

Project Team

Acknowledgements

Jackson County Board of Supervisors

Jack Willey, Member Larry McDevitt, Member Mike Steines, Member

Jackson County Energy District

Ben Davison, Secretary Bill Hainstock, Member Bruce Fisher, Chair Megan Andresen, Treasurer Mike Griffin, Member Victoria Putman, Member

Jackson County Economic Alliance

Kelley Brown, Director Dave Heiar, Senior Advisor

Jackson County Staff

Alisa Smith, Jackson County Auditor Kristina Tranel, AICP, Zoning Administrator

City of Preston

Teresa Weinschenk, City Administrator

s University of Iowa

School of Planning and Public Affairs

Faculty Advisors

Lucie Laurian, Professor & Director Samantha Zuhlke, Assistant Professor Travis Kraus, Director Iowa Initiative for Sustainable Communities

Field Problems Alumni Mentor

Kaley Bangston, Alliance for Clean Energy New York

In addition to:

Sarah Gardner, AICP, Climate Action Engagement Specialist Steve Guyer, Iowa Environmental Council, Energy & Climate Policy Specialist

David Osterberg, Senior Researcher for Common Good Iowa

School of Planning and Public Affairs

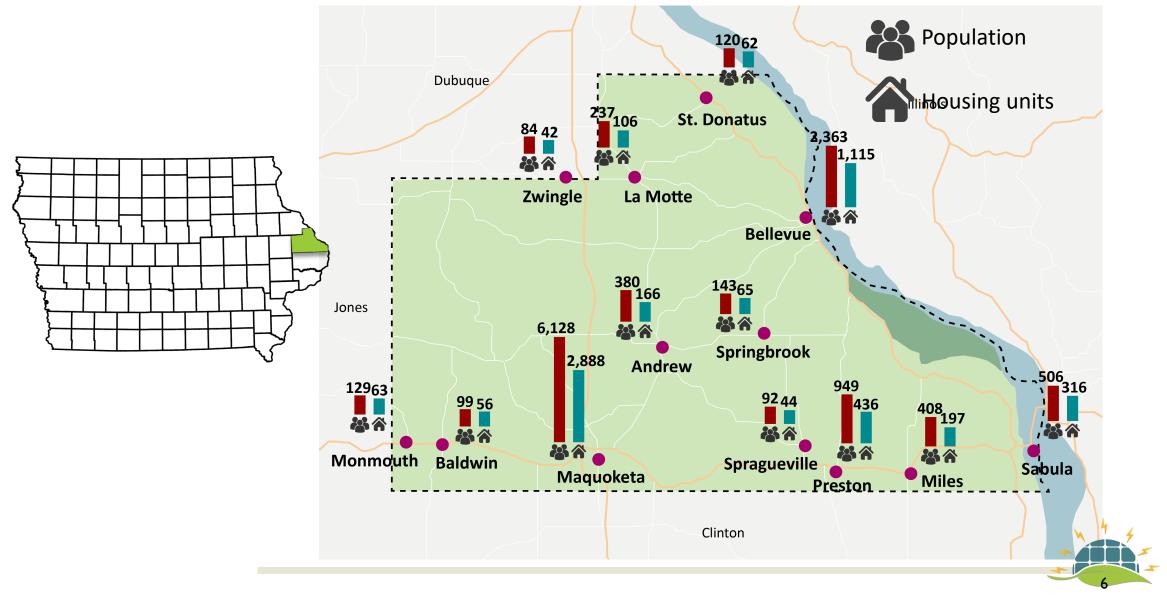
Presentation Outline

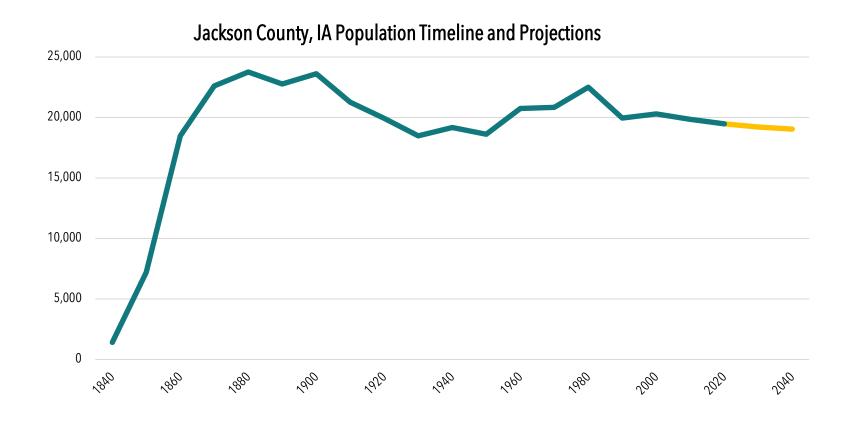
Springbrook Clean Energy Pilot Project

Existing Solar Installations

Recommendations

Solar Feasibility Study

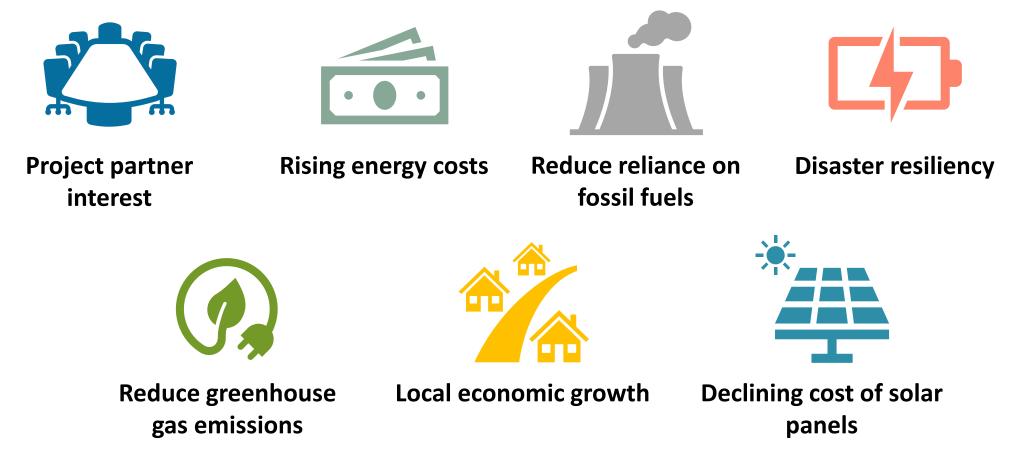



Plan Overview

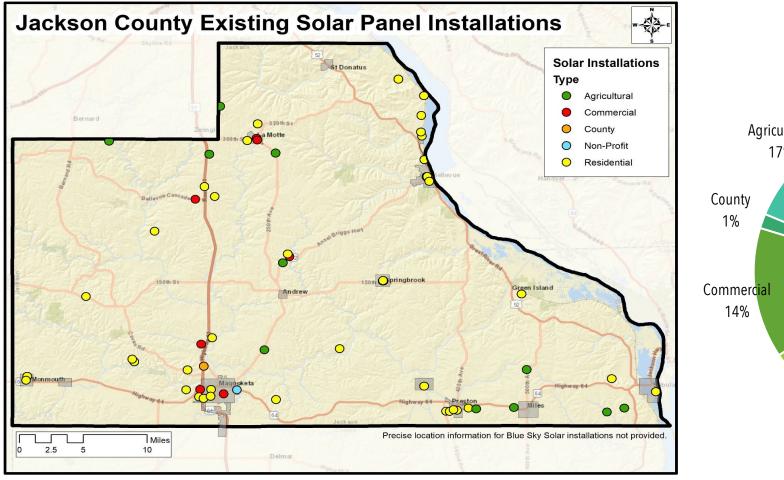
Location

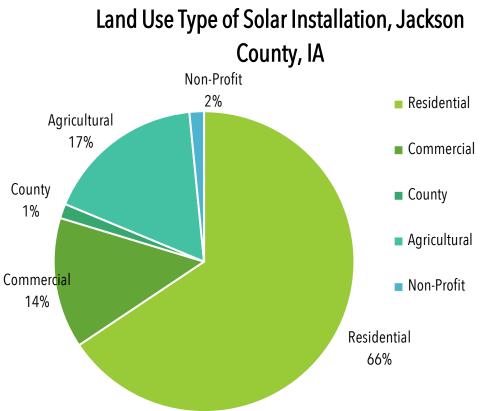
Population

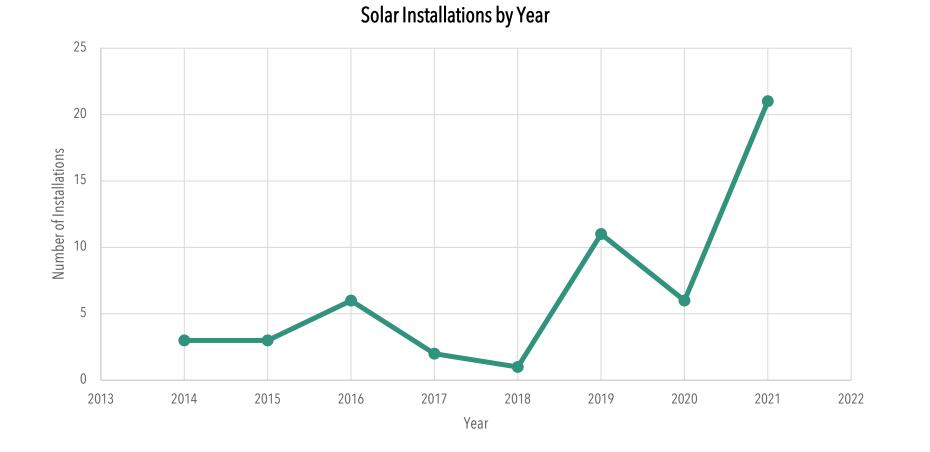
Vision & Goals


The long-term vision for Jackson County's energy is to be...

- Retain energy money in the county
- Promote initiatives toward local energy production
- Attract new residents and be an Iowa leader in clean energy production for rural counties.


Why Solar?




Existing Solar Panel Installations

Existing Solar Panel Installations

Solar Panel Installation Trend

Solar Installation Interactive Map

Jackson County Solar Jackson County Clean Energy Team	Q	:		Asbury	Si	nsinawa Hazel Gree	an
