

City of Manchester, Iowa F.S.B.G. Engineering May 11th, 2021

University of Iowa Civil Engineers -- Project Team Introductions

- Claire Fienup
 - EFA in Transportation and Geography
- Brian Shanahan
 - ► EFA in Transportation

Daniel Garza

EFA in Management

Mason Boyer

▶ EFA in Transportation

Outline

- Project Area
- Scope of Work
- Design Standards
- Design Details
- Cost Estimation

Site Photographs

Scope of Work

- Relocation of the roadway so the airport meets the 305' distance threshold.
- Site design and roadway layouts developed based on property lines.
- Removal of existing intersection at Early Stagecoach Road and 210th Street to allow for the airport's expansion.

Design Standards

- Iowa DOT
 - Chapter 4, Section 4A
 - > 2016 Asphalt Binder and Mix Specification update Reference Guide
- SUDAS
 - Table 5C-1.01: Preferred Roadway Elements
 - Table 6A-2.02: Minimum center turning radii for common design vehicles
- Iowa Asphalt Pavement Association (APAI)
 - Low Volume Roadway Design Manual
 - ► I-PAVE

Soil Data

- (83B): Kenyon loam soil

- (391B): Clyde-Floyd Complex soil

Right of Way

Sight Distance Analysis

Road Cross Section

Pavement Thickness Design

INPUT

FLEXIBLE

RIGID

Relative Quality of Roadbed Soil Effective Resilient Modulus, psi k-value (psi/in) Losss of Support k-value (psi/in) A From: Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, APPENDIX GG-1 pg. GG 1.52 http://onlinepubs.trb.org/onlinepubs/archive/mepdg/2appendices GG.pdf e edu/reports/White%20et%20al.%202005_Stab_Vol21.pdf A-4(6) A 6/12 A-6(2) A-6(12) to A-7-6(15) A-6(12) to A-7-6(15)

SOIL DATA

TRAFFIC

PRINT

Login

CONTACT

Asphalt Binder of ST Mix Class I = PG 58-28S

2016 ASPHALT BINDER AND MIX SPECIFICATION UPDATE REFERENCE GUIDE

Beginning in October of 2016, the Iowa DOT will be changing the nomenclature and recommended asphalt binder grades for Iowa's roadways. In addition, the current ESAL mix design levels will have new N design levels and nomenclature under the new specifications. The following handy reference guide will provide guidance on the new classifications and the new bid items developed by the Iowa DOT.

ASPHALT	MIXTURE	PG BINDER						
DESIGN TRAFFIC (1 X 10º ESALS)	MIX DESIGNATION	DESIGN TRAFFIC (1 X 10° ESALS)	DESIGN SPEED (MPH)	CLASS I F	PROJECTS	CLASS II Projects		
≤ 1 M	ST	$\leq 1 \text{ M}$ and/or	> 45	58-28S	58-34S	58-28S		
1-10 M	НТ	1-10 M AND/OR	15-45	58-28H	58-34H	58-28H		
>10 M	VT	>10 M OR	<15	58-28V	58-34V	58-28V		
		>10 M AND	<15	58-28E	58-34E	58-28E		

S = Standard H= High V = Very High E = Extremely High

CLASS | PROJECTS: Full Depth Hot-Mix Asphalt | HMA + Cold-in-place Recycling | HMA + Rubblization | HMA + Crack and Seat HMA Overlay >4" | HMA + Full Depth Reclamation (FDR)

CLASS II PROJECTS: Overlay $\leq 4^{\prime\prime}$ | Parking Lot Secondary | Trails

IOWA DEPARTMENT OF TRANSPORTATION www.iowadot.gov/ | 515.239.1101

Link to IDOT New Binder Designation Webinar: http://iowadeptoftransport.adobeconnect.com/p9u69f7atxj/

ASPHALT PAVING ASSOCIATION OF IOWA www.apai.net | 515.233.0015

Plan and Profile Sheets

Horizontal Roadway Alignment of Early Stagecoach Road from intersection to intersection:

Intersection

- 2 Intersection designs
- ▶ WB-67 Design Vehicle with radius of 41 feet
- SUDAS Table 6A-2.02: Minimum center turning radii for common design vehicles

Road Removal/Traffic Control

Erosion Control

Mulching & SeedingTransition Mats

Sediment Control

> Silt Fences

Secure top of engineering fabric to steel posts using cable ties (50 lb.) or whe passing through or encompassing the belt. See attachment to post.

2 For manual installation only, fold engineering fabric along bottom of trench.

③ Embed all posts 28 Inches below the ground Ine.

(a) Locate posts at toe of foreslope and toe of backslope and space remaining posts equally.

Minimum end span (in feet) = 2 X Foreslope (H:V).
Minimum end span (in feet) = 2 X Backslope (H:V).

Refer to Tab, 100-18

T Shell Ferror Pold Fino.

DITCH CHECK - MANUAL INSTALLATION

Culvert Design

2 culverts

Construction Costs

Project:	Early Stagecoach RoadRoad Evaluation and Redesign							
Item	Unit	Dollars		Quantity		Cost	Rounded Cost	
Clearing and Grubbing	Acre	\$	5,140.85	0.4	\$	2,012.49	\$	2,000
Excavation - Class 10 Roadwa	ay and B	orrow						
Cut/Fill	CY	\$	5.46	686.4	\$	3,747.74	\$	3,750
Soil Compaction	CY	\$	1.73	631.6	\$	1,092.62	\$	1,100
Granular subbase	Ton	\$	26.36	1151.0	\$	30,341.48	\$	30,300
Pavement								-
6" pcc	SY	\$	84.05	1894.72	\$	159,251.22	\$	159,500
3" asphalt	SY	\$	12.15	1894.7	\$	23,020.85	\$	23,000
Subbase/Subgrade								
Granular Subbase 12"	SY	\$	7.23	1894.7	\$	13,698.83	\$	13,700
Soil Compaction - Subgrade	STA	\$	932.26	14.2	\$	13,247.79	\$	13,200
Traffic Control	LS	\$	16,727.00		\$	16,727.00	\$	16,700
Road Removal	ST	\$	437.43	5.0	\$	2,187.15	\$	2,175
Top soil	Ċy	\$	5.87	631.6	\$	3,707.34	\$	3,700
Hydraulic Seeding	Acre	\$	1,553.22	0.4	\$	608.04	\$	610
Pavement Marking	STA	\$	14.68	14.2	\$	208.61	\$	210
Signage	SF	\$	25.00	42.0	\$	1,050.00	\$	1,050
Signage (posts)	Unit	\$	100.00	6.0	\$	600.00	\$	600
Erosion/Sediment Devices	LF	\$	3.21	1421.0	\$	4,561.54	\$	4,562
Culverts	LF		\$21.00	113		\$2,373.00	\$	2,375
Option 2 PCC					\$	255,414.84	\$	255,500
Option 1 Asphalt					\$	119,184.47	\$	119,000
PCC								
Contigency Costs 10%	0.1				\$	25,541.48	\$	25,500
Admin & Engneering	LS				\$	23,836.89	\$	23,800
Asphalt								
Contigency Costs 10%	0.1				\$	11,918.45	\$	11,900
Admin & Engneering	0.2				\$	23,836.89	\$	23,800
Total Project Cost - PCC					Ś	304.793.22	Ś	305.000
Total Project Cost - Asphalt		_			; \$	154,939.81	\$	155,000

Total Project Costs:

Concrete: \$305,000

Asphalt: \$155,000

Overview

- Soil Information
- Right-of-Way
- Pavement
- Road Layout/Intersection
- Erosion Control
- Culvert

