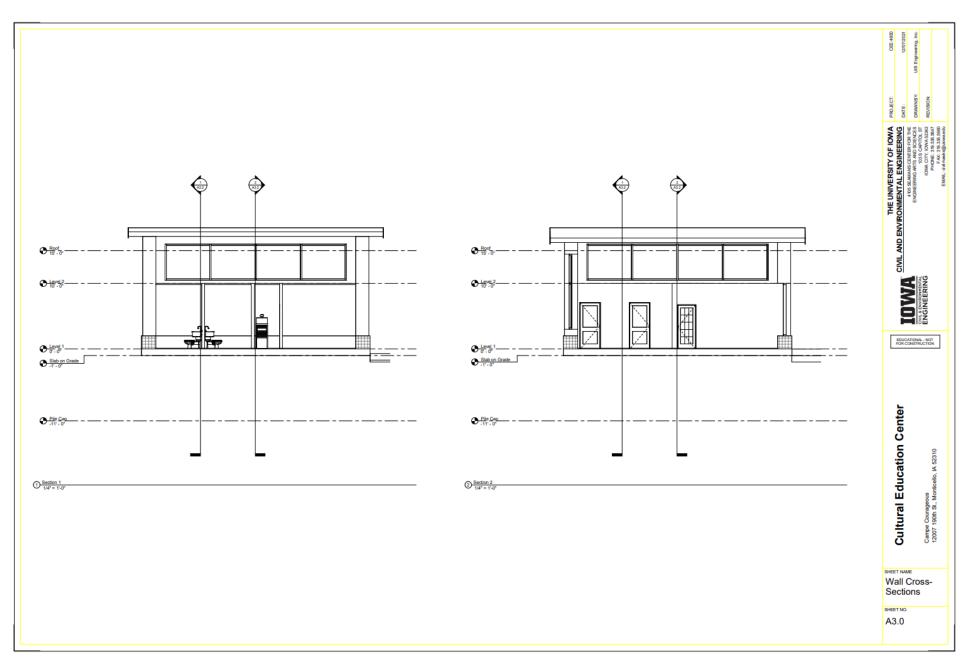


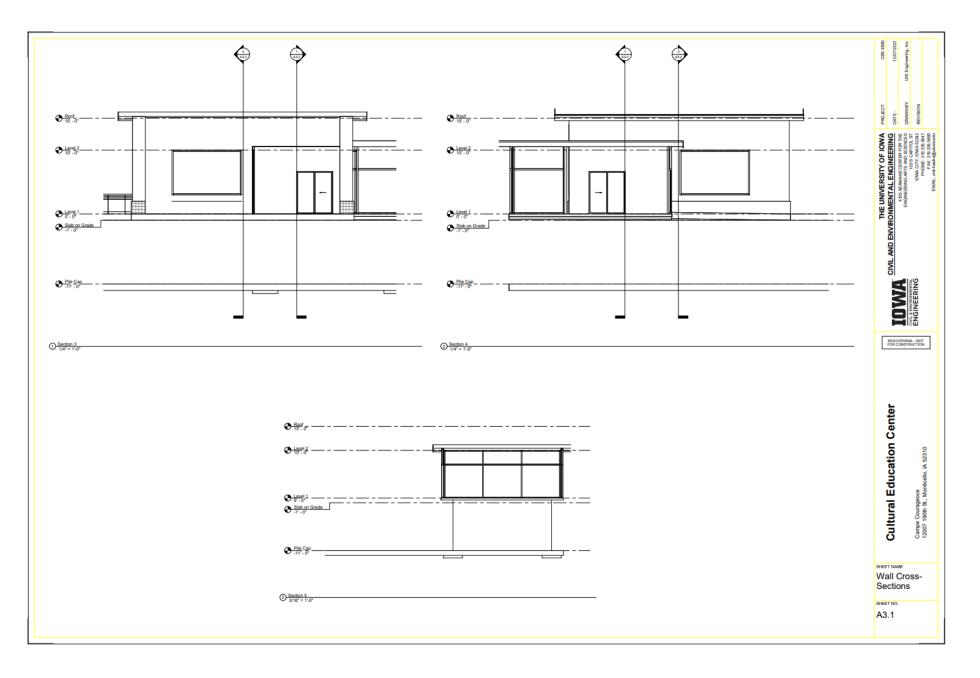

			I Takeoff				Material Takeoff							
Category	Family and Type	Material: Name	Material: Area	Material: Volume	Material: Unit weight	Count	Category	Family and Type	Material: Name	Material: Area	Material: Volum	e Material: Unit weig	ht Count	CEE 12/07 gineering
loors	Floor: 5" Concrete	Concrete, Cast-in-Place gray	4320 SF	1799.92 CF	150.28 lb/ft ^a	1	Structural Columns	HSS-Hollow Structural Section-Column:	Steel ASTM A500, Grade B, Rectangular and	37 SF	0.53 CF	490.00 lb/ft*	2	UIS Erg
Valls	Basic Wall: Retaining - 12" Concrete	Concrete, Cast-in-Place gray	811 SF	810.66 CF	150.28 lb/ft ³	1	Structural Columns		Square Steel ASTM A500, Grade	34 SF	0.50 CF	490.00 lb/ft ³	2	
loors	Floor: 5" Concrete	Concrete, Cast-in-Place gray	1799 SF	749.64 CF	150.28 lb/ft ³	1	Structural Columns	Section-Column: HSS3X3X3/8	B, Rectangular and Square Steel ASTM A500, Grade	263 SF	0.78 CF	490.00 lb/ft*	9	PROJECT: DATE: DRAWINBY REVISION
Structural Foundations	Wall Foundation: Bearing Footing - 90" x 12"	Concrete, Cast-in-Place gray	1382 SF	603.00 CF	150.28 lb/ft ³	1	Structural Columns	mn: 600S162-68(50)	B, Rectangular and Souare	203 5F	0.78 CF	490.00 ID/It*	9	
Valls	Basic Wall: Retaining - 12" Concrete	Concrete, Cast-in-Place gray	475 SF 805 SF	468.32 CF 348.31 CF	150.28 lb/ft ³	1	Structural Columns	ClarkDietrich-SFIA-S-Colu mn: 600S162-68(50)		442 SF	1.30 CF	490.00 lb/ft ³	16	OWA RING OR THE IFICL ST IFICL ST A 52242