49 views Published 3 hours ago		Ŷ	Central Farley Epworth Peosta	lia	ey West	20	Scales Mound
SHARE EDIT				151		Galena Galena	Guilford Schapville
Pre 2022 Installations					St	Donatus	20 ñ
💡 Residential			Fillmore Berna			52	Rodden Elizabeth
Q Agricultural			iscade	Z			
Q Commercial						Benevu	e Hanover
💡 Non-Profit					tter Creek		52
Q Public			Canton Emeil		61	Springorook	Blackhawk
			Line Baldwin	••	Fulton Andrew	Sprague	Green Island 52 • • • • • • • • • • • • • • • • • • •
			Oxford Junction Lost 1	Elwood	61 Delmar	Charlotte Go	
			+ Massillon		Bliedorn Welton		

Map data ©2022 Imagery ©2022 TerraMetrics Terms 5 mi

Apple River

odbine

lassbach

Thomson

eleMyMaps

Warren

Stockton

Pleasant Valley

Polsgrove

Mt Carroll

Fair H

Nora

Made with Google My Maps

 \equiv

Solar Feasibility Study

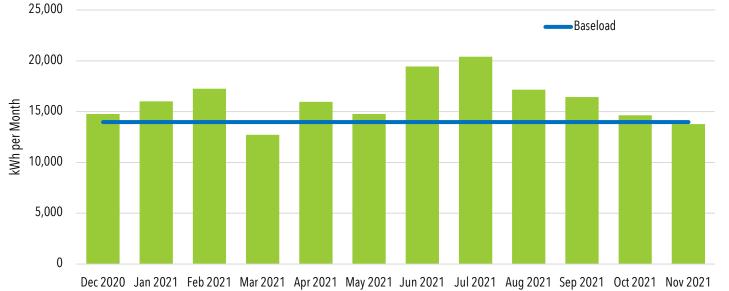
Overview

Purpose

Examine 13 sites with Jackson County owned-buildings to identify the economic feasibility of installing PV solar systems.