Structural Foundations Floors	Wall Foundation: Bearing Footing - 90" x 12" Floor: 5" Concrete	Concrete, Cast-in-Place gray Concrete, Cast-in-Place	379 SF	157.73 CF		1	Structural Columns	ClarkDietrich-SFIA-S-Colu	Square	450 SF	1.33 CF	490.00 lb/ft ³	18	OF I NEE NUBRE NUB
-loors Walls	Basic Wall: Retaining -	gray	379 SF 125 SF	157.73 CF 119.84 CF	150.28 lb/ft ³	1		mn: 600S162-68(50)	B, Rectangular and Square					SITY ENGI ANS CE ANS CE 10 10 10 10 10 10 10 10
Floors	Floor: 5" Concrete	Concrete, Cast-in-Place gray Concrete, Cast-in-Place	273 SF	119.84 CF 113.75 CF	150.28 lb/ft ³	1	Structural Columns	ClarkDietrich-SFIA-S-Colu mn: 600S162-68(50)	Steel ASTM A500, Grade B, Rectangular and	205 SF	0.61 CF	490.00 lb/ft ³	11	
Walls	Basic Wall: Exterior - 8"	gray Concrete, Cast-in-Place	170 SF	113.54 CF	150.28 lb/ft ³	1	Structural Columns	ClarkDietrich-SFIA-S-Colu		659 SF	1.94 CF	490.00 lb/ft ³	37	THE UNIVERSITY OF 10WA RONMENTAL ENGINEERING 4058 ZAMAS CENTRS AND STORMENT 1035 CONTROLOGIES 1035 CONTROLOGIES 1036 CONTROLOGIES 1037 CON
Walls	Concrete Basic Wall: Exterior - 8"	gray Concrete, Cast-in-Place	147 SF	97.88 CF	150.28 lb/ft ^a	1		mn: 600S162-68(50)	B, Rectangular and Square	10.05	0.40.05	400.00 1 101		
Structural	Concrete Wall Foundation: Bearing	gray Concrete, Cast-in-Place	352 SF	94.99 CF	150.28 lb/ft ³	1	Structural Columns	ClarkDietrich-SFIA-S-Colu mn: 600S162-68(50)	Steel ASTM A500, Grade B, Rectangular and Square	40 SF	0.12 CF	490.00 lb/ft*	3	ENVI
Foundations Structural	Footing - 36" x 12" Wall Foundation: Bearing	gray Concrete, Cast-in-Place	218 SF	89.49 CF	150.28 lb/ft ³	1	Structural Columns	ClarkDietrich-SFIA-S-Colu mn: 600S162-68(50)	Steel ASTM A500, Grade B, Rectangular and	45 SF	0.13 CF	490.00 lb/ft ³	5	AND