Goals

To reduce county operational costs and invest in renewable energy


Deliverables

Estimated economic payback analysis for solar installations based on energy consumption and power generation.

Jackson County Building Inventory

Jackson County Jail

146 Jacobsen Dr Electricity Usage

Delaware County Jail						
System costs	\$172,000 - \$277,000					
Avoided costs	\$557,000					
Total return	\$280,000 - \$385,000					
Payback period	5.4 – 8.7 years					

La Motte Shop

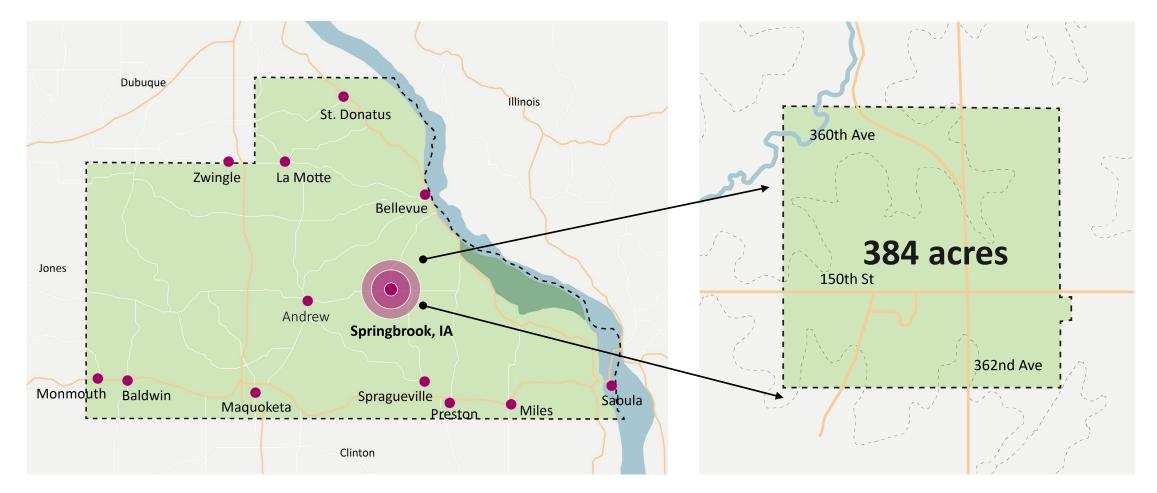
La Motte Shop					
System costs	\$7,300 - \$10,300				
Avoided costs	\$20,400				
Total return	\$10,000 - \$13,000				
Payback period	6.3 – 8.8 years				

Methodology & Results

- The size of each PV solar system was calculated by using the **building utility data**
- The estimated electricity cost was calculated by using **current utility rates**.
- The **avoided electricity cost** is used to calculate the payback period on each system.

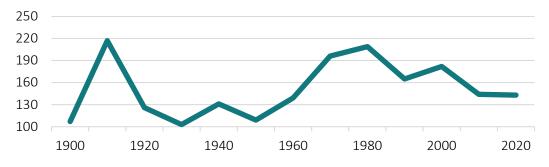
Analysis of 13 County Building Sites:					
System costs	\$670,000 - \$944,000				
Avoided costs	\$1.7 Million				
Return per year	\$30,500 - \$41,400				
Payback period	6.9 – 9.6 years				
System Size	373 kW DC				

Feasibility Study Assumptions


The analysis is based on the following assumptions about solar panels, environmental features, and energy costs:

- 340-Watt Panel produce 43.5 kWh/month (Solar reviews, 2021)
- 4.5 hours of Peak Sunlight (Hyder, 2019)
- Price is between \$2.53 \$1.80 per Watt
- Solar panel warrantied lifetime is 25 years (NREL, 2018)
- 3% annual inflation in energy costs over the 25-year lifetime.
- Jackson County building rooftops are assumed to be structurally strong enough to support PV solar panels.

Clean Energy Pilot Project: Springbrook


Location

Springbrook, IA: Profile

Population Trends, Springbrook, IA 2010-2020

	Population	Num. of Households	Median Age	Median Income	Annual Energy Consumption
Springbrook	143	65	56	\$66,875	791 MWh
Jackson County	19,348	8,183	44	\$59,042	325 , 979 MWh
State of Iowa	3.2 million	1.3 million	38	\$61,836	52,908,449 MWh

Source: American Community Survey 5-Year Estimates (2016-2020); U.S. Census Bureau (2020); Alliant Energy; FindEnergy Electric Profiles

Engaging the community

Goal: Collecting Springbrook resident input on energy

priorities, concerns, and experiences

- **Door-to-door campaign** (November 6, 2021)
- **Community survey** (November 2021)
- **Project website**

Energy Priorities

Lower energy bills

- Continue service with Alliant Energy

Diversify energy sources towards renewables

*Did not cite climate change or resiliency as a motivator

- Strong city leadership + resident support for a solar project
- Available land for ground-mounted PV solar
- Higher median household income
- No need to update grid infrastructure with fiber optics (less than 1 MW consumption demand)

Challenges & Limitations

- Facility maintenance and operation capability
- Financing solar facility
- Franchise agreement limitations
- **Dependency** on Alliant Energy
- Less financial return on solar investment due to economies of scale of smaller centralized solar production projects

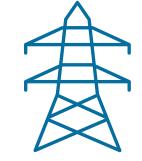
- Virtual net metering not available
- Relative **profitability** of Third-Party Power
 Purchase Agreements (PPA) vs. direct
 purchase
- Limited **equity** opportunities

Alliant Energy Meeting

- Presented case for potential partnership with Alliant in February 2022
- Passed application to company's engineers to assess infrastructure
- Received application denial in April 2022

School of Planning and Public Affairs

Ownership Models:



City of Springbrook

Municipal Utility

Third Party (PPA) Municipal Utility Ground: 250 kW > Roof: 500 kW >

Alliant Energy

Min: 200 kW – 1 MW

Recommendations

Springbrook Recommendations

Short-term

- Encourage and educate community of household solar installation
- Create incentives to assist upfront cost
- Install solar facility for city services (w/ cost comparison for PPA and grants)

Long-term

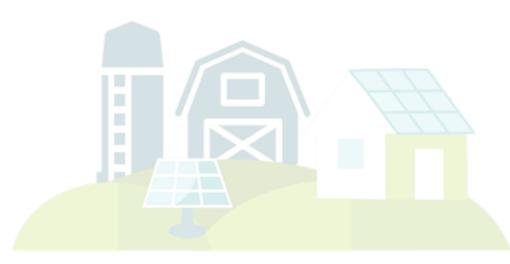
- Continue to pursue partnership for centralized solar facility with Alliant Energy
- Pursue potential battery system project if the grid demand from solar installation increases
- Incorporate clean energy objectives in franchise agreement

Feasibility Study Recommendations

Short-term

- Continue to explore PV solar systems on county facilities
 - Solicit estimates from local solar installers

Long-term


• Invest in Jackson County facilities outlined in the feasibility study

Questions?

Appendix

Delaware County Jail

Bill Date		Electricity Cost		Energy Usage (kwh)	
	24-Mar-21		\$2,527.21		18,400
	26-Apr-21		\$2 <i>,</i> 078.05		15,960
	24-May-21		\$2,087.00		14,760
	24-Jun-21		\$3,127.44		19,440
	26-Jul-21		\$3 <i>,</i> 453.10		20,400
	25-Aug-21		\$3,004.06		17,160
	27-Sep-21		\$2,757.25		16,440
	26-Oct-21		\$2,166.18		14,640
	23-Nov-21		\$1,970.94		13,680
	22-Dec-21		\$2,067.34		14,760
Totals			\$25,238.57		165,640
Courses Allient Fre					