Foundations Structural	Footing - 90" x 12" Wall Foundation: Bearing	gray Concrete, Cast-in-Place	312 SF	83.90 CF	150.28 lb/ft ³	1	Structural Columns	ClarkDietrich-SFIA-S-Colu	Square	188 SF	0.55 CF	490.00 lb/ft ³	30	CIVIL
Foundations Walls	Footing - 36" x 12" Basic Wall: Retaining -	gray Concrete, Cast-in-Place	81 SF	80.99 CF	150.28 lb/ft ³	1		mn: 600S162-68(50)	B, Rectangular and Square	100 01	0.55 64	400.00 10/10		l≊9
Valls	12" Concrete Basic Wall: Exterior - 8"	gray Concrete, Cast-in-Place	117 SF	77.97 CF	150.28 lb/ft ^a	1	Structural Columns	ClarkDietrich-SFIA-S-Colu mn: 600S162-68(50)	B, Rectangular and	32 SF	0.09 CF	490.00 lb/ft ³	22	
Structural	Concrete Wall Foundation: Bearing	gray Concrete, Cast-in-Place	244 SF	65.50 CF	150.28 lb/ft ³	1	Steel ASTM A500, Grade B	Rectangular and Square	Square	2873 SF	13.49 CF	100.00 * 101	167	
Foundations Structural	Footing - 36" x 12" Wall Foundation: Bearing	gray Concrete, Cast-in-Place	151 SF	60.16 CF	150.28 lb/ft ³	1	Structural Framing	W Shapes: W12X26 W Shapes: W12X26	Steel ASTM A992 Steel ASTM A992	203 SF 100 SF	2.61 CF 1.29 CF	490.00 lb/ft ³ 490.00 lb/ft ³	2	- Iou
Foundations Floors	Footing - 90" x 12" Floor: 5" Concrete	gray Concrete, Cast-in-Place	86 SF	35.76 CF	150.28 lb/ft ^a	1		W Shapes: W12X26 W Shapes: W12X26	Steel ASTM A992 Steel ASTM A992	97 SF 187 SF	1.25 CF 2.41 CF	490.00 lb/ft ³ 490.00 lb/ft ³	2	EDUCATIONAL - NOT FOR CONSTRUCTION
Walls	Basic Wall: Exterior - 8"	gray Concrete, Cast-in-Place	35 SF	23.33 CF	150.28 lb/ft ³	1		W Shapes: W12X26 W Shapes: W12X26	Steel ASTM A992 Steel ASTM A992	146 SF 140 SF	1.88 CF 1.80 CF	490.00 lb/ft ³ 490.00 lb/ft ³	2	