Source: Alliant Energy

Electric Vehicles

Types:

Plug-In Hybrid Electric Vehicle (PHEV) Battery Electric Vehicle (BEV) Hybrid Electric Vehicle (HEV)

Cost Per Gallon (In Iowa):

Electric Vehicle (eGallon): \$1.03 Gas-Powered Vehicle: \$2.76

Range on One Charge:

PHEV: 50 miles in all-electric mode,500 miles before rechargingBEV: More than 300 miles

Average Costs:

Electric Vehicle: \$56,327 Gas-Powered Vehicle: \$46,329

Operation Costs Per Year (2018):

Electric Vehicle: \$485 Gas-Powered Vehicle: \$1,117

		ြာခို
BATTERY ELECTRIC VEHICLE (BEV)	PLUG-IN HYBRID VEHICLE (PHEV)	HYBRID VEHICLE
all-electric	electric with a gas backup	gas
large battery	medium-sized battery	small battery
needs to be plugged in	can be plugged in	can't be plugged in
example: Nissan LEAF	example: Honda Clarity	example: Toyota Prius

Source: https://pscleanair.gov/564/Electric-Vehicles

Electric Vehicles Continued...

Services costs are **31%** lower than gaspowered vehicles after **36** months on the road.

Can qualify for a **\$2,500** to **\$7,500** non-refundable tax credit from the Federal Government for purchasing an electric vehicle built after **2010****

Electric Vehicles produce **54%** less carbon pollution than gas-powered vehicles

Every **500** miles driven gasfree is equivalent to planting **119** trees Alliant Energy offers a **\$750** rebate for those that purchase a **Level 2** charging station

In Iowa, the direct sale of electric motor vehicles is **prohibited**

lowa charged a **\$97.50** electric vehicle fee in 2021 and that fee increased to **\$130** in 2022

lowa is ranked as the **worst** state in the US for electric vehicle access

**Only if it is one of the first 200,000 built by the manufacturer

Electric Vehicle Chargers

Charging Level Summary

	Level	ChargeHub Markers	Power (kW)	Approximate Charging Time (Empty Battery)
with most s and can -volt	1	•	1	200 km (124 miles): +/- <u>20</u> <u>hours</u> 400 km (249 miles): +/- <u>43</u> <u>hours</u>
let d \$2,000 en \$12,000	2	G	3 to 20, typically 6	200 km (124 miles): +/- <u>5</u> <u>hours</u> 400 km (249 miles): +/- <u>11</u> <u>hours</u>
	3 (DCFC)	4	Typically 50, occasionaly 20	80% of 200 km (124 miles): +/- <u>30 min</u> 80% of 400 km (249 miles): +/- <u>1 hour</u>

Source: https://chargehub.com/en/electric-car-charging-guide.html

Charger Costs:

Level 1: Comes with most electric vehicles and can plug into a 120-volt household outlet

Level 2: Around \$2,000

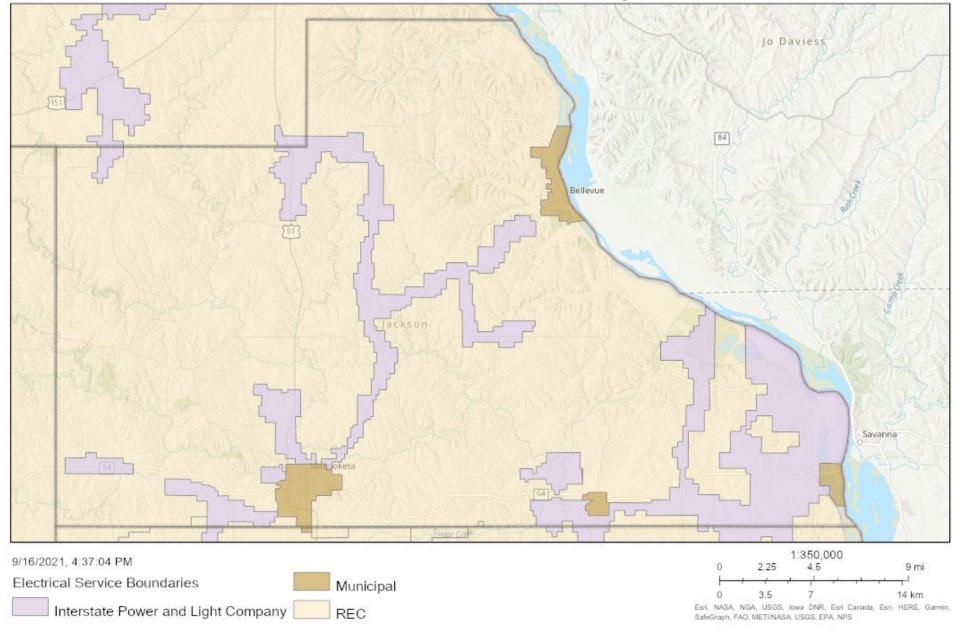
Level 3: Between \$12,000 and \$35,000

Public Engagement

Respondent Profile	Community Growth	Energy Priorities	Energy Use
 About 91% of the respondents were above the age of 50. 44% of the Respondents had an annual household income between \$30,000 and \$74,999. About 21% work in farming or agriculture and 24% are self-employed. 	 What the reasons are for living in Springbrook? <u>Affordable housing (18%)</u>; <u>Family (16%)</u>; <u>Size of the community (15%)</u> 57% hope to see moderate population growth (<10%) in Springbrook. 	 The most important factors to Springbrook's energy future: Lower energy bills (44%) 45% of the respondents' monthly utility bill is between \$150-200. The longest power outage is between 1-5 hours. 	 50% do NOT want any increase to their energy bill if it meant purchasing renewable energy, while 30% were willing to see a slight increase (<10%) 62% are interested in Springbrook being an energy pilot community. 55% are NOT interested in Springbrook establishing a

municipal owned utility.

Survey

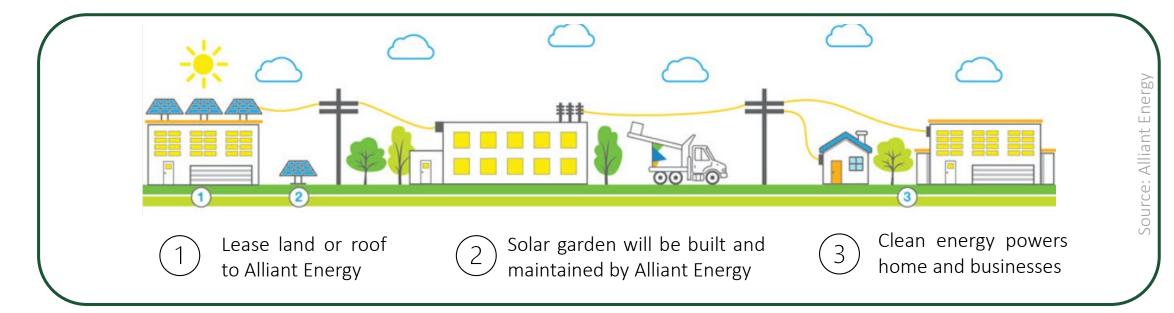

Case Studies

Alliant Energy announced in October 2021 that their first community microgrid system will be built in the Village of Boaz in Richland County, Wisconsin to enhance the community's energy reliability.

This is a small village of 156 people that experienced ten power outages between 2017-2019. This project will create a small-scale, independent utility grid with a dedicated power source that will allow it to provide energy to its customers when the central grid is down, or service is interrupted. As the microgrid disconnects from the central grid, it can still provide power to around 120 customers through one or more distributed generation sources such as batteries, wind, solar, or combinations thereof (Church, 2021).