Structural	Concrete Wall Foundation: Bearing	gray Concrete, Cast-in-Place	77 SF	20.00 CF	150.28 lb/ft ³	1	Structural Framing	W Shapes: W12X26 W Shapes: W12X26	Steel ASTM A992 Steel ASTM A992	40 SF 24 SF	0.52 CF 0.31 CF	490.00 lb/ft ³ 490.00 lb/ft ³	1	
Foundations Structural Foundations	Footing - 36" x 12" Wall Foundation: Bearing	gray Concrete, Cast-in-Place	69 SF	17.54 CF	150.28 lb/ft ^a	1	Structural Framing			74 SF	0.22 CF	490.00 lb/ft ³	2	
-oundations Walls	Footing - 36" x 12" Basic Wall: Exterior - 8" Concrete	gray Concrete, Cast-in-Place gray	23 SF	15.66 CF	150.28 lb/ft ^a	1	Structural Framing	ClarkDietrich-SFIA-T-Hori zontal: 600T125-68(50)	Steel ASTM A992	133 SF	0.39 CF	490.00 lb/ft ³	4	er
Structural Foundations	Wall Foundation: Bearing Footing - 36" x 12"	Concrete, Cast-in-Place grav	37 SF	8.00 CF	150.28 lb/ft3	2	Structural Framing	ClarkDietrich-SFIA-T-Hori zontal: 600T125-68(50)		63 SF	0.19 CF	490.00 lb/ft ³	2	enter
Walls	Basic Wall: Exterior - 8" Concrete	Concrete, Cast-in-Place gray	5 SF	3.11 CF	150.28 lb/ft ^a	2	Structural Framing	ClarkDietrich-SFIA-T-Hori zontal: 600T125-68(50)	Steel ASTM A992	283 SF	0.83 CF	490.00 lb/ft ³	12	U
Concrete, Cast-in-Place gr Structural Columns	HSS-Hollow Structural	Steel ASTM A500, Grade	12492 SF 68 SF	6058.99 CF 1.64 CF	490.00 lb/ft ³	27	Structural Framing	ClarkDietrich-SFIA-T-Hori zontal: 600T125-68(50)		64 SF	0.19 CF	490.00 lb/ft ³	4	tion
	Section-Column: HSS6X6X5/8	B, Rectangular and Square					Structural Framing	ClarkDietrich-SFIA-T-Hori zontal: 600T125-68(50)		41 SF	0.12 CF	490.00 lb/ft ³	3	ducation