Community-Microgrid in Boaz, Wisconsin

Electrical Service Area Boundary


39

	ArcGIS (ESRI)/ArcGIS Pro (ESRI)	ArcGIS Story Maps	QGIS	OpenStreetMap	Google My Maps
Free use	No	Yes (Subscription unlocks more features)	Yes	Yes	Yes (not entirely)
Easy operation	No	Yes	No	Somewhat	Yes
Interactive Map	Yes	Yes	Yes	Yes	Yes
Data export	Yes	Need Subscription	Yes	Yes	Yes
Display information (pictures, data, location descriptions)	Yes	Yes	Yes	Yes	Yes
Multi-users not simultaneously	Yes	One account or Subscribe	Yes	One account	One account
Data Calculation	Yes	No	Yes	Νο	Via data table
Color difference by uses	Yes	No	Yes	Yes	Yes
Live data	Yes	Via website link	Yes	Via website link	Via website link
List on the side (navigation)	No	Yes	No	Yes	Yes
Further updates	Yes	Yes	Yes	Yes	Yes
Features other than maps	More technology- related features	Used for storytelling	More technology- related features	Yes	Yes, but may include ₄ additional costs

Distributed Solar Generation

Description	Tax Benefits	Opportunities for Springbrook	Negatives	Funding Sources	Equity
Distributed energy produced from a variety of small, grid-connected solar sources.	Private entities eligible for federal tax incentives. Iowa tax incentives expired in 2021.	Higher cost savings Cost of solar technology is declining Could lead to demand for microgrid or battery system facility for Springbrook.	Not accessible to all households due to high upfront cost, renters, rooftop design, etc.	 Alternative Energy Revolving Loan Program Solar Loans HomeStyle Energy Program PPAs Property Assessed Clean Energy Financing (PACE) 	Equitable when all residents have an equal opportunity to reap the economic and environmental benefits of solar panel installation.

Alliant Energy Customer Hosted Renewables

Case Study: Alliant Energy Customer Hosted Solar Project with City of Perry, Iowa (Summer 2022)

- First Customer Hosted Solar Project in Iowa
- I-megawatt solar facility (about 260 homes)
- 7-acre brownfield
- City will receive \$45,470 annually with a 25-year lease contract
- Residents do not get discounts on electricity bills
- City will obtain renewable energy credits to offset its greenhouse gas and carbon dioxide emissions

References

https://www.saurenergy.com/solar-energy-news/total-adds-6-new-projects-to-its-distributed-solar-portfolio-in-se-asia

https://www.alliantenergy.com/cleanenergy/whatyoucando/customerhostedrenewables

https://theperrynews.com/perry-joins-alliant-energy-in-brownfield-solar-power-project/

https://www.desmoinesregister.com/story/tech/science/environment/2021/06/24/electric-vehicle-accessibility-index-evs-arent-easy-buy-own-iowa-tesla-consumer-choice-center/5320251001/

https://chargehub.com/en/electric-car-charging-guide.html

https://www.alliantenergy.com/cleanenergy/whatyoucando/electricvehicles

https://www.energy.gov/maps/egallon

https://www.cnbc.com/2021/12/29/electric-vehicles-are-becoming-more-affordable-amid-spiking-gas-prices.html

Energy Sage "Solar Panel Size and Weight: How Big Are Solar Panels?" Solar News February 1, 2021, Accessed December 14, 2021. https://news.energysage.com/average-solar-panel-size-weight/.

Lane, Catherine. "Calculate How Many Solar Panels You Need for Your Home." Solar Reviews. Solar Reviews, May 21, 2018. https://www.solarreviews.com/blog/how-many-solar-panelsdo-i-need-to-run-my-house

References

"Portfolio Manager Technical Reference: U.S. National Energy Use Intensity." Portfolio Manager Technical Reference: U.S. National Energy Use Intensity | ENERGY STAR, October 28, 2018. https://www.energystar.gov/buildings/tools-and-resources/portfoliomanager-technical-reference-us-nationalenergy-use-intensity.

"Project Locations." Eagle Point Solar. Accessed November 20, 2021. https://eaglepointsolar.com/project-locations/

"Solar Energy Basics." NREL.gov. Accessed November 20, 2021. https://www.nrel.gov/research/re-solar.html.