Structural Columns	HSS-Hollow Structural Section-Column: HSS4X4X1/4	Steel ASTM A500, Grade B, Rectangular and	88 SF	0.85 CF	490.00 lb/ft ³	2	Structural Framing	ClarkDietrich-SFIA-T-Hori zontal: 600T125-68(50)		160 SF	0.47 CF	490.00 lb/ft*	15	
Structural Columns	HSS4X4X1/4 HSS-Hollow Structural Section-Column:	Square Steel ASTM A500, Grade	44 SF	0.42 CF	490.00 lb/ft ³	1	Structural Framing Steel ASTM A992	ClarkDietrich-SFIA-T-Hori zontal: 600T125-68(50)	Steel ASTM A992	13 SF 1768 SF	0.04 CF	490.00 lb/ft*	2	
Structural Columns	HSS4X4X1/4	B, Rectangular and Square Steel ASTM A500, Grade	42 SF	0.41 CF	490.00 lb/ft ³	1					14.01 OF			Cultural campe Courage
Aracturar Corumns	Section-Column: HSS4X4X1/4	B, Rectangular and Square	12 OF	0.41 GF	400.00 ID/IC									Cult
Structural Columns	Section-Column: HSS4X4X1/4	Steel ASTM A500, Grade B, Rectangular and Square	83 SF	0.80 CF	490.00 lb/ft ³	2								
Structural Columns	Section-Column: HSS4X4X1/4	Steel ASTM A500, Grade B, Rectangular and Square	39 SF	0.38 CF	490.00 lb/ft ³	1								sheet NAME Tables & Schedules
Structural Columns	HSS-Hollow Structural Section-Column: HSS4X4X1/4	Steel ASTM A500, Grade B, Rectangular and Square	76 SF	0.73 CF	490.00 lb/ft ³	2								SHEET NO.
Structural Columns	HSS-Hollow Structural Section-Column: HSS4X4X1/4	Steel ASTM A500, Grade B, Rectangular and Square	38 SF	0.36 CF	490.00 lb/ft ³	1								S1.2

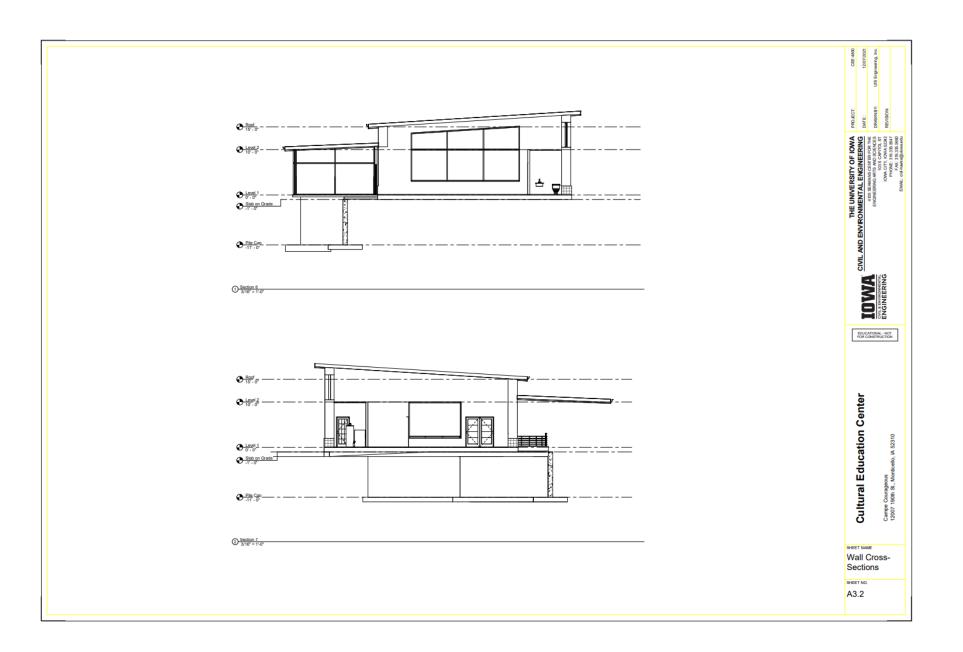


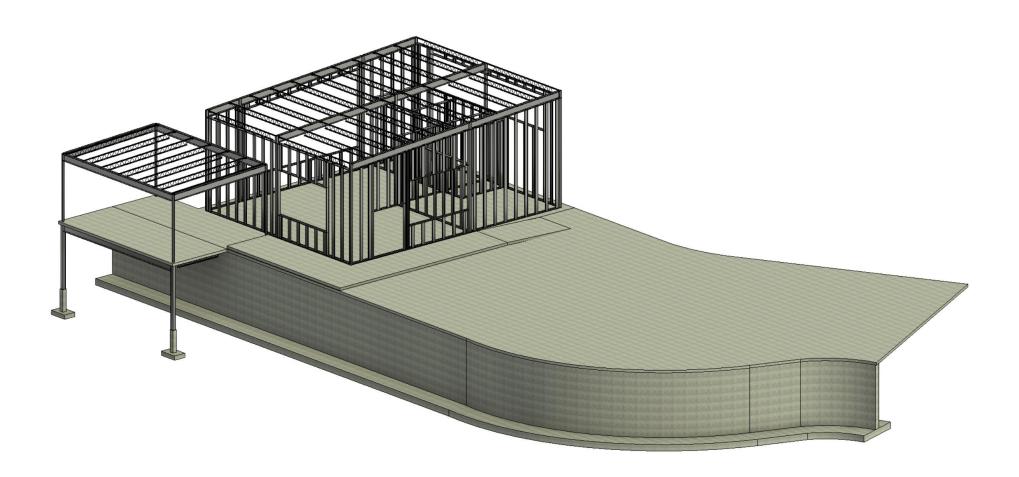


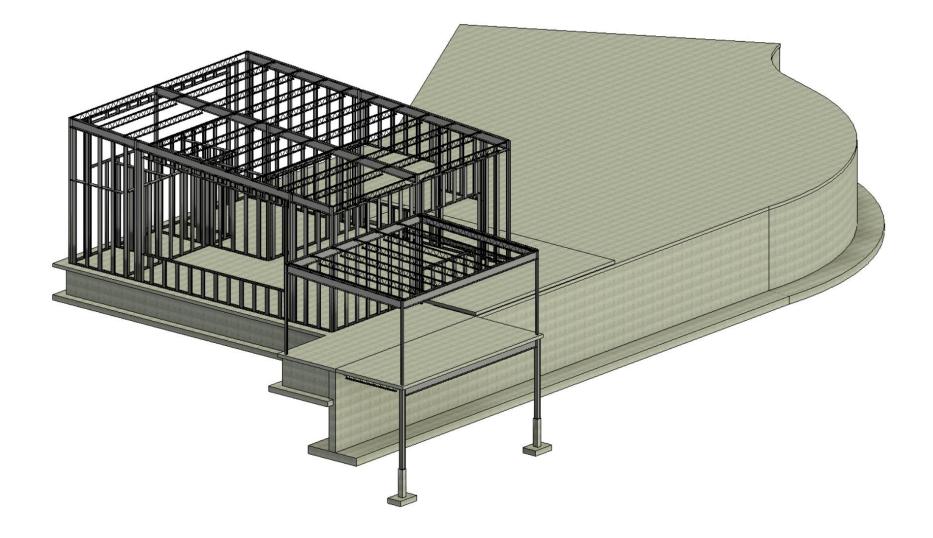





Appendix I – Architectural Sheets






Appendix J – Design Renderings and Models